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Abstract. We study the existence of mild solutions and the approximate controllability concept for Sobolev type fractional semilinear

stochastic evolution equations in Hilbert spaces. We prove existence of a mild solution and give sufficient conditions for the approximate

controllability. In particular, we prove that the fractional linear stochastic system is approximately controllable in [0, b] if and only if the

corresponding deterministic fractional linear system is approximately controllable in every [s, b], 0 ≤ s < b. An example is provided to

illustrate the application of the obtained results.

Key words: approximate controllability, Sobolev type fractional stochastic evolution equations.

Dedicated to Professor J. Klamka

on the occasion of his 70th birthday

1. Introduction

Many social, physical, biological and engineering problems

can be described by fractional partial differential equations.

In fact, fractional differential equations are considered as an

alternative model to nonlinear differential equations. In the

last two decades, fractional differential equations (see, for ex-

ample, Samko et al [1] and references therein) has attracted

many scientists, and notable contributions have been made to

both theory and applications of fractional differential equa-

tions. Recently, the existence of mild solutions, stability and

(approximate) controllability of (fractional) semilinear evolu-

tion system in Banach spaces have been reported by many re-

searchers, see [2–32]. The approximate controllability of sys-

tems represented by nonlinear evolution equations has been

investigated by several authors, in which the authors effective-

ly used the fixed point approach.

The Sobolev type (fractional) equation appears in a va-

riety of physical problems such as flow of fluid through fis-

sured rocks, thermodynamics, propagation of long waves of

small amplitude and shear in second order fluids and so on.

Brill [33] and Showalter [34] established the existence of so-

lutions of semilinear Sobolev type evolution equations in Ba-

nach space. There is an extensive literature in which Sobolev

type of equations are investigated, in the abstract framework.

Moreover, the fractional differential equations of Sobolev type

appear in the theory of control of dynamical systems, when

the controlled system or/and the controller is described by

a fractional differential equation of Sobolev type. Complete

controllability of evolution systems of Sobolev type in Banach

spaces have been studied by Balachandran and Dauer [16],

Ahmed [24], Feckan et al. [25]. Besides, noise or stochas-

tic perturbation is unavoidable and omnipresent in nature as

well as in man-made systems. Therefore, it is great signifi-

cance to import the stochastic effects into the investigation of

fractional differential systems. of great significance to import

the stochastic effects into the investigation of fractional dif-

ferential systems. Up to now, there is no work reported on

existence and approximate controllability of fractional evo-

lution equations of Sobolev type. Motivated by this fact, in

this paper, we make an attempt to fill this gap by studying

the existence and approximate controllability of Sobolev-type

fractional stochastic differential systems in Hilbert spaces.

The rest of the paper is organized as follows. In Sec. 2 we

recall some basic definitions and results from the stochastic

analysis and the theory of fractional calculus. In Sec. 3, we

discuss existence of the mild solution of fractional Sobolev

type stochastic evolution equations in Hilbert spaces. In Sec. 4

the concept of approximate controllability is discussed. We

prove that the fractional linear stochastic system is approxi-

mately controllable on [0, b] if and only if the corresponding

deterministic fractional linear system is approximately con-

trollable on every [s, b], 0 ≤ s < b. Moreover, we give suffi-

cient condition for the approximate controllability of the frac-

tional Sobolev type semilinear stochastic differential equation

in Hilbert spaces. Finally, in Sec. 5, an example is provided

to illustrate the applications of the obtained results.

2. Preliminaries

In this section, we shall recall notations, some basic defini-

tions and lemmas from the stochastic analysis and the frac-

tional calculus theory which will be used in the main re-

sults [1, 35].

• Let (Ω,F, {Ft ↑⊂ F, t ≥ 0} , P ) denote a complete proba-

bility space equipped with a family of nondecreasing sub-

sigma algebras. Let E {·} denote the integration with re-

spect to the measure P. All random processes considered in

the paper are assumed to be strongly Ft-progressively mea-

surable processes unless stated otherwise. Let E be a sep-

arable Hilbert space, {w (t) , t ≥ 0} be a Wiener process

with values in E with covariance operator Q, where Q
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is a positive nuclear operator in E. We assume that there

exists a complete orthonormal system {ek} in E, a bound-

ed sequence of nonnegative real numbers λk such that

Qek = λkek, k = 1, 2, ... and a sequence {βk} of in-

dependent Brownian motions such that

〈w (t) , e〉 =

∞
∑

k=1

√

λk 〈ek, e〉βk (t) , e ∈ E, t ≥ 0.

Further we assume that Ft is generated by

{w (s) : 0 ≤ s ≤ t} .
• Let L0

2 := L2

(

Q1/2E,H
)

be the space of all Hilbert-

Schmidt operators from Q1/2E to H. The space L0
2 is a

separable Hilbert space, equipped with the norm ‖Ψ‖
2
L0

2
=

tr [ΨQΨ∗] .
• We use L2 (F, H) , to denote the Banach space of strong-

ly F-measurable, H-valued random variables satisfying

E ‖x‖
2
< ∞. Since for each t ≥ 0 the subsigma al-

gebras Ft are complete, L2 (Ft, H) are closed subspaces

of L2 (F, H) and hence they are also Banach spaces.

Similarly, LF
2 ([0, b] , H) will denote the Banach space of

Ft-progressively measurable random processes defined in

[0, b], taking values from X satisfying E

b
∫

0

‖x (t)‖
2
H dt <

∞.
• C ([0, b] , L2 (F, H)) is the Banach space of continuous

maps from [0, b] into L2 (F, H) satisfying the condi-

tion supt∈[0,b] E ‖x (t)‖
2
< ∞. H2 is the closed sub-

space of C ([0, b] , L2 (F, H)) consisting of measurable

and Ft-adapted processes x (t) . Then H2 is a Ba-

nach space with the norm topology given by ‖x‖H2
=

(

supt∈[0,b] E ‖x (t)‖
2
)1/2

.

• Br :=
{

x ∈ H2 : ‖x‖2
H2

≤ r
}

.

The operators A : D (A) ⊂ H → H and C : D (C) ⊂
H → H satisfy the following hypotheses:

(S1) A and C are linear operators, and A is closed.

(S2) D (C) ⊂ D (A) and C is bijective,

(S3) C−1 : H → D (C) is compact.

The hypotheses (S1)-(S3) and the closed graph theo-

rem imply the boundedness of the linear operator AC−1 :
H → H . Consequently, −AC−1 generates a semigroup

{S (t) ; t ≥ 0} in H . There exists a positive constant M such

that ‖S (t)‖ ≤M, for all 0 ≤ t ≤ b.

Let us recall the following known definitions in fractional

calculus. For more details, see [1].

Definition 1. The fractional integral of order α > 0 with the

lower limit 0 for a function f is defined as

Iαf(t) =
1

Γ(α)

t
∫

0

f(s)

(t− s)1−α
ds, t > 0, α > 0,

provided the right-hand side is pointwise defined in [0,∞),
where Γ is the gamma function.

Definition 2. The Riemann-Liouville derivative of order α
with the lower limit 0 for a function f : [0,∞) → R can be

written as

LDαf(t) =
1

Γ(n− α)

t
∫

0

f (n)(s)

(t− s)α+1−n
ds,

t > 0, n− 1 < α < n.

Definition 3. The Caputo derivative of order α for a function

f : [0,∞) → R can be written as

CDαf(t) =L Dα

(

f(t) −

n−1
∑

k=0

tk

k!
f (k)(0)

)

,

t > 0, n− 1 < α < n.

In order to explain our theorem, we need the following

assumptions.

(H1) f : [0, b]×H → H satisfies the following

(a) f (t, ·) : H → H is continuous for each t ∈ [0, b]
and for each x ∈ H, f (·, x) : [0, b] → H is

strongly measurable;

(b) there is a positive integrable function

L∞ ([0, b] , (0,∞)) and a continuous nondecreas-

ing function Λf : [0,∞) → (0,∞) such that for

every (t, x) ∈ [0, b]× L2 (F, H), we have

E ‖f (t, x)‖2 ≤ n (t) Λf

(

E ‖x‖2
)

,

lim inf
r→∞

Λf (r)

r
= σf <∞.

(H2) g : [0, b]×H → L0
2 satisfies the following

(a) g (t, ·) : H → L0
2 is continuous for each t ∈ [0, b]

and for each x ∈ H, g (·, x) : [0, b] → L0
2 is

strongly measurable;

(b) there is a positive integrable function m ∈
L∞ ([0, b] , (0,∞)) and a continuous nondecreas-

ing function Λg : [0,∞) → (0,∞) such that for

every (t, x) ∈ [0, b]× L2 (F, H), we have

E ‖g (t, x)‖
2
L0

2
≤ m (t) Λg

(

E ‖x‖
2
)

,

lim inf
r→∞

Λg (r)

r
= σg <∞.

(H3) Assume that the following relationship holds:

3
M2

∥

∥C−1
∥

∥

2

Γ2 (α)

b2α

2α− 1
σf sup

0≤s≤b
n (s)

+3
M2

∥

∥C−1
∥

∥

2

Γ2 (α)

b2α−1

2α− 1
σg sup

0≤s≤b
m (s) < 1.
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For x ∈ X and 0 < α ≤ 1, we define two families

{SC (t) : t ≥ 0} and {TC (t) : t ≥ 0} of operators by

Sα(t) =

∞
∫

0

Ψα(θ)S(tαθ)dθ,

Tα(t) = α

∞
∫

0

θΨα(θ)S(tαθ)dθ,

SC (t) = C−1Sα(t), TC (t) = C−1Tα(t),

where

Ψα(θ) =
1

πα

∞
∑

n=1

(−1)n−1 Γ(nα+ 1)

n!
sin(nπα),

θ ∈ (0,∞).

is the function of Wright type defined in (0,∞) which satis-

fies

Ψα(θ) ≥ 0,

∞
∫

0

Ψα(θ)dθ = 1,

∞
∫

0

θζΨα(θ)dθ =
Γ (1 + ζ)

Γ (1 + αζ)
,

ζ ∈ (−1,∞) .

Lemma 4 [25]. The operators SC and TC have the following

properties:

(a) For any fixed t ≥ 0, SC (t) and TC (t) are linear and

bounded operators, and

‖SC (t)x‖ ≤M
∥

∥C−1
∥

∥ ‖x‖

and ‖TC (t)x‖ ≤
M
∥

∥C−1
∥

∥

Γ (α)
‖x‖ .

(b) {SC (t) : t ≥ 0} and {TC (t) : t ≥ 0} are compact.



















CDα
t Cx (t) = −Ax (t) +Bu (t) + f (t, x (t))

+σ (t, x (t))
dw (t)

dt
,

x (0) = x0.

(1)

We first present the definition of mild solutions for the

system.

Definition 5. A stochastic process x (t) : [0, T ] × Ω → H is

said to be a mild solution of the system (1) if

(a) x (t) is Ft-adapted, t ≥ 0,

(b) x (t) is continuous on [0, T ] almost surely and the follow-

ing stochastic integral equation is satisfied:

x (t) = SC (t)Cx0

+

t
∫

0

(t− s)
α−1

TC (t− s) f (s, x (s)) ds

+

t
∫

0

(t− s)
α−1

TC (t− s) g (s, x (s)) dw (s) .

3. Existence theorem

In the present section, we formulate and prove sufficient con-

ditions for the existence of the mild solution of the system

(1). We define the operator Θ : H2 → H2

(Θx) (t) := SC (t)Cx0

+

t
∫

0

(t− s)
α−1

TC (t− s) f (s, x (s)) ds

+

t
∫

0

(t− s)α−1 TC (t− s) g (s, x (s)) dw (s)

and prove that it has a fixed point in H2. To do this, we first

prove some lemmas.

Lemma 6. Under the assumptions(S1)–(S3), (H1)–(H3), there

exists a positive number r such that Θ (Br) ⊂ Br.

Proof. If it is not true, then for each r > 0, there exists a

function xr ∈ Br, but Θ (xr) /∈ Br. In other words, there

exists t ∈ [0, b] such that r < E ‖(Θxr) (t)‖
2
. For such t we

find that

r < E ‖(Θxr) (t)‖
2
≤ 3E ‖SC (t)Cx0‖

2

+3E

∥

∥

∥

∥

∥

∥

t
∫

0

(t− s)
α−1

TC (t− s) f (s, x (s)) ds

∥

∥

∥

∥

∥

∥

2

+3E

∥

∥

∥

∥

∥

∥

t
∫

0

(t− s)
α−1

TC (t− s) g (s, x (s)) dw (s)

∥

∥

∥

∥

∥

∥

2

=: 3 (I1 + I2 + I3) .

(2)

Let us estimate Ii, i = 1, ..., 5. By Lemma 4 and assumption

(H1), we have

I1 ≤M2
∥

∥C−1
∥

∥

2
‖Cx0‖

2 , (3)
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I2 ≤
M2

∥

∥C−1
∥

∥

2

Γ2 (α)

t
∫

0

(t− s)
2(α−1)

ds

t
∫

0

E ‖f (s, x (s))‖
2
ds

≤
M2

∥

∥C−1
∥

∥

2

Γ2 (α)

b2α

2α− 1
sup

0≤s≤b
n (s) Λf (r) .

(4)

By the well-known property of the stochastic integral, Lem-

ma 4, and the Hölder inequality, we can deduce that

I3 ≤ E

∥

∥

∥

∥

∥

∥

t
∫

0

(t− s)
α−1

TC (t− s) g (s, x (s)) dw (s)

∥

∥

∥

∥

∥

∥

2

= E

t
∫

0

∥

∥

∥(t− s)
α−1

TC (t− s) g (s, x (s))
∥

∥

∥

2

ds

≤
M2

∥

∥C−1
∥

∥

2

Γ2 (α)

t
∫

0

(t− s)
2(α−1)

E ‖g (s, x (s))‖
2
ds

≤
M2

∥

∥C−1
∥

∥

2

Γ2 (α)

b2α−1

2α− 1
sup

0≤s≤b
m (s) Λg (r) .

(5)

Combining the estimates (2)–(5) yields

r ≤ E ‖(Θzr) (t)‖
2
< 3M2

∥

∥C−1
∥

∥

2
‖Cx0‖

2

+ 3
M2

∥

∥C−1
∥

∥

2

Γ2 (α)

b2α

2α− 1
sup

0≤s≤b
n (s) Λf (r)

+ 3
M2

∥

∥C−1
∥

∥

2

Γ2 (α)

b2α−1

2α− 1
sup

0≤s≤b
m (s) Λg (r) .

(6)

Dividing both sides of (6) by r and taking r → ∞, we obtain

that

3
M2

∥

∥C−1
∥

∥

2

Γ2 (α)

b2α

2α− 1
σf sup

0≤s≤b
n (s)

+ 3
M2

∥

∥C−1
∥

∥

2

Γ2 (α)

b2α−1

2α− 1
σg sup

0≤s≤b
m (s) ≥ 1,

which is a contradiction by assumption (H3). Thus, Θ (Br) ⊂
Br for some r > 0.

Lemma 7. Let assumptions (S1)–(S3), (H1)–(H3) hold. Then

the set {Θz : z ∈ Br} is an equicontinuous family of func-

tions in [0, b].

Proof. Let 0 < ε < t < b and δ > 0 such that

‖SC (s1) − SC (s2)‖
2
< ε, ‖TC (s1) − TC (s2)‖

2
< ε

for every s1, s2 ∈ [0, b] with |s1 − s2| < δ. For z ∈ Br,

0 < h < δ, t+ h ∈ [0, b], we have

E ‖(Θx) (t+ h) − (Θx) (t)‖
2

≤ 7 ‖SC (t+ h)Cx0 − SC (t)Cx0‖
2

+ 7E

∥

∥

∥

∥

∥

t
∫

0

(

(t+ h− s)α−1 − (t− s)α−1
)

TC (t+ h− s) f (s, x (s)) ds

∥

∥

∥

∥

∥

2

+ 7E

∥

∥

∥

∥

∥

t+h
∫

t

(t+ h− s)
α−1

TC (t+ h− s) f (s, x (s)) ds

∥

∥

∥

∥

∥

2

+ 7E

∥

∥

∥

∥

∥

t
∫

0

(t− s)
α−1

(TC (t+ h− s) − TC (t− s))

f (s, x (s)) ds

∥

∥

∥

∥

∥

2

+ 7E

∥

∥

∥

∥

∥

t
∫

0

(

(t+ h− s)α−1 − (t− s)α−1
)

TC (t+ h− s) g (s, x (s)) dw (s)

∥

∥

∥

∥

∥

2

+ 7E

∥

∥

∥

∥

∥

t+h
∫

t

(t+ h− s)
α−1

TC (t+ h− s) g (s, x (s)) dw (s)

∥

∥

∥

∥

∥

2

+ 7E

∥

∥

∥

∥

∥

t
∫

0

(t− s)
α−1

(TC (t+ h− s) − TC (t− s))

g (s, x (s)) dw (s)

∥

∥

∥

∥

∥

2

:= 7 (I1 + ...I7) .

(7)

It is clear that

I1 ≤ ‖SC (t+ h) − SC (t)‖
2
‖Cx0‖

2
,

I2 ≤
M2

∥

∥C−1
∥

∥

2

Γ2 (α)
b

t
∫

0

∣

∣

∣
(t+ h− s)α−1 − (t− s)α−1

∣

∣

∣

2

ds

sup
0≤s≤b

n (s) Λf (r) ,

I3 ≤
M2

∥

∥C−1
∥

∥

2

Γ2 (α)
h

t+h
∫

t

(t+h−s)2(α−1) ds sup
0≤s≤b

n (s) Λf (r)

=
h2α

2α− 1

M2
∥

∥C−1
∥

∥

2

Γ2 (α)
sup

0≤s≤b
n (s) Λf (r) ,

I4 ≤ b

t
∫

0

(t− s)2(α−1) ds

sup
0≤s≤t

‖TC (t+ h− s) − TC (t− s)‖
2

sup
0≤s≤b

n (s) Λf (r)

= ε
b2α

2α− 1
sup

0≤s≤b
n (s) Λf (r) .

208 Bull. Pol. Ac.: Tech. 62(2) 2014



Existence and approximate controllability of Sobolev type fractional stochastic evolution equations

In a like manner we have

I5 ≤
M2

∥

∥C−1
∥

∥

2

Γ2 (α)

t
∫

0

∣

∣

∣(t+ h− s)α−1 − (t− s)α−1
∣

∣

∣

2

ds

sup
0≤s≤b

m (s) Λg (r) ,

I6 ≤
h2α−1

2α− 1

M2
∥

∥C−1
∥

∥

2

Γ2 (α)
sup

0≤s≤b
m (s) Λg (r) ,

I7 ≤ ε
b2α−1

2α− 1
sup

0≤s≤b
m (s) Λg (r) .

Therefore, for ε sufficiently small, the right-hand side of (7)

tends to zero as h → 0. Thus, the set {Θx : x ∈ Br} is

equicontinuous.

Lemma 8. Let assumptions (S1)–(S3), (H1)–(H3) hold. For

every t ∈ [0, b] the set V (t) := {(Θx) (t) : x ∈ Br} is rela-

tively compact in L2 (F, H).

Proof. Let 0 < t < b be fixed. Recall that

(Θx) (t) = C−1 (Θ0x) (t) ,

where

(Θ0x) (t) := Sα (t)Cx0

+

t
∫

0

(t− s)
α−1

Tα (t− s) f (s, x (s)) ds

+

t
∫

0

(t− s)α−1 Tα (t− s) g (s, x (s)) dw (s) .

For x ∈ Br, we derive

E ‖(Θ0x) (t)‖2 ≤ 3M2
∥

∥C−1
∥

∥

2
‖Cx0‖

2

+ 3
M2

Γ2 (α)

b2α

2α− 1
sup

0≤s≤b
n (s) (1 + r)

+ 3
M2

Γ2 (α)

b2α−1

2α− 1
sup

0≤s≤b
m (s) (1 + r) ,

in other words {(Θ0x) (t) : x ∈ Br} is bounded in

L2 (F, H). Since C−1 is compact, then (Θ (Br)) (t) =
C−1 {(Θ0x) (t) : x ∈ Br} is relatively compact in L2 (F, H).
The proof is complete.

Theorem 9. Assume (S1)–(S3), (H1)–(H3) are satisfied. Then

the system (1) has a mild solution in H2.

Proof. It follows Lemmas 6–8 and the Arzela-Ascoli theorem

that Θ (Br) is relatively compact in H2. Hence Θ is a com-

pletely continuous operator on H2. From the Schauder fixed

point theorem, Θ has a fixed point in Br ⊂ H2.

4. Approximate controllability

In this section, first we study relationship between the approx-

imate controllability of the fractional stochastic linear system

and the deterministic fractional linear system. Next, we prove

sufficient conditions for the approximate controllability of the

fractional Sobolev type semilinear stochastic differential equa-

tion.

Consider the stochastic linear system







CDα
t Cx (t) = Ax (t) +Bu (t) + σ (t)

dw (t)

dt
,

x (0) = x0,

(8)

deterministic linear system

{

CDα
t Cx (t) = Ax (t) +Bv (t) ,

x (0) = x0,
(9)

here B : U → H is a linear bounded operator, u ∈
LF

2 ([0, b] , U), v ∈ L2 ([0, b] , U). Introduce the following op-

erators

Lb
0u :=

b
∫

0

(b− s)
α−1

TC (b− s)Bv (s) ds,

Lb
0 : LF

2 ([0, b] , H) → L2 (Fb, H) ,

Πb
0h :=

b
∫

0

(b− s)
2(α−1)

TC (b − s)

BB∗T ∗
C (b− s) E {h | Fs} ds,

Πb
0 : L2 (Fb, H) → L2 (Fb, H) ,

Γb
sh :=

b
∫

s

(b− r)
2(α−1)

TC (b− r)BB∗T ∗
C (b− r) hdr,

Γb
s : H → H.

It is clear these operators are linear bounded for all

1

2
< α ≤ 1.

To prove our main result in this section we need the fol-

lowing lemmas.

Lemma 10 [2, 15]. The control system (9) is approximate-

ly controllable in [s, b] if and only if one of the following

conditions hold.

(a) Γb
s > 0.

(b) ε
(

εI + Γb
s

)−1
converges to the zero operator as ε→ 0+

in the strong operator topology.

(c) ε
(

εI + Γb
s

)−1
converges to the zero operator as ε→ 0+

in the weak operator topology.

Lemma 11. The function f (s) =
(

εI + Γb
s

)−1
h is continu-

ous in [0, b].

Bull. Pol. Ac.: Tech. 62(2) 2014 209



N.I. Mahmudov

Proof. It follows from continuity of Γb
s and from the following

identity.

(

εI + Γb
s

)−1
h−

(

εI + Γb
t

)−1
h

=
(

εI + Γb
t

)−1
[

(

εI + Γb
s − Γb

s + Γb
t

) (

εI + Γb
s

)−1
− I
]

h

=
(

εI + Γb
t

)−1
[

I +
(

Γb
t − Γb

s

) (

εI + Γb
s

)−1
− I
]

h

=
(

εI + Γb
t

)−1 (
Γb

t − Γb
s

) (

εI + Γb
s

)−1
h.

Lemma 12 [2]. For every h ∈ L2 (Fb, H) there exists

ϕ ∈ LF
2

(

[0, b] , L0
2

)

such that

h = E {h | Fs} +

b
∫

s

ϕ (r)w (r) ,

Πb
0h = Γb

sE {h | Fs} +

b
∫

s

Γb
τϕ (τ) dw (τ) .

Proof. First formula is proved in [2]. The second one fol-

lows from the definition of the operator Πb
s and the stochastic

Fubini Theorem:

Πb
sh =

b
∫

s

(b− r)
2(α−1)

TC (b− r)

BB∗T ∗
C (b− r) E {h | Fs} dr

+

b
∫

s

(b− r)
2(α−1)

TC (b− r)

BB∗T ∗
C (b− r)

r
∫

s

ϕ (τ) dw (τ) dr

= Γb
sE {h | Fs} +

b
∫

s

b
∫

τ

(b− r)
2(α−1)

TC (b− r)

BB∗T ∗
C (b− r) drϕ (τ) dw (τ)

= Γb
sE {h | Fs} +

b
∫

s

Γb
τϕ (τ) dw (τ) .

Lemma 13. For every h ∈ L2 (Fb, H) there exists ϕ ∈
LF

2

(

[0, b] , L0
2

)

such that

(

εI + Πb
s

)−1
h =

(

εI + Γb
s

)−1
E {h | Fs}

+

b
∫

s

(

εI + Γb
r

)−1
ϕ (r)w (r) .

(10)

Proof. From Lemma 4 it follows that for every h, z ∈
L2 (Fb, H) there exist ϕ, ψ ∈ LF

2

(

[0, b] , L0
2

)

such that

h = E {h | Fs} +

b
∫

s

ϕ (τ) dw (τ) ,

z = E {z | Fs} +

b
∫

s

ψ (τ) dw (τ) ,

Πb
0h = Γb

sE {h | Fs} +

b
∫

s

Γb
τϕ (τ) dw (τ) .

(11)

Let h =
(

εI + Πb
s

)−1
z. It follows that

z = εh+ Πb
sh = εE {h | Fs} + ε

b
∫

s

ϕ (τ)w (τ)

+Γb
sE {h | Fs} +

b
∫

s

Γb
τϕ (τ) dw (τ)

=
(

εI + Γb
s

)

E {h | Fs} +

b
∫

s

(

εI + Γb
τ

)

ϕ (τ) dw (τ) .

(12)

Since the stochastic integral
b
∫

s

ϕ (τ)w (τ) is independent of

Fs, from (11) and (12) one has

E
{

z −
(

εI + Γb
s

)

h | Fs

}

+

b
∫

s

[

ψ (τ) −
(

εI + Γb
τ

)

ϕ (τ)
]

dw (τ) = 0,

E
∥

∥E
{

z −
(

εI + Γb
s

)

h | Fs

}∥

∥

2

+E

∥

∥

∥

∥

∥

∥

b
∫

s

[

ψ (τ) −
(

εI + Γb
τ

)

ϕ (τ)
]

dw (τ)

∥

∥

∥

∥

∥

∥

2

=

E
∥

∥E
{

z −
(

εI + Γb
s

)

h | Fs

}∥

∥

2

+E

b
∫

s

∥

∥ψ (τ) −
(

εI + Γb
τ

)

ϕ (τ)
∥

∥

2
dτ = 0.

It follows that

E {h | Fs} =
(

εI + Γb
s

)−1
E {z | Fs} ,

ϕ (τ) =
(

εI + Γb
τ

)−1
ψ (τ) .

Thus

(

εI + Πb
s

)−1
z = h = E {h | Fs} +

b
∫

s

ϕ (τ) dw (τ)

=
(

εI + Γb
s

)−1
E {z | Fs} +

b
∫

s

(

εI + Γb
τ

)−1
ϕ (τ) dw (τ) .

Theorem 14. The stochastic system (8) is approximately con-

trollable in [0, b] if and only if the deterministic system (9) is

approximately controllable in every [s, b], 0 ≤ s < b.
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Proof. Assume that the stochastic system (8) is approximately

controllable in [0, b]. Then for any z ∈ L2 (Fb, H)

E

∥

∥

∥ε
(

εI + Πb
0

)−1
z
∥

∥

∥

2

→ 0 as ε→ 0+.

Let us choose z as follows.

z = h+
∞
∑

n=1

√

λn

b
∫

s

h 〈e, en〉βn (r) , ∀h ∈ H.

From this and (10) we have

E

∥

∥

∥ε
(

εI + Πb
0

)−1
z
∥

∥

∥

2

=
∥

∥

∥ε
(

εI + Γb
0

)−1
h
∥

∥

∥

2

+

∞
∑

n=1

λn 〈e, en〉
2

b
∫

0

∥

∥

∥ε
(

εI + Γb
r

)−1
h
∥

∥

∥

2

dr.

(13)

It follows that there is a subsequence {εk} such that for all

h ∈ H
∥

∥

∥εk

(

εkI + Γb
s

)−1
h
∥

∥

∥→ 0 as εk → 0+

almost everywhere in [0, b]. Because of the continuity of
(

εI + Γb
s

)−1
h this property holds for all 0 ≤ s < b. The

latter means that the deterministic system (9) is approximate-

ly controllable on every [s, b], 0 ≤ s < b.

Contrary, if the deterministic system (9). is approximately

controllable on every [s, b], 0 ≤ s < b, then

lim ε→0+

∥

∥

∥ε
(

εI + Γb
s

)−1
φ
∥

∥

∥ = 0

for all φ ∈ H . Since

∥

∥

∥ε
(

εI + Γb
r

)−1
ϕ (r)

∥

∥

∥

2

L0
2

=

∞
∑

n=1

λn

∥

∥

∥ε
(

εI + Γb
r

)−1
ϕ (r) en

∥

∥

∥

2

≤

∞
∑

n=1

λn ‖ϕ (r) en‖
2

= ‖ϕ (r)‖
2
L0

2
,

by the Lebesgue dominated convergence theorem from (10),

we get

lim ε→0+E

∥

∥

∥ε
(

εI + Πb
0

)−1
h
∥

∥

∥

2

= 0,

h ∈ L2 (Fb, H) ,

that is, the stochastic system (8). is approximately controllable

in [0, b].

Next for any u ∈ LF
2 ([0, b] , U) we consider the semilinear

fractional stochastic system

x (t)=SC (t)Cx0 +

t
∫

0

(t− s)
α−1

TC (t− s)Bu (s) ds

+

t
∫

0

(t− s)
α−1

TC (t− s) f (s, x (s)) ds

+

t
∫

0

(t− s)
α−1

TC (t− s) g (s, x (s)) dw (s) .

(14)

For any ε > 0 and h ∈ L2 (Fb, H), we define a control

uε and an operator Θε as follows.

uε (t, x) = (b− t)
α−1

B∗T ∗
C (b− t)

(

εI + Γb
0

)−1

(Ch− SC (b)Cx0)

− (b− t)
α−1

B∗T ∗
C (b− t)

b
∫

0

(

εI + Γb
s

)−1
(b− s)

α−1

TC (b− s) f (s, x (s)) ds

− (b− t)
α−1

B∗T ∗
C (b− t)

b
∫

0

(

εI + Γb
s

)−1

(

(b− s)
α−1

TC (b− s) g (s, x (s)) − ϕ (s)
)

dw (s)

(15)

and

(Θεx) (t) := SC (t)Cx0

+

t
∫

0

(t− s)
α−1

TC (t− s) [Buε (s, x) + f (s, x (s))] ds

+

t
∫

0

(t− s)
α−1

TC (t− s) g (s, x (s)) dw (s) .

Lemma 15. The solution of (14) corresponding to uε (t, x)
satisfies the following identity

xε (b) = h− ε
(

εI + Γb
0

)−1
(CEh− SC (b)Cx0)

+ε

b
∫

0

(b − r)
α−1 (

εI + Γb
r

)−1
TC (b− r) f (r, xε (r)) dr

+ε

b
∫

0

(b− r)α−1 (εI + Γb
r

)−1
TC (b− r) g (r, xε (r)) dw (r)

−ε

b
∫

0

(

εI + Γb
r

)−1
ϕ (r) dw (r) .
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Proof. Inserting the expression of the control (15) into the

Eq. (14) we get

xε (b) = SC (b)Cx0

+

b
∫

0

(b− s)
α−1

TC (b− s)

[Buε (s, xε) + f (s, xε (s))] ds

+

b
∫

0

(b− s)
α−1

TC (b− s) g (s, xε (s)) dw (s)

= SC (b)Cx0 +

b
∫

0

(b− s)
α−1

TC (b− s) f (s, xε (s)) ds

+

b
∫

0

(b− s)α−1 TC (b− s) g (s, xε (s)) dw (s)

+

b
∫

0

(b− s)
2(α−1)

TC (b− s)BB∗T ∗
C (b− s)

(

εI + Γb
0

)−1

{Eh− SC (b)x0} ds

−

b
∫

0

(b− s)
2(α−1)

TC (b− s)BB∗T ∗
C (b− s)

×

s
∫

0

(

εI + Γb
r

)−1
(b− r)

α−1
TC (b− r) f (r, x (r)) drds

−

b
∫

0

(b− s)2(α−1) TC (b− s)BB∗T ∗
C (b− s)

×

s
∫

0

(

εI + Γb
r

)−1
(b− r)

α−1
TC (b− r) g (r, x (r)) dw (r) ds

+

b
∫

0

(b− s)
2(α−1)

TC (b− s)BB∗T ∗
C (b− s)

s
∫

0

(

εI + Γb
r

)−1
ϕ (r) dw (r) ds,

consequently

xε (b) = SC (b)Cx0

+

b
∫

0

(b− s)
α−1

TC (b− s) f (s, xε (s)) ds

+

b
∫

0

(b− s)
α−1

TC (b− s) g (s, xε (s)) dw (s)

+Γb
0

(

εI + Γb
0

)−1
{Eh− SC (b)x}

−

b
∫

0

Γb
r

(

εI + Γb
r

)−1
(b− r)α−1 TC (b− r) f (r, xε (r)) dr

−

b
∫

0

Γb
r

(

εI + Γb
r

)−1
(b− r)α−1 TC (b− r) g (r, xε (r)) dw (r)

+

b
∫

0

Γb
r

(

εI + Γb
r

)−1
ϕ (r) dw (r)

= h− ε
(

εI + Γb
0

)−1
(Eh− SC (b)Cx0)

+ε

b
∫

0

(b− r)
α−1 (

εI + Γb
r

)−1
TC (b− r) f (r, xε (r)) dr

+ε

b
∫

0

(b− r)
α−1 (

εI + Γb
r

)−1
TC (b− r) g (r, xε (r)) dw (r)

−ε

b
∫

0

(

εI + Γb
r

)−1
ϕ (r) dw (r) .

Now, we present and prove our second main result.

Theorem 16. Assume that the assumptions (S1)–(S3), (H1),

(H2) hold. Further, if the functions f and g are uniformly

bounded and the linear system (8) is approximately control-

lable, then the system (14) is approximately controllable in

[0, b].

Proof. It is easy to see that under the above conditions the

operator Θε has a fixed point in H2. In other words, the equa-

tion (14) has a solution corresponding to uε (t, x). Let xε be

a fixed point of Θε. By Lemma 15 we have
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xε (b) = h− ε
(

εI + Γb
0

)−1
(Eh− SC (b)Cx0)

+ε

b
∫

0

(b − r)
α−1 (

εI + Γb
r

)−1
TC (b− r) f (r, xε (r)) dr

+ε

b
∫

0

(b− r)
α−1 (

εI + Γb
r

)−1
TC (b− r) g (r, xε (r)) dw (r)

−ε

b
∫

0

(

εI + Γb
r

)−1
ϕ (r) dw (r) .

Since the functions f and g are uniformly bounded there exists

N > 0 such that

‖f (r, xε (r))‖
p

+ ‖g (r, xε (r))‖
p
L0

2

≤ N in [0, T ]× Ω.

Then there is a subsequence, still denoted by

{f (r, xε (r)) , g (r, xε (r))} , weakly converging to, say,

(f (r, ω) , g (r, ω)) in H×L0
2. The compactness of TC (t) , t >

0 implies that










TC (b− r) f (r, xε (r)) → TC (b− r) f (r) ,

TC (b− r) g (r, xε (r)) → TC (b− r) g (r)

a.e. in [0, T ]× Ω.

(16)

On the other hand, by the assumption on approximate con-

trollability of (8) and Theorem 14, for all 0 ≤ r < b

ε
(

εI + Γb
r

)−1
→ 0 strongly as ε→ 0+, (17)

and moreover ∥

∥

∥ε
(

εI + Γb
r

)−1
∥

∥

∥ ≤ 1. (18)

Thus from (16)–(18) by the Lebesgue dominated convergence

theorem it follows that

E ‖xε (b) − h‖2 ≤ 6
∥

∥

∥ε
(

εI + Γb
0

)−1
(Eh− SC (b)Cx0)

∥

∥

∥

2

+6E

( b
∫

0

(b− r)
α−1

∥

∥

∥ε
(

εI + Γb
r

)−1
∥

∥

∥

‖TC (b− r) [f (r, xε (r)) − f (r)]‖ dr

)2

+6E





b
∫

0

(b− r)α−1
∥

∥

∥
ε
(

εI + Γb
r

)−1
TC (b− r) f (r)

∥

∥

∥
dr





2

+6E

b
∫

0

(b − r)
2(α−1)

∥

∥

∥ε
(

εI + Γb
r

)−1
∥

∥

∥

2

‖TC (b− r) [g (r, xε (r)) − g (r)]‖2
L0

2
dr

+6E

b
∫

0

(b− r)
2(α−1)

∥

∥

∥ε
(

εI + Γb
r

)−1
TC (b− r) g (r)

∥

∥

∥

2

L0
2

dr

+6E

b
∫

0

∥

∥

∥
ε
(

εI + Γb
r

)−1
ϕ (r)

∥

∥

∥

2

L0
2

dr

→ 0 as ε→ 0+.

This gives the approximate controllability. Theorem is

proved.

5. Application

Consider a control system governed by the semilinear heat

equation

cD
3
4

t (x (t, θ) − xθθ (t, θ))

= xθθ (t, θ) +Bu (t, θ) + f (t, x (t, θ)) +
dw (t)

dt
,

x (t, 0) = x (t, π) = 0, x (0, θ) = φ (θ) ,

0 ≤ t ≤ b, 0 < θ < π.

(19)

Let H = L2 [0, π] Define A : D (A) ⊂ H → H by

A := −xθθ and C : D (C) ⊂ H → H by Cx := x − xθθ,

where each domain D (A) , D (C) is given by

{x ∈ H : x, xθ are absolutely continuous,

xθθ ∈ H, x (t, 0) = x (t, π) = 0} .

A and C can be written as follows

Ax :=

∞
∑

n=1

n2 〈x, en〉 en, x ∈ D (A) ,

Cx =

∞
∑

n=1

(

1 + n2
)

〈x, en〉 en, x ∈ D (C) ,

respectively, where xn (θ) :=
√

2
π sinnθ, n = 1, 2, ... is the

orthonormal set of eigenvalues of A. Moreover, for any x ∈ H
we have

C−1x =

∞
∑

n=1

1

1 + n2
〈x, en〉 en,

−AC−1x =
∞
∑

n=1

−n2

1 + n2
〈x, en〉 en

S (t)x =

∞
∑

n=1

exp

(

−n2

1 + n2
t

)

〈x, en〉 en

TC (t) =
3

4

∞
∫

0

C−1θξ 3
4

(θ) T
(

t
3
4 θ
)

dθ

TC (t) x =
3

4

∞
∑

n=1

1

1 + n2

∞
∫

0

θξ 3
4

(θ)

exp

(

−n2

1 + n2
t

3
4 θ

)

dθ 〈x, en〉 en

= −

∞
∑

n=1

1

n2
t

1
4

∞
∫

0

ξ 3
4

(θ)
d

dt
exp

(

−n2

1 + n2
t

3
4 θ

)

dθ 〈x, en〉 en

Define an infinite dimensional space U by

U =

{

∞
∑

n=2

unen |

∞
∑

n=2

u2
n <∞

}

.
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The norm in U is defined by ‖u‖U =

(

∞
∑

n=2

u2
n

)1/2

. Now

define a linear continuous mapping from U to X as follows:

Bu = 2u2 +

∞
∑

n=2

unen

for u =
∑∞

n=2 unen ∈ U .

It is easy to see that

3

4

∞
∑

n=1

1

1 + n2

∞
∫

0

θξ 3
4

(θ) exp

(

−n2

1 + n2
t

3
4 θ

)

dθ 〈x, en〉 en

B∗v = (2v1 + v2) e2 +

∞
∑

n=3

vnen,

B∗T ∗
C (t)x =





3

4

∞
∫

0

θξ 3
4

(θ) exp

(

−1

2
t

3
4 θ

)

dθ 〈x, e1〉

+
3

20

∞
∫

0

θξ 3
4

(θ) exp

(

−4

5
t

3
4 θ

)

dθ 〈x, e2〉



 e2

+
3

4

∞
∑

n=3

1

1 + n2

∞
∫

0

θξ 3
4

(θ) exp

(

−n2

1 + n2
t

3
4 θ

)

dθ 〈x, en〉 en,

‖B∗T ∗
C (t)x‖ = 0, t ∈ [s, b]

⇒





3

4

∞
∫

0

θξ 3
4

(θ) exp

(

−1

2
t

3
4 θ

)

dθ 〈x, e1〉

+
3

20

∞
∫

0

θξ 3
4

(θ) exp

(

−4

5
t

3
4 θ

)

dθ 〈x, e2〉





2

+
9

16

∞
∑

n=3





1

1 + n2

∞
∫

0

θξ 3
4

(θ) exp

(

−n2

1 + n2
t

3
4 θ

)

dθ





2

〈x, en〉
2

= 0, t ∈ [s, b]

⇒ 〈x, en〉 = 0, n = 1, 2, ...⇒ x = 0.

Thus the deterministic linear system corresponding to (19) is

approximately controllable in every [s, b] . Thus if f is bound-

ed, then by Theorem 4 the fractional Sobolev type stochastic

system (19) is approximately controllable in [0, b].
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