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Abstract. In this paper an application of the homotopy perturbation method for solving the general linear integral equations of the second
kind is discussed. It is shown that under proper assumptions the considered equation possesses a unique solution and the series obtained in
the homotopy perturbation method is convergent. The error of approximate solution, received by taking only the partial sum of the series, is
also estimated. Moreover, there is presented an example of applying the method for approximate solution of an equation which has a practical
application for charge calculation in supply circuit of the flash lamps used in cameras.
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1. Introduction

In recent times the methods enabling to determine the so-
lutions of operator equations modeling physical and techni-
cal problems of different kind have found a number of ap-
plications. One of these methods is the homotopy perturba-
tion method [1–3]. This method can be used, among oth-
ers, for solving differential equations [4–12]. Ganji and his
colleagues [13–17] applied this method for considering vari-
ous problems connected with the heat transfer processes. In
papers [18, 19] an application of the homotopy perturbation
method for determining the exact (or approximate) solution
of the one-phase and two-phase inverse Stefan problem is
shown. Whereas, in work the [20] this method is used for
reconstructing the missing boundary condition in the inverse
heat conduction problem. Furthermore, in the paper [21] an
application of the discussed method for determining the tem-
perature distribution in the cast-mould heterogeneous domain
is presented. Convergence of the considered method in case
of differential equations is investigated in papers [22–24].

The homotopy perturbation method is also very often
used for seeking the solution of integral equations of different
kind [25–38]. Convergence of this method in case of integral
equations is considered only in few papers. Authors of the pa-
per [32] prove the convergence of method with the so-called
convex homotopy for Fredholm and Volterra integral equa-
tions of the second kind. Convergence and estimation of the
error for the piecewise homotopy perturbation method used
for solving the weakly singular Volterra integral equations is
discussed in paper [36]. The convergence conditions of the
homotopy perturbation method for Fredholm and Volterra in-

tegral equations of the second kind are formulated and proven
in paper [37]. Moreover, the formulae for estimating the error
of approximate solution are elaborated in this paper. Similar
results in case of the Volterra-Fredholm integral equations of
the second kind are presented in paper [38].

In the current paper we apply the homotopy perturbation
method for solving the general linear integral equations of
the second kind. Impulse for discussing this type of equations
was given by its special case (considered in Sec. 4) which has
practical application for charge calculation in supply circuit of
the flash lamps used in cameras [39]. Moreover, we prove in
this paper that under proper assumptions the discussed equa-
tion possesses the unique solution and the series obtained in
the homotopy perturbation method is convergent. Estimation
of the error of approximate solution, received by taking only
partial sum of the series, is given as well. We also present
examples of applying this method for considered equations.

2. Homotopy perturbation method

The homotopy perturbation method enables to seek a solution
of the following operator equation

L(u) + N(u) = F, (1)

where L denotes the linear operator, N can be either linear
or nonlinear operator, F is the given function and u is the
sought function.

Let us introduce a new operator H , called the homotopy
operator, in the following way

H(v, p) = L(v) − L(u0) + p (L(u0) + N(v) − F ), (2)
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where p ∈ [0, 1] is the so-called homotopy parameter, v(z, p) :
Ω × [0, 1] → R, and u0 defines the initial approximation of
the solution of Eq. (1). Notice that H(v, 0) = L(v) − L(u0),
which means that for p = 0 the solution of operator equation
H(v, 0) = 0 is equivalent to the solution of a trivial problem
L(v)−L(u0) = 0. On the other hand, for p = 1 the solution
of operator equation H(v, 1) = 0 is equivalent to the solution
of Eq. (1). It means that together with the change of parameter
p (from zero to one) the solution v of H(v, p) = 0 changes
from the trivial solution of L(v)−L(u0) = 0 to the solution
of the given equation (i.e. the solution v changes from u0 to
u).

In the homotopy perturbation method the solution of equa-
tion H(v, p) = 0 is searched in the form of power series

v =
∞∑

j=0

pj vj . (3)

If the above series possesses the radius of convergence not
smaller than one and the series

∑
∞

j=0 vj is absolutely conver-
gent, then according to Abel’s Theorem the solution of Eq. (1)
is obtained

u = lim
p→1−

v =
∞∑

j=0

vj . (4)

In many cases the series (3) is fast convergent, therefore even
the partial sum of this series gives a very good approximation
of the sought solution. The first n + 1 components create the
so-called n-order approximate solution in the form

ûn =
n∑

j=0

vj . (5)

In order to find the function vj , relation (3) is substituted into
equation H(v, p) = 0 and the expressions with the same pow-
ers of parameter p are compared. In this way we obtain the
sequence of operator equations which enables to determine
the successive functions vj . Thus, determining the solution of
considered problem can be reduced to solving the sequence
of problems, solutions of which are easy to find.

3. General linear integral equation

of the second kind

We consider the equation of the form

u(x) −

g(x)∫

f(x)

K(x, t)R(u(t)) dt = F (x), (6)

where x ∈ [a, b], R : C[a, b] → C[a, b] is bounded lin-
ear operator, f, g ∈ C[a, b], a ≤ f(x) ≤ g(x) ≤ b,
K ∈ C([a, b] × [a, b]) and F ∈ C[a, b], whereas the func-
tion u is sought. Particular cases of the above equation are,
obviously, the Fredholm and Volterra integral equations of the
second kind.

Operators L and N can be define in the following way

L(v) = v, N(v) = −

∫ g(x)

f(x)

K(x, t)R(v(t)) dt. (7)

By using the above definitions and relation (2), we obtain the
homotopy operator

H(v, p) = v(x) − u0(x)

+ p



u0(x) −

g(x)∫

f(x)

K(x, t)R(v(t)) dt − F (x)



 .
(8)

According to the method, in the next step we search for the
solution of operator equation H(v, p) = 0 in the form of
power series

v(x) =

∞∑

j=0

pj vj(x). (9)

In order to determine the functions vj we substitute rela-
tion (9) into equation H(v, p) = 0 and we get (under assump-
tion that the series is convergent, which will be discussed later,
and by using the linearity of operator R):

∞∑

j=0

pj vj(x) = u0(x) + p(F (x) − u0(x))

+

∞∑

j=1

pj

g(x)∫

f(x)

K(x, t)R(vj−1(t)) dt.

(10)

By comparing the expressions with the same powers of para-
meter p we receive the relations

v0(x) = u0(x), (11)

v1(x) = F (x) − u0(x) +

g(x)∫

f(x)

K(x, t)R(v0(t)) dt, (12)

vj(x) =

g(x)∫

f(x)

K(x, t)R(vj−1(t)) dt, j ≥ 2. (13)

Now we proceed to discussing the convergence of se-
ries (9).

Since functions K(x, t) and F (x), appearing in Eq. (6),
are continuous, then K and F are certainly bounded. It means,
there exist the positive numbers M1 and N1 such that

|K(x, t)| ≤ M1 ∧ |F (x)| ≤ N1 ∀x, t ∈ [a, b]. (14)

In order to simplify the notation we denote the norm of op-
erator R by M0.

Theorem 1. If the following inequality

M0 M1 (b − a) < 1 (15)

is satisfied and as the initial approximation u0 any func-
tion, continuous in interval [a, b], is chosen, then series (9),
in which the functions vj are determined by means of rela-
tions (11)–(13), is uniformly convergent in interval [a, b] for
each p ∈ [0, 1].

Proof. Let u0 ∈ C[a, b]. Therefore there exists a positive
number N0 such that

|u0(x)| ≤ N0 ∀x ∈ [a, b].
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Then we get the following estimations

|v0(x)| = |u0(x)| ≤ N0,

|v1(x)| =

∣∣∣∣∣∣∣
F (x) − u0(x) +

g(x)∫

f(x)

K(x, t)R(v0(t)) dt

∣∣∣∣∣∣∣

≤ |F (x)| + |u0(x)| +

g(x)∫

f(x)

|K(x, t)| |R(v0(t))| dt

≤ N1 + N0 +

g(x)∫

f(x)

M1 M0 N0 dt

= N0 + N1 + N0 M0 M1

(
g(x) − f(x)

)

≤ N0 + N1 + N0 M0 M1 (b − a) =: B,

|v2(x)| =

∣∣∣∣∣∣∣

g(x)∫

f(x)

K(x, t)R(v1(t)) dt

∣∣∣∣∣∣∣

≤

g(x)∫

f(x)

|K(x, t)| |R(v1(t))| dt

≤

g(x)∫

f(x)

M1 M0 B dt ≤ B M0 M1 (b − a),

where B := N0 + N1 + N0 M0 M1 (b − a). In general we
obtain

|vj(x)| ≤ B
(
M0 M1 (b − a)

)j−1
, x ∈ [a, b], j ≥ 1.

In this way, for considered series (9) we get for p ∈ [0, 1]:

∞∑

j=0

pj vj(x) ≤

∞∑

j=0

|vj(x)| ≤ N0

+ B

∞∑

j=1

(
M0 M1 (b − a)

)j−1 (15)
= N0 + B

1

1−M0M1(b−a)
.

It means that considered series (9) is uniformly convergent in
interval [a, b] for each p ∈ [0, 1].

Remark 1. From the above theorem it results that Eq. (6)
possesses the solution in class C[a, b].

Theorem 2. If inequality (15) holds, then the solution of
Eq. (6) is unique.

Proof. Assume that integral Eq. (6) has two solutions u1 and
u2, u1, u2 ∈ C[a, b]. Then for any x ∈ [a, b], by using the
properties of operator R, we get

|u1(x) − u2(x)| =

∣∣∣∣∣∣∣

g(x)∫

f(x)

K(x, t)R(u1(t) − u2(t)) dt

∣∣∣∣∣∣∣

≤ M0 M1 (b − a) ‖u1 − u2‖,

where ‖u1 − u2‖ := supx∈[a,b] |u1(x) − u2(x)|. Hence we
obtain

‖u1 − u2‖ ≤ M0 M1 (b − a) ‖u1 − u2‖.

And since M0 M1 (b− a) < 1, therefore it is possible only if
u1 = u2.

Remark 2. Construction of the method implies that the sum
of series (9) for p = 1 satisfies Eq. (6). If condition (15) is
fulfilled, then the integral Eq. (6) possesses exactly one so-
lution in the class of continuous functions. Hence, it follows
that, in this case, series (9) for p = 1 is convergent to the only
one solution of Eq. (6), independently on the selected initial
approximation u0 ∈ C[a, b].

Remark 3. If we deal with the generalized Volterra equation
of the second kind, it means if f(x) = a and g(x) = x for
x ∈ [a, b], then series (9) is always convergent (even if in-
equality (15) is not fulfilled). It results from the fact that in
this case we obtain the following estimation (see also [37]):

|vj(x)| ≤ B

(
M0 M1 (x − a)

)j−1

(j − 1)!
, x ∈ [a, b], j ≥ 1.

If we are not able to determine the sum of series (9) (for
p = 1), then as the approximate solution of considered equa-
tion we can take the partial sum of this series. If we take the
first n+1 terms, we obtain the so-called n-order approximate
solution

ûn(x) :=

n∑

j=0

vj(x). (16)

Now let us proceed to estimate the error of approximate
solution constructed in this way.

Theorem 3. Error of the n-order approximate solution can be
estimated in the following way

En ≤ B

(
M0 M1 (b − a)

)n

1 − M0 M1 (b − a)
, (17)

where En := supx∈[a,b] |u(x) − ûn(x)|, moreover M0, M1

and B are the constants determined above.

Proof. By using the estimations of functions vj we get for
any x ∈ [a, b]:

|u(x) − ûn(x)| =

∣∣∣∣∣∣

∞∑

j=0

vj(x) −

n∑

j=0

vj(x)

∣∣∣∣∣∣

=

∣∣∣∣∣∣

∞∑

j=n+1

vj(x)

∣∣∣∣∣∣

≤

∞∑

j=n+1

|vj(x)| ≤ B

∞∑

j=n+1

(
M0 M1 (b − a)

)j−1

= B

(
M0 M1 (b − a)

)n

1 − M0 M1 (b − a)
.

Remark 4. In case of the generalized Volterra equation of the
second kind, it means if f(x) = a and g(x) = x for x ∈ [a, b],

Bull. Pol. Ac.: Tech. 62(3) 2014 415



E. Hetmaniok, D. Słota, T. Trawiński, and R. Wituła

by using the estimation given in Remark 3 one can elaborate
the following estimation of error (see also [37]):

En ≤ B

(
eM0 M1 (b−a) −

n−1∑

j=0

(
M0 M1 (b − a)

)j

j!

)

≤ B
(M0 M1 (b − a))n

(n + 1)!

(
n + eM0 M1 (b−a)

)
.

(18)

Example. In this example we apply the described method for
solving the following equation

u(x) −

x∫

x/2

x t

2
u(t) dt = x −

7

48
x4, (19)

for x ∈ [0, 1]. In considered equation R(u) = u and

M1 = max
x,t∈[0,1]

|K(x, t)| =
1

2
, M0 = ‖R‖ = 1.

Hence

M0 M1 (b − a) =
1

2
,

which means that the homotopy perturbation method will be
convergent if we will select as u0 the function continuous in
interval [a, b].

Let us set u0(x) = 0. Then by calculating the successive
functions vj , determined by relations (11)–(13), we receive
successively

v0(x) = u0(x) = 0,

v1(x) = x −
7

48
x4,

v2(x) =
7

48
x4 −

49

4096
x7,

v3(x) =
49

4096
x7 −

25039

37748736
x10,

v4(x) =
25039

37748736
x10 −

11392745

412316860416
x13,

v5(x) =
11392745

412316860416
x13 −

74661215083

81064793292668928
x16.

Calculating the partial sums of series (9), that is the n-order
approximate solutions ûn, we get

û5(x) = x − 9.210066670181957 · 10−7 x16,

û10(x) = x − 3.916722852435405 · 10−15 x31,

û15(x) = x − 1.3977516439016215 · 10−24 x46,

û20(x) = x − 9.661593342504271 · 10−35 x61,

û25(x) = x − 1.948818708474067 · 10−45 x76,

where x ∈ [0, 1]. Since |ûn(x) − x| → 0, so u(x) = x.
Formula (17) gives the error estimation of the approxi-

mate solution (the worst possible case). In fact, the errors of
approximate solutions are in general much smaller than the
value determined in the right hand side of inequality (17).
Since in the considered example we have

M0 = 1, M1 =
1

2

and

N0 = max
x∈[0,1]

|u0(x)| = 0, N1 = max
x∈[0,1]

|F (x)| =
41

48
,

thus inequality (17) takes in this case the form

En ≤ On =
41

24

(1

2

)n

.

Comparison of the errors of approximate solutions and esti-
mations of these errors resulting from the above inequality
are collected in Table1. In each case the real errors are much
smaller than their theoretical estimations.

Table 1
Errors of approximate solution (En) and estimation (On) of these errors

resulting from inequality (17)

n En On

5 9.210 · 10−7 5.339 · 10−2

10 3.917 · 10−15 1.668 · 10−3

15 1.398 · 10−24 5.213 · 10−5

20 9.662 · 10−35 1.629 · 10−6

25 1.949 · 10−45 5.091 · 10−8

4. Practical application in flash lamp control

circuit

Now we deal with an equation having practical application
for the charge calculation in supply circuit of flash lamps
used in cameras. Supply circuit of flash lamps may be repre-
sented (for illustrative purposes) by the simple electrical cir-
cuit which consists of the source and, series connected with
ideal switch, the resistor and the capacitor. Charging or dis-
charging process may be represented by the first convolution
integral. Part of the above mentioned Eq. (6), connected with
second integral, may represent the simplified measurement
circuit (with characteristic described by the integral function)
which calculates charge collected on capacitor in some time
interval. But the whole above mentioned equation will rep-
resent charge referred to some value which gives the input
signal for main controller to stop, for example, the charging
process of the capacitor or discharging the capacitor by con-
nected flash lamp.

The main charging circuit, presented in Fig. 1, consists
of: DC/DC converter [40, 41] (which converts small voltage
from battery to relatively high voltage app. 300 V), switch
s1, charging current limiting resistor R1 and main capacitor
C1. The rest of circuit after switch s2 does not work during
charging process of capacitor C1. For simplicity all physical
values of real elements shown in circuit presented in Fig. 1
are as follows: R1 = 100 Ω, R2 = 10 R1, C1 = 220 µF,
C2 = 0.1 C1. The charging and discharging process of ca-
pacitor C1 is controlled by microcontroller (input and output
signals of microcontroller are denoted in Fig. 1 by µC) with
the help of switches s1, s2 and by transistor T1. The xenon
lamp ignition results from high voltage pulse generated by
high voltage transformers THV after switching transistor T1.
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Fig. 1. Simplified driving circuit of xenon flash lamp

Let us consider two charging phases (of capacitor C1) in
two different cases:

Case 1. The batteries are charged to maximum value of
voltage and it will be discharged for the first time. So time
plot of supply voltage (applied to series connected resistance
R1 and capacitance C1) may be regarded as the following
function

u(t) = u0 1(t), (20)

where u0 – maximum DC/DC converter output voltage app.
300 V.

Case 2. The batteries are partially discharged (after some
period of utilization – after for example 100 charging process
of main capacitor C1). So time plot of supply voltage (applied
to series connected resistance R1 and capacitance C1) may be
regarded as the following function

u(t) = u0(1 − t), for t ∈ [0, 1]. (21)

After finishing the processes related to case 1 it is possi-
ble to calculate reference charge collected at capacitance C1,
according to formula

Qref =

t1∫

0

u0 e−t/(R1 C1)

R1
dt, (22)

where t1 denotes capacitance C1 charging time.
Case 2 occurs after some period of time, after intensive

charging and discharging process of battery, its capacity de-
creased and also the internal resistances increased. It results in
faster discharging the battery and in accordance output voltage
of DC/DC inverter may vary strongly until main capacitor C1

is charging. That state may be described (in simplified way)
by function (21), so in case 2 calculation of charge will flow
in following way:

– voltage drop calculation on R1 resistor during supply by
voltage described by function (21) (for solving that issue
the Duhamel integral will be used),

– charging current calculation based on voltage drop on R1

calculation,

– charge collected in capacitance C1 calculation.

Duhamel integral is given by the following expression

y(t) = h(t)x(0) +

t∫

0

x′(t)h(t − τ) dτ, (23)

where h(t) = uR1
(t) – voltage drop on R1 resistances in

case 1, x(0) = 1 – normalized (to nominal voltage value u0)
initial output voltage of DC/DC inverter, x′(t) = −1 – nor-
malized (to nominal voltage value u0) time derivative from
Eq. (21), h(t − τ) – voltage drop on R1 in case 2.

Voltage drop, in new supply condition according to (21),
on limiting resistor R1 is calculated as follows (basing
on (23)):

uR1
(t) = u0 e−t/(R1 C1) −

t∫

0

u0 e−(t−τ)/(R1 C1) dτ

= u0

(
(1 + R1 C1) e−t/(R1 C1) − R1 C1

)
for t ∈ [0, 1].

(24)
In general the charge difference between two supply cases
(case 1 and case 2) may be written in following form

∆Q = Qref −

x∫

0

cos(x − t)
1

R1

·



u0 e−t/(R1 C1) −

t∫

0

u0 e−(t−τ)/(R1 C1) dτ



 dt,

(25)

where x – limit of integration time of the transducer (which
is shown in Fig. 1).

For examination purposes the part of presented in Fig. 1
circuit, representing charging circuit of capacitor, was imple-
mented in MATLAB/Simulink program. The block diagram
presented in Fig. 2 allows for calculating the charge collected
in C1 and the charging current and also allows for controlling
the charging process.
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Fig. 2. Simulink block diagram of charging process

In Figs. 3 and 4 there are presented the results of sim-
ulation of the above diagram showing: changing in time the
charge collected in C1 during voltage supply conditions ac-
cording to cases 1 and 2, charging currents during voltage
supply conditions according to cases 1 and 2.

Studding the above figures (Figs. 3 and 4) it may be spot-
ted that charge collected on capacitance C1 in case 2 during
charging process reaches the maximum value after some peri-
od of time, and after that gradually decreases. At this moment
the current started flowing in opposite direction and discharg-
ing process of C1 begins. It is undesired phenomenon and
charging process should be stopped when the above men-
tioned situation occurs. The charge waiting for xenon lamp
ignition may be calculated as follows

Qx = Qref − ∆Q. (26)

Fig. 3. Time plot of charge collected during 0.2 s in capacitor C1

under supply condition related to cases 1 and 2

Fig. 4. Time plot of current flown in R1 C1 circuit under supply
condition related to cases 1 and 2

5. Approximate solution obtained by using

the homotopy perturbation method

Now we use the homotopy perturbation method for determin-
ing the approximate solution of the following integral equation
of convolution type basing on Eq. (25):

u(x)−

x∫

0

cos(x−t)




t∫

0

h(τ)u(t − τ) dτ



dt = F (x), (27)

for x ∈ [0, 1], where (see Fig. 5):

h(t) =






1

2
, t ∈

[
0,

1

4

)
∪

[
3

4
, 1

]
,

1, t ∈

[
1

4
,
3

4

)
,
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and

F (x)=






x + sin x, x ∈

[
0,

1

4

)
,

1

4
− sin

(
1

4
−x

)
+ sin x, x ∈

[
1

4
,
1

2

)
,

5

4
−2x−sin

(
1

4
−x

)
+2 sin

(
1

2
−x

)
+sinx,

x ∈

[
1

2
,
3

4

)
,

−1 + x − sin

(
1

4
−x

)
+2 sin

(
1

2
−x

)

+ 32 sin

(
3

4
−x

)
+sinx, x ∈

[
3

4
, 1

]
.

Because of the figure scale the plot of function F makes an
illusive impression to be a polygonal chain. Certainly it is not
in real (see the formula above).

a)

b)

Fig. 5. Functions h and F

Exact solution of Eq. (27) is given by function (see Fig. 6):

ue(x) =






2 x, x ∈

[
0,

1

2

)
,

2 − 2 x, x ∈

[
1

2
, 1

]
.

Fig. 6. Exact solution of Eq. (27)

Considered equation is the generalized Volterra equation
of the second kind, therefore by applying the homotopy per-
turbation method we receive the convergent series (see Re-
mark 3). By taking u0(x) = 0 we get successively

v0(x) = 0,

v1(x) = F (x),

v2(x) =






1

4
(2x − x cos x − sinx), x ∈

[
0,

1

4

)
,

1

8

(
4x + (1 − 4x) cos

(
1

4
− x

)
− 2x cosx

−4 sin

(
1

4
− x

)
− 2 sinx

)
,

x ∈

[
1

4
,
1

2

)
,

1

8

(
6 − 8x + (1 − 4x) cos

(
1

4
− x

)

+(2x − 1) cos

(
1

2
− x

)

−2x cosx − 4 sin

(
1

4
− x

)

−10 sin

(
1

2
− x

)
− 2 sinx

)
,

x ∈

[
1

2
,
3

4

)
,

1

8

(
6 − 8x + (1 − 4x) cos

(
1

4
− x

)

+(2x − 1) cos

(
1

2
− x

)

+(12x − 9) cos

(
3

4
− x

)
− 2x cosx

−6 sin

(
1

4
− x

)
− 9 sin

(
1

2
− x

)

+2

(
6 − cos

1

4
+ 2 cos

1

2
+ cos

3

4

)
sin

·

(
3

4
− x

)
+ sin(1 − x) − 2 sin

(
5

4
− x

)

− sin

(
3

2
− x

)
− sin x

)
, x ∈

[
3

4
, 1

]
.

...
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In Table 2 there are compiled the errors with which the
approximate solutions ûn approximate the exact solution ue,
where

∆ =




1∫

0

(
ue(x) − ûn(x)

)2
dx




1/2

,

δ =
∆




1∫

0

u2
e(x) dx




1/2

· 100 [%].

Differences |ue(x) − ûn(x)| for n = 3 and n = 6 are dis-
played in Fig. 7. Obtained results indicate that the method
is very fast convergent, therefore calculation of only few first
components of series (9) ensures a very good approximation
of exact solution.

Table 2
Errors of the exact solution approximation

n ∆ δ [%]

1 7.15441 10−2 12.39181

2 1.67791 10−3 0.29062

3 1.67199 10−5 2.89596 10−3

4 9.68642 10−8 1.67774 10−5

5 3.75990 10−10 6.51234 10−8

6 1.05772 10−12 1.83203 10−10

a)

b)

Fig. 7. Distribution of error of the exact solution approximation for
n = 3 (a) and n = 6 (b)

6. Conclusions

In the paper we apply the homotopy perturbation method for
solving the general linear integral equations of the second
kind. Impulse for discussing this type of equations was given
by its special case which has practical application for charge
calculation in a supply circuit of the flash lamps used in cam-
eras. We prove that under proper assumptions the discussed
equation possesses the unique solution.

Using the homotopy perturbation method we obtain the
function series, terms of which are determined iteratively. We
prove that under proper assumptions the series is convergent.
In many cases it is possible to determine the sum of received
series and thereby to obtain the exact solution of the consid-
ered problem. In cases when the sum of series is impossible
to find, one can use the initial terms of obtained series and
form the approximate solution. Estimation of the error of ap-
proximate solution, received by taking only the partial sum
of the series, is given in the paper. Executed calculations, the
part of which is only presented in the paper, show that the
created series is mostly very fast convergent. In such a case
using only few initial terms of the series ensures a very small
error of the exact solution reconstruction.

REFERENCES

[1] J.-H. He, “A coupling method of a homotopy technique and
a perturbation technique for non-linear problems”, Int. J. Non-

Linear Mech. 35, 37–43 (2000).
[2] J.-H. He, “Some asymptotic methods for strongly nonlinear

equations”, Int. J. Modern Phys. B 20, 1141–1199 (2006).
[3] J.-H. He, Non-Perturbative Methods for Strongly Nonlinear

Problems, Dissertation.de Verlag, Berlin, 2006.
[4] M. Dehghan and F. Shakeri, “Solution of a partial differential

equation subject to temperature overspecification by He’s ho-
motopy perturbation method”, Phys. Scr. 75, 778–787 (2007).

[5] F. Shakeri and M. Dehghan, “Inverse problem of diffusion
equation by He’s homotopy perturbation method”, Phys. Scr.

75, 551–556 (2007).
[6] J. Biazar and H. Ghazvini, “Homotopy perturbation method

for solving hyperbolic partial differential equations”, Comput.

Math. Appl. 56, 453–458 (2008).
[7] C. Chun, H. Jafari, and Y.-I. Kim, “Numerical method for

the wave and nonlinear diffusion equations with the homotopy
perturbation method”, Comput. Math. Appl. 57, 1226–1231
(2009).

[8] A. Sadighi and D.D. Ganji, “Exact solutions of Laplace equa-
tion by homotopy-perturbation and Adomian decomposition
methods”, Phys. Lett. A 367, 83–87 (2007).

[9] A. Yildirim, “Analytical approach to fractional partial differ-
ential equations in fluid mechanics by means of the homotopy
perturbation method”, Int. J. Numer. Methods Heat Fluid Flow

20, 186–200 (2010).
[10] M. Madani, M. Fathizadeh, Y. Khan, and A. Yildirim, “On the

coupling of the homotopy perturbation method and Laplace
transformation”, Math. Comput. Modelling 53, 1937–1945
(2011).

[11] Y. Khan, M. Akbarzade, and A. Kargar, “Coupling of homo-
topy and variational approach for conservative oscillator with
strong odd-nonlinearity”, Sci. Iran. 19, 417–422 (2012).

420 Bull. Pol. Ac.: Tech. 62(3) 2014



An analytical technique for solving general linear integral equations...

[12] M. Dehghan and J. Heris, “Study of the wave-breaking’s qual-
itative behavior of the Fornberg-Whitham equation via quasi-
numeric approaches”, Int. J. Numer. Methods Heat Fluid Flow

22, 537–553 (2012).
[13] D.D. Ganji, A. Rajabi, “Assessment of homotopy-perturbation

and perturbation methods in heat radiation equations”, Int.

Comm. Heat & Mass Transf. 33, 391–400 (2006).
[14] D.D. Ganji, M.J. Hosseini, and J. Shayegh, “Some nonlinear

heat transfer equations solved by three approximate methods”,
Int. Comm. Heat & Mass Transf. 34, 1003–1016 (2007).

[15] D.D. Ganji, G.A. Afrouzi, and R.A. Talarposhti, “Applica-
tion of variational iteration method and homotopy-perturbation
method for nonlinear heat diffusion and heat transfer equa-
tions”, Phys. Lett. A 368, 450–457 (2007).

[16] H. Khaleghi, D.D. Ganji, and A. Sadighi, “Application of vari-
ational iteration and homotopy-perturbation methods to nonlin-
ear heat transfer equations with variable coefficients”, Numer.

Heat Transfer A 52, 25–42 (2007).
[17] A. Rajabi, D.D. Ganji, and H. Taherian, “Application of ho-

motopy perturbation method in nonlinear heat conduction and
convection equations”, Phys. Lett. A 360, 570–573 (2007).

[18] D. Słota, “The application of the homotopy perturbation
method to one-phase inverse Stefan problem”, Int. Comm. Heat

& Mass Transf. 37, 587–592 (2010).
[19] D. Słota, “Homotopy perturbation method for solving the two-

phase inverse Stefan problem”, Numer. Heat Transfer A 59,
755–768 (2011).

[20] E. Hetmaniok, I. Nowak, D. Słota, and R. Wituła, “Applica-
tion of the homotopy perturbation method for the solution of
inverse heat conduction problem”, Int. Comm. Heat & Mass

Transf. 39, 30–35 (2012).
[21] R. Grzymkowski, E. Hetmaniok, and D. Słota, “Application of

the homotopy perturbation method for calculation of the tem-
perature distribution in the cast-mould heterogeneous domain”,
J. Achiev. Mater. Manuf. Eng. 43, 299–309 (2010).

[22] J. Biazar and H. Ghazvini, “Convergence of the homotopy per-
turbation method for partial differential equations”, Nonlinear

Anal.: Real World Appl. 10, 2633–2640 (2009).
[23] J. Biazar and H. Aminikhah, “Study of convergence of ho-

motopy perturbation method for systems of partial differential
equations”, Comput. Math. Appl. 58, 2221–2230 (2009).

[24] M. Turkyilmazoglu, “Convergence of the homotopy perturba-
tion method”, Int. J. Nonlin. Sci. Numer. Simulat. 12, 9–14
(2011).

[25] S. Abbasbandy, “Numerical solutions of the integral equations:
Homotopy perturbation method and Adomian’s decomposition
method”, Appl. Math. Comput. 173, 493–500 (2006).

[26] M. Ghasemi, M.T. Kajani, and A. Davari, “Numerical solu-
tion of the nonlinear Volterra-Fredholm integral equations by
using homotopy perturbation method”, Appl. Math. Comput.

188, 446–449 (2007).
[27] A. Golbabai and M. Javidi, “Application of He’s homotopy per-

turbation method for nth-order integro-differential equations”,
Appl. Math. Comput. 190, 1409–1416 (2007).

[28] A. Ghorbani and J. Saberi-Nadjafi, “Exact solutions for non-
linear integral equations by a modified homotopy perturbation
method”, Comput. Math. Appl. 56, 1032–1039 (2008).

[29] M. Dehghan and F. Shakeri, “Solution of an integro-differential
equation arising in oscillating megnetic fields using He’s
homotopy perturbation method”, Prog. Electromagnetics Re-

search, PIER 78, 361–376 (2008).
[30] A. Alawneh, K. Al-Khaled, and M. Al-Towaiq, “Reliable al-

gorithms for solving integro-differential equations with appli-
cations”, Int. J. Comput. Math. 87, 1538–1554 (2010).

[31] J. Biazar, Z. Ayati, and M.R. Yaghouti, “Homotopy pertur-
bation method for homogeneous Smoluchowski’s equation”,
Numer. Methods Partial Differential Equations 26, 1146–1153
(2010).

[32] H. Jafari, M. Alipour, and H. Tajadodi, “Convergence of ho-
motopy perturbation method for solving integral equations”,
Thai J. Math. 8, 511–520 (2010).

[33] H. Aminikhah and J. Biazar, “A new analytical method for
solving systems of Volterra integral equations”, Int. J. Com-

put. Math. 87, 1142–1157 (2010).
[34] E. Babolian and N. Dastani, “Numerical solutions of two-

dimensional linear and nonlinear Volterra integral equa-
tion: homotopy perturbation method and differential transform
method”, Int. J. Ind. Math. 3, 157–167 (2011).

[35] J. Biazar, B. Ghanbari, M.G. Porshokouhi, and M.G. Por-
shokouhi, “He’s homotopy perturbation method: A strongly
promising method for solving non-linear systems of the mixed
Volterra-Fredholm integral equations”, Comput. Math. Appl.

61, 1016–1023 (2011).
[36] Z. Chen and W. Jiang, “Piecewise homotopy perturbation

method for solving linear and nonlinear weakly singular
VIE of second kind”, Appl. Math. Comput. 217, 7790–7798
(2011).

[37] E. Hetmaniok, D. Słota, and R. Wituła, “Convergence and er-
ror estimation of homotopy perturbation method for Fredholm
and Volterra integral equations”, Appl. Math. Comput. 218,
10717–10725 (2012).

[38] E. Hetmaniok, I. Nowak, D. Słota, and R. Wituła, “A study
of the convergence of and error estimation for the homotopy
perturbation method for the Volterra-Fredholm integral equa-
tions”, Appl. Math. Lett. 26, 165–169 (2013).

[39] J.C. Campo, M.A. Pkrez, J.M. Mezquita, and J. Sebastian,
“Circuit-design criteria for improvement of xenon flash-lamp
performance (lamp life, light-pulse, narrowness, uniformity of
light intensity in a series of flashes)”, Applied Power Elec-

tronics Conference and Exposition, APEC’97, Twelfth Annual,
vol. 2, 1057–1061 (1997).

[40] W. Janke, “Equivalent circuits for averaged description of DC-
DC switch-mode power converters based on separation of vari-
ables approach”, Bull. Pol. Ac.: Tech. 61 (3), 711–723 (2013).

[41] S. Jalbrzykowski and T. Citko, “Push-pull resonant DC-DC
isolated converter”, Bull. Pol. Ac.: Tech. 61 (4), 763–769
(2013).

Bull. Pol. Ac.: Tech. 62(3) 2014 421


