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Abstract. In the paper problems with dynamic decoupling of the left-invertible multi-input multi-output dynamic (MIMO) linear time

invariant plants using a squaring down technique are considered. The procedure of squaring down the plant model and grouping of plant

inputs and outputs are discussed. The final part of the paper includes a few examples of different strategies of synthesis of a decoupled

system along with conclusions and final remarks.
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1. Introduction

The main characteristic property of the multi-input multi-

output (MIMO) dynamic plants is the cross coupling of theirs

inputs and outputs, which can make the process of designing

the control system seriously difficult. There are two ways to

deal with such a problem. The first is to establish the lev-

el of coupling, match the appropriate inputs and outputs and

treat the system as a set of single input single output systems

(SISO). In that case one has to ignore the cross influence

between such SISO systems. The second one is to decouple

the system, i.e. to find a control system for which a specif-

ic group of inputs affect a specific group of outputs and no

element of this input group have influence on any other out-

put component of the system. After decoupling the transfer

function matrix of the system becomes diagonal (or block

diagonal), thus the system is divided into small subsystems,

which can be analyzed irrespectively of each other.

Even if the plant is going to be decoupled it is essential

to establish the expected level of coupling between the se-

lected control loops, as it would be easier to operate the sys-

tem from the practical point of view. In the course of years

several interaction measuring methods have been proposed.

The most popular is, presented in [1], Relative Gain Array

(RGA) and its further modifications, Effective Relative Gain

Array (ERGA) [2], Dynamic Relative Gain Array (DRGA) [3],

Nonsquare Relative Gain Array (NSRGA) [4] and Nonlinear

Relative Gain Array (NRGA) [5]. A detailed description of

the above mentioned methods may be found in [6]. There are

also used Gramian-based measures Hankel Interaction Index

Array (HIIA) [7], Participation Matrix (PM) [8] and some

others. In [9] the closed loop performance in terms of the

output variance is computed for each control structure and

the pairing corresponding to the lowest output variance is se-

lected. However, the disadvantage of this method is that the

number of possible pairings for a system with m inputs and

m outputs is m! and the computational burden grows accord-

ingly. All RGA, the HIIA and PM methods do not suffer from

this disadvantage.

The dynamic decoupling for the MIMO systems was in-

tensively studied in the past [10–17]. However most of the

proposed methods are often limited to the square or right in-

vertible plants with minimum phase transmission zeros only.

Moreover, most of them allow one to exist in the decoupled

system some fixed poles, which can result in its instability.

The problem of dynamic block decoupling of the left invert-

ible plants was rarely studied in the past [16, 18] however in

everyday practice there is often a need to maintain and con-

trol processes with more outputs than inputs. It may happen,

e.g. during system failure when one loses some actuators and

the precise control of all outputs is not possible. A common

strategy in such situations may be squaring down the plant.

That is, necessary number of outputs or inputs are deleted

or added from the transfer function matrix to obtain a square

plant model. However, adding or deleting unnecessary outputs

or inputs means more costs, reduction of the degrees of free-

dom, less reliable measured information deteriorating control

performance and so on.

Nonsquare plants with more outputs than inputs are func-

tionally uncontrollable and their outputs cannot be perfectly

derived towards the desired set points. This case may occur

when one or more actuators are saturated or damaged. Then

the squaring down procedure often contains NSRGA analy-

sis and selection due to perfect control in the least square

sense [4, 6]. What plays a larger role is the singularity of the

nonsquare and squared down plant transfer matrices. Singu-

larity of the nonsquare plant is rare due to that it requires

a simultaneous vanishing of many minors depending on the

dimensions of the matrix. Thus it is well known that transmis-

sion zeros for nonsquare plants are very uncommon. However,

singularity of the squared down plant may dramatically change

control system synthesis conditions. Especially when such ze-

ros may decide on closed-loop system stability. It is well

∗e-mail: pawel.dworak@zut.edu.pl

471



P. Dworak

known in the decoupling theory that some poles of the decou-

pled (compensated) system, related to the so-called intercon-

nection transmission zeros of the plant, are fixed. These can

generate uncontrollable and/or unobservable parts of the feed-

back closed-loop system. Cancelations of such nonminimum

phase zeros (unstable hidden modes) make the system unsta-

ble [14, 16, 19].

The paper deals with the problem of the interconnection

transmission zeros, which may occur when the decoupler for

the nonsquare plant is being calculated. It complements the

results obtained in [18] and [20], which present an universal

algorithm for dynamic decoupling for linear plants that can

be unstable, non-minimum phase or both and problems with

decoupler recalculation after plants actuator damage and loss

of operability, respectively. Such recalculations of the control

systems may be important from a practical point of view, e.g.

in the fault tolerant control systems when the recalculations

are done after actuator fault and loss of the plant operabili-

ty [21]. As a plant actuator fault and/or switching in control

systems may result in a loss of the system stability and/or con-

trollability [22] the synthetized control system has to be care-

fully checked before its implementation. The off-line analysis

presented in the paper may allow one to prepare alternative

control structures which, after fault, may replace the standard

one and make possible to e.g., switch off the system in an

controlled way.

The paper is organized as follows. The problem state-

ment and decoupling concept have been brought in Secs. 2.

and 3. Section 4 presents conditions for decoupling of the

left-invertible plants while in Sec. 5 the squaring down and

I/O grouping procedure are given. An example which demon-

strates the discussed problems is presented in Sec. 6. Finally

the paper is concluded in Sec. 7.

2. Problem statement

We consider a controllable and observable LTI MIMO model

of the plant defined by the state and output equations

ẋ(t) = Ax(t) + Bu(t),

y(t) = Cx(t) + Du(t),
(1)

where x(t) ∈ Rn, u(t) ∈ Rm and y(t) ∈ Rl(l > m) are

the state, input and output vectors, respectively. In the poly-

nomial matrix approach the transfer matrices (MFD) of all

elements of the system are defined by pairs of polynomial

matrices usually as relatively right prime (r.r.p.) for plants,

and relatively left prime (r.l.p.) for other elements of the con-

trol system. Applying this approach, the plant model (1) can

be transformed into the r.r.p. matrix fraction description in

the frequency s-domain as follows

y = B1(s)A
−1
1 (s)u, (2)

where

B1(s)A
−1
1 (s) = C(sIn − A)−1B + D. (3)

Fig. 1. Structure of the decoupled control system

Assuming dynamic block decoupling of the designed con-

trol system we group the output and the vector of exogenous

signals into k blocks according to the partitions

y(t) =




y1(t)
...

yi(t)
...

yk(t)




, q(t) =




q1(t)
...

qi(t)
...

qk(t)




, (4)

where yi(t) ∈ Rli ,
k∑

i=1

li = l, qi(t) ∈ Rmi ,
k∑

i=1

mi = m.

We want to design a decoupled system in which each part

i = 1, 2, ..., k of a system defined by pairs of vector sig-

nals qi(t), yi(t) could be controlled independently of other

parts j 6= i. Moreover, each part of the block-decoupled sys-

tem should be designed with individually supposed dynamic

properties according to the set requirements.

Then the problem may be formulated as follows. Find an

input output grouping (4) for system (1) to be dynamically

block-decoupled so as to ensure that the decoupled system

meets all synthesis goals, i.e. stability, lowest possible rank

and exhibits the required performance. The problem is es-

pecially put for plants with more outputs than inputs after a

failure.

3. Decoupling concept

The goal of decoupling the LTI dynamic system can be

achieved in a control system structure presented in Fig. 1,

which contains a dynamic feedforward compensator and a

feedback matrix. It is one of the most common decoupling

concept utilized in many papers, e.g. [13, 14, 16, 18, 19, 23].

The main decoupling problem is to find a method for block

decoupling of the control system (between the signals q and

y) so as to obtain the stable transfer matrix T yq(s) free of

cancellation of unstable hidden modes.

The feedback law, employed to decouple the system (the

linear state variable feedback along with dynamic feedfor-

ward) is described by

u(s) = G−1(s)L0(s)f (s) + G−1(s)L(s)q(s), (5)

where

f (s) = F (s)xp(s)
∆
= Fx(t), (6)

xp(s) is a partial state vector of the plant, G(s) ∈
R[s]m×m, L(s) ∈ R[s]m×l, L0(s) ∈ R[s]m×m, F (s) ∈
R[s]m×m are polynomial matrices such that G−1(s)L0(s)
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and G−1(s)L(s) are proper and F (s)A−1
1 (s) is strictly prop-

er. Without any loss of generality the matrix L0(s) may be

taken as L0(s) = Im.

According to this scheme the considered decoupling sys-

tem is defined in s-domain by proper and possible low-order

transfer matrix G−1(s)L(s) for the dynamic feedforward

compensator along with a feedback matrix F (s). For the ap-

plied decoupling law the transfer matrix T yq(s) takes the

form

T yq(s) = B1(s) [G(s)A1(s) − F (s)]−1
L(s)

= N (s)D−1(s)
(7)

with N (s) = block diag[N ij(s)] ∈ R[s]l×m and D(s) =
block diag[Dii(s)] ∈ R[s]m×m where i = 1, 2, ..., k and

j = 1, 2, ..., k according to the partition (4).

The decoupling procedure starts with determination of the

numerator matrix of the system. It is taken as a block diago-

nal matrix N (s) = block diag[N ii(s), i = 1, 2, ..., k], where

particular blocks N ii(s) are the greatest common left divi-

sors (g.c.l.d.) of columns of i-th row-block B1i(s) of B1(s)
caused by the partition (4). Then B1(s) takes the form

B1(s) = N(s)B(s). (8)

In general, the decoupled system does not have to be stable

but it should be free of any unstable cancellations, unobserv-

able and/or uncontrollable, unstable poles. However, if the

polynomial matrix G̃(s) ∈ R[s]l×l, which is a g.c.l.d. of all

columns B(s) defined by the relation

B(s) = G̃(s)B̃(s) (9)

is not unimodular and if its zeros lie in the unstable region of

the complex plane, the (unobservable) poles of decoupled sys-

tem corresponding to these zeros are fixed and unstable [19].

These so called ‘interconnection’ transmission zeros cannot be

eliminated by a feedforward compensator of zero order. So,

in such a case a dynamic compensator have to be used. To

remove these unobservable poles we can use the compensa-

tion scheme together with an additional dynamic feedforward

compensator obtained by augmenting the plant model with a

serial dynamic element Ra(s)P−1
a (s). This element has to be

connected to the input of the original plant presented in Fig. 2

and finally shifted into the structure of dynamic feedforward

compensator [19].

Fig. 2. Structure of the decoupled system for the augmented plant

After calculations of the element Ra(s)P−1
a (s) the stan-

dard procedure with an augmented plant can be used and a

decoupled system T yq(s) without fixed poles caused by G̃(s)
is automatically obtained. An algorithm which may be used

to calculate this additional dynamics was analyzed in [19]

and has been modified in [24] to make it more reliable and

efficient.

Analysis of (8), (9) shows that the presence of the inter-

connection transmission zeros may depend on the grouping

(4) of plants inputs and outputs. So in many cases it may

be reasonable to group the inputs and outputs in a way the

control goals are achieved, but with reduction of the control

system (synthesis) complicity, its size and sensitivity to the

model accuracy. Thus input output pairing procedures should

be completed by the interconnection transmission zeros check-

ing procedure, especially for nonsquare (left invertible) plants,

which for the purpose of control system synthesis, are squared

down.

4. Decoupling of left-invertible plants

It is not possible to synthesize the decoupler for diagonal

(row-by-row) decoupling of a non-square plant with l > m

but as it was shown in [16] there is a chance to synthesize

a block-decoupled control system. In order to do it we adopt

the following lemmas and theorems given in [16, 19].

Theorem 1 [16]. A left-invertible plant with the transfer ma-

trix (7) of rank m can be block decoupled according to the

partition (4) by use of a linear state variable feedback and

a dynamic feedforward if and only if rankB1i(s) = mi,

i = 1, 2, ..., k.

If assumption of Theorem 1 is satisfied, then there exist

k unimodular matrices U i(s) ∈ R[s]li×li , i = 1, 2, ..., k such

that

U i(s)B1i(s) =

[
Bmi(s)

0

]
(10)

with Bmi(s) of full rank. Parting U−1
i (s) =[

P i(s) Ri(s)
]

one can define

B1i(s) =
[

P i(s) Ri(s)
][ Bmi(s)

0

]
= P i(s)Bmi(s).

(11)

Then after defining

P (s) =




P 1(s)

...

P k(s)


 ∈ R[s]l×m (12)

and

Bm(s) =




Bm1(s)

...

Bmk(s)


 ∈ R[s]m×m (13)

the transfer matrix (2) takes the form

T (s) = B1(s)A
−1
1 (s) = P (s)Bm(s)A−1

1 (s) (14)

the inner square part T m(s) = Bm(s)A−1
1 (s) of which may

be decoupled by using any known decoupling method.

Bull. Pol. Ac.: Tech. 62(3) 2014 473



P. Dworak

Then the transfer matrix (7) of the decoupled system takes

the form

T yq(s) = P (s)Bm(s) [G(s)A1(s) − F (s)]−1
L(s)

= P (s)Nm(s)D−1(s)
(15)

with

Nm(s) = block diag[N ii(s), i = 1, ..., k] ∈ R[s]m×m.

(16)

The stability of the decoupled system is described by the

following lemmas and theorem.

Lemma 1 [19]. The block diagonal matrix D(s) ∈ R[s]l×l

that satisfies the relation (7) exists if there exist polynomial

matrices L(s) ∈ R[s]m×(m−l) and B(s) ∈ R[s]m×(m−l) of

full rank such that G(s)A1(s) − F (s) − L(s)D(s)B(s) =
L(s)B(s).

Theorem 2 [19]. The closed-loop poles of the decou-

pled system T yq(s) realized by linear state variable feed-

back (l.s.v.f.) with dynamic feedforward consist of the ze-

ros of
∣∣[L(s), L(s)]

∣∣, which are uncontrollable, the zeros of∣∣∣[BT(s), B
T
(s)]T

∣∣∣, which are unobservable and the zeros of

|D(s)|, which are controllable and observable.

Lemma 2 [16]. The invariant zeros of Bm(s)A−1
1 (s) are

precisely those of B1(s)A
−1
1 (s).

By applying the above method for preparing the plant

model to the standard decoupling procedure [13, 24, 25]

we obtain the design algorithm for the considered block-

decoupled control system. The detailed description of all steps

of the standard decoupling procedure may be found in [18].

However, problems arise if the conditions of the Theorem 1

are not satisfied and the plant may not be decoupled without

a squaring down procedure, which boils down to the arbitrary

crossing out some plant outputs (rows of the plant transfer

matrix). It may result in some additional problems in the con-

troller synthesis.

5. Squaring down and grouping

of the nonsquare plant I/O

Due to the difficulties raised with the analysis and synthesis

of the control system for nonsquare plants, squaring down

the nonsquare MIMO plant is a common practice in practi-

cal control system design. Such a practice is also known as a

selection of secondary measurements.

Let us make partition of a nonsquare transfer matrix of

the plant into the form

T (s) =




T S(s)

T R(s)



 (17)

with T S(s) ∈ R(s)m×m and T R(s) ∈ R(s)(l−m)×m. The

goal of the squaring down procedure is to select such m from

among l plant outputs. As the number of possible combina-

tion rises quickly with the difference between l and m, it is

necessary to utilize devices such NSRGA to analyze the plant

model. For the given transfer matrix T (s) determining the

NSRGA requires calculation of (MATLAB command)

NSRGA(0) = T (0). ∗ pinv(T T (0)). (18)

The result of the plant NSRGA analysis may be used to

determine a sum squared error (SSE) which determines the

possible levels of the plant outputs steady state errors. Howev-

er, as it was shown in [4, 6], the exact analytical relationship

between the SSE and the NSRGA is available only for the

case when l − m = 1. In such a case, to select a square

subsystem, one eliminates the output with the smallest row

sum in the NSRGA. In any other case the NSRGA analy-

sis may result in suboptimal solutions. That is why such an

analysis should be complemented by heuristics and any other

additional conditions.

Apart from the squaring down proposals, analysis of the

plant RGA matrix allows one to determine an input-output

pairing. A general pairing rule is that such input-output pair

should be chosen so that its corresponding RGA element be

close to one [1], but also the elements should be positive

and not large [6]. Despite such clear rules in many cases

the RGA analysis allows one only to determine a subset of

possible squarings, pairings and/or groupings (for block de-

coupling) and the final decision has to be made according

to some other conditions. That is especially when the group-

ing decision may vary the synthesis procedure of the con-

troller, which makes possible reconfiguration more difficult,

and may result in different controller features, such like its

rank.

Usually, it is undesirable to impose restrictions on the

controller design method, but if restrictions on the controller

design method or the maximum controller order do play a

role, a controller dependent selection method may be advan-

tageous. For efficiency reasons, input output selection should

not involve complete controller design [26].

As it was shown in the previous section if zeros of the

matrix G̃(s) from Eq. (9) lie in the unstable region of the

complex plane, the (unobservable) poles of the decoupled

system corresponding to these zeros are fixed and unstable.

Although the presence of zeros for the nonsquare plant is

rare, the presence of zeros of the squared down plant is most

common. It is most important that such “squaring down ze-

ros” be completely virtual and be not connected with plant

physics.

Let us denote Bms(s) ∈ R[s]m×m as the numera-

tor matrix of the squared down part of the transfer matrix

B1(s)A
−1
1 (s). Then the decoupling algorithm uses the sub-

stituted transfer matrix Bms(s)A
−1
1 (s). It means that after

calculating the numerator matrix of the system Ns(s) as in

Eq. (8) we obtain

Bms(s) = N s(s)Bs(s) (19)

and then the polynomial matrix G̃s(s), determined as a g.c.l.d.

of all columns of the matrix Bs(s)

Bs(s) = G̃s(s)B̃s(s). (20)
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Zeros of the determinant of matrix G̃s(s) may be called

“interconnection squaring down zeros” and their presence and

values determine the structure of the decoupler (change its

rank) and necessary synthesis methods.

Theorem 3. If any of zeros of the determinant of matrix

G̃s(s) lie in the unstable region of the complex plane, the

(unobservable) poles of decoupled system corresponding to

these zeros are fixed and unstable.

Proof of Theorem 3 goes directly from the proof of the

“interconnecting” transmission zeros given in [19].

Influence of the ‘squaring down interconnection’ transmis-

sion zeros can be eliminated only by a dynamic feedforward

compensator. When it is necessary, that is when any of such

zeros lie in the right part of the complex plane, then, as it

was described in third section, in the decoupling algorithm

the plant model has to be augmented with a serial dynamic

element Ra(s)P−1
a (s), finally shifted into the structure of the

dynamic feedforward compensator.

Taking all the above into account the squaring down proce-

dure of the left invertible plant to be decoupled should consist

of the following steps:

Step 1. Check conditions of Theorem 1 to establish

whether a block decoupling without crossing out any output is

possible at all. If yes, do calculations (10)–(13), and synthe-

size the decoupler for the transfer matrix (14) with numerator

matrix substituted by (13). If not, go to Step 2.

Step 2. Calculate and analyze the NSRGA. Designate

row(s) to be crossed out and grouping strategy for other inputs

and outputs.

Step 3. Do calculations (19), (20) and check existence of

the “interconnection squaring down zeros”. If they do not ex-

ist, do calculations of the dynamic decoupling algorithm for

the assumed input output grouping. If not, go to Step 4.

Step 4. If any of “interconnection squaring down zeros”

lie in the left part of the complex plane: check other grouping

combinations or calculate a dynamic element Ra(s)P−1
a (s)

and if the rank of the controller is acceptable continue calcu-

lations of the dynamic decoupling algorithm.

The presented above sketch of the algorithm does not

allow one to automate fully the input-output grouping se-

lection for dynamic decoupling purposes. However, it is an

crucial tool in the plant analysis, especially important in the

adaptation and reconfigurable control systems (with actuators

faults).

6. Example

In order to illustrate the theoretical considerations an example

of a decoupling of the reconfigured control system is present-

ed. Let assume a plant (of n = 5 order with m = 3 inputs

and l = 3 outputs) defined by the following matrices of the

state and output Eq. (1)

A =




0 1 0 0 0

0 0 1 0 0

−1 −2 −1 0 0

0 0 0 −1 0

0 0 0 −1 2



, B =




1 0 0

0 0 0

0 1 1

0 0 1

0 1 0



,

C =




1 0 1 0 0

0 1 0 0 1

0 1 0 0 0


, D = 0.

(21)

It has the poles located at s1 = 2, s2,3 = −0.2150 ±
i1.3071, s4 = −1, s5 = −0.5698 so, it is unstable. The val-

ue of the plant transmission zero depends on e.g. value of

element b32 of matrix B. For b32 > −1 the real part of the

transmission zero is negative, while for b32 < −1 is positive.

The plant given has transmission zero so
1 = −2, then it is a

minimum phase. Its transfer matrix can be described in the

r.r.p. matrix fraction as follows

B1(s) =




s − 2 s − 8 4

1 s + 4 −1

0 1 0


,

A1(s) =




s2 − 2s −8s− 1 4s

s − 2 s2 + s − 6 −s + 3

0 0 s + 1


.

(22)

Before starting the design procedure we have assumed that

the control system will be diagonally decoupled. As the cal-

culated interconnection transmission zero of the plant is mini-

mum phase then it is not necessary to synthesize an additional

dynamic element Ra(s)P−1
a (s). The system after decoupling

will have an unobservable but stable pole suo = −2.

Adopting the following values of poles: s1 = −0.5 for the

first, s2 = −0.4 for the second and s3 = −0.6, s4 = −0.4
for the third block we set matrix D(s) as

D(s) =




s + 0.5 0 0

0 s + 0.4 0

0 0 s2 + s + 0.24




which with N(s) = I3 allows one to calculate a dynamic

feedforward compensator G−1(s)L(s) and the feedback ma-

trix F .

As it is shown in Fig. 3, according to our assumptions,

there are not any interactions between signals y1(t), y2(t), and

y3(t). Change in the value of the first input q1(t) at t = 10s in-

fluences only the first output y1(t). Similarly, input q2(t) does

not influence any other outputs, but y2(t) and y3(t) depend

only on input q3(t). So, the system is completely decoupled

and all of the assumed design objectives are achieved.
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Fig. 3. Results of simulation of the diagonal decoupled control sys-

tem

Parameter changing. However, if element b32 of the matrix

B in (21) is changed to b32 = −2 the transmission zero

shifts to so
1 = 1 and the plant becomes nonminimum phase

one. This plant can be described in the r.r.p. matrix fraction

as follows

B1(s) =




s − 2 −2s + 16 1

−0.5 s + 1 0.5

0 −2 0


,

A1(s) =




s2 − 2s 16s + 2 s

−0.5s + 1 s2 + s − 6 0.5s

0 0 s + 1


.

(23)

Such system is not possible to diagonalize without an addi-

tional dynamic element Ra(s)P−1
a (s), thus without increas-

ing its order to 6. Omitting this additional element results in

system instability. What is worse, the results of synthesis of

the Ra(s)P−1
a (s) are very sensitive to the value of the ze-

ro which makes the system impractical in real applications.

However, such a system may be successfully used in control

systems which use a plants model, e.g. ([27–31]).

Fault of the first input. When the first input in model (21)

fails, then the first column of matrix B in the plant description

(21) is crossed out and the transfer function of such system

takes the form

B1(s) =




s2 + 1 0

s2 + 4s + 3.75 −s − 2

s 0


,

A1(s) =

[
s3 + s2 − 2.25s− 3.25 −s2 + s + 2

4.25s + 4.25 s2 − s − 2

]
.

(24)

Analysis of the RGA for this plant does not allow one to

decide on proper input-output pairing as

RGA(0) =




0.5 0.5

0.5 0.5

0 0


 (25)

so we have to seek for combinations which satisfy condi-

tions of Theorem 1. It is possible with pairing (q1 → y2;

q2 → y1, y3). According to the assumed partition the transfer

matrix (2) takes the form (14) with matrices

Bm(s) =

[
s2 + 4s + 3.75 −s − 2

1 0

]
,

P (s) =




1 0 0

0 s2 + 1 s

0 s 1


.

Then calculations are continued for a square plant with

matrix B1(s) := Bm(s).

As the calculated “squared down interconnection trans-

mission zero” of the plant is stable, then it is not necessary

to synthesize an additional dynamic element Ra(s)P−1
a (s).

The system after decoupling will have an unobservable but

stable pole suo = −2.

Adopting the following values of poles: s1 = −0.5 for

the first block and s2 = −0.4, s3 = −0.6, s4 = −0.4 for the

second block we set matrix D(s) as

D(s) =

[
s + 0.5 0

0 s3 + 1.4s2 + 0.64s + 0.096

]

and obtain the rest of the elements of the decoupled system,

the rank of which in this case is 4.

As it is shown in Fig. 4 according to our assumptions

there is no interaction between signals y1(t) and y2(t), y3(t).
Change in the value of the first input q1(t) at t = 10s influ-

ences only the second output y2(t). Similarly, reference input

q2(t) does not influence any other output but y1(t) and y3(t).
So, the system is decoupled and all of the assumed design

objectives are achieved.

Fig. 4. Results of simulation of the block decoupled control system

(fault of the first input)

Fault of the second input. When the second input in model

(21) fails then the transfer function takes the form
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B1(s) =




s2 + 2 −s − 4

−1 0

−1 1


,

A1(s) =

[
s3 + s2 + 2s + 1 −2s2 − 4s − 1

0 s2 − s − 2

]
.

(26)

Matrix B1(s) has the form, which does not allow one to

assume any partition satisfying conditions of Theorem 1. So

to obtain a square Bm(s) one has to omit one row of B1(s)
form (26). Looking at B1(s) it seems reasonable to omit the

second row but checking RGA, which for the system (26)

takes the form

RGA(0) =




0.38 0.57

0.38 0.43

0.24 0


 (27)

suggest omitting the third one. However, such two systems

differ considerably as two of them have interconnection trans-

mission zeros, in the first case minimumphase, in the second

one nonminimumphase.

a) Omitting the third row of the matrix B1(s) (26) gives

Bm(s) =

[
s2 + 2 −s − 4

−1 0

]
(28)

with one “interconnection squaring down zero” so
1 = −4. The

so squared down plant RGA is then

RGA(0) =

[
0.5 0.5

0.5 0.5

]
(29)

which does not allow one to decide on proper input-output

pairing. Thus the assumed pairing (q1 → y1; q2 → y2). As

the calculated interconnection transmission zero of the plant

is stable then it is not necessary to synthesize an additional

dynamic element. The system after decoupling will have an

unobservable but stable pole suo = −4.

Assuming the following values of poles: s1 = −0.5 for

the first block, s2 = −0.4, s3 = −0.6, s4 = −0.4 for the

second block we set matrix D(s) as

D(s) =

[
s + 0.5 0

0 s3 + 1.4s2 + 0.64s + 0.096

]
.

As it is shown in Fig. 5, according to our assumptions,

change in the value of the first input q1(t) at t = 10s in-

fluences the first y1(t) and the third (omitted in calculation)

y3(t) output. Similarly, reference input q2(t) does not influ-

ence the output y1(t) but y2(t) and y3(t) only. So, the system

is decoupled and all of the assumed design objectives are

achieved.

b) If for any reason the second output has been omitted, then

B1(s) (26) takes the form

Bm(s) =

[
s2 + 2 −s − 4

−1 1

]
(30)

with two virtual “interconnection squaring down zeros” so
1 =

−1 and so
2 = 2. As the calculated interconnection transmis-

sion zero of the plant so
2 has its real part in the right part

of the complex plane, then it is necessary to synthesize an

additional dynamic element Ra(s)P−1
a (s). It may be taken

as

Ra(s) =

[
−1.549s− 1.549 −0.034s− 0.034

0.934s− 1.154 0.015

]
,

P a(s) =

[
s + 3 0

0 s + 1

]
.

(31)

Fig. 5. Results of simulation of the block decoupled control system

(fault of the second input, third output omitted)

For the assumed pairing (q1 → y1; q2 → y3) we obtain a

numerator matrix of the decoupled system as

N(s) =

[
s2 − s − 2 0

0 s2 − s − 2

]
(32)

and for the following values of poles: s1 = −0.5, s2 = −0.4,

s3 = −0.6 for the first and s4 = −0.4, s5 = −1.5, s6 = −1.3,

s7 = −1 for the second block we set matrix D(s) as

D(s) =

[
a∗ 0

0 b∗

]

where

a∗ = s3 + 1.5s2 + 0.74s + 0.12

b∗ = s4 + 4.2s3 + 6.27s2 + 3.85s + 0.78

so the decoupled system is of rank 7.

As it is shown in Fig. 6., also in this case all of the as-

sumed design objectives are achieved. Change in the value

of the first input q1(t) at t = 10s influences the first y1(t)
and the second (omitted in calculation) y2(t) output. Similarly

input q2(t) influences outputs y2(t) and y3(t) only.
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Fig. 6. Results of simulation of the block decoupled control sys-

tem after using squaring down technique (fault of the second input,

second output omitted)

Fault of the third input. When the third input fails the sys-

tem becomes uncontrollable and it is not possible to decouple

the plant.

As it was shown in the above example there may be a

lot of different strategies of the input-output grouping of the

considered plant after its input failure. The control objectives

have been met in any case but e.g. the rank of the decou-

pled system changed from four (in most cases) to seven when

the virtual “interconnection squaring down zeros” were not

avoidable.

7. Conclusions and final remarks

In the paper an analysis of the synthesis procedure of the dy-

namic block decoupling system for the dynamic plants with

the number of inputs being less than the number of outputs

using squaring down technique has been presented. The the-

orems given in the paper allow one to check the possibility

of decoupling the plant together with checking the possibility

of minimizing the decoupler rank and calculations reliability.

The procedure proposed in the paper helps in synthesis of a

dynamically decoupled control system and its application en-

sures that the system will be stable and will meet all designing

goals for any MIMO, in general unstable, non-minimumphase

plants. The presented example confirms the correctness of the

analysis. Such a dynamic decoupling procedure provides a

possibility to its application to build e.g. adaptive decoupled,

reconfigurable, fault tolerant MIMO systems.
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