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Abstract. In this paper, the stabilization problem of a autonomous linear time invariant fractional order (LTI-FO) switched system with

different derivative order in subsystems is outlined. First, necessary and sufficient condition for stability of an LTI-FO switched system with

different derivative order in subsystems based on the convex analysis and linear matrix inequality (LMI) for two subsystems is presented and

proved. Also, sufficient condition for stability of an LTI-FO switched system with different derivative order in subsystems for more than two

subsystems is proved. Then a sliding sector is designed for each subsystem of the LTI-FO switched system. Finally, a switching control law

is designed to switch the LTI-FO switched system among subsystems to ensure the decrease of the norm of the switched system. Simulation

results are given to show the effectiveness of the proposed variable structure controller.
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1. Introduction

In the last two decades, there has been increasing interest in

the stability analysis and design methodology of switched sys-

tems due to their significance both in theory and applications

[1–32]. A switched linear system is a hybrid system that com-

prises a collection of linear or nonlinear subsystems together

with a switching rule that specifies the switching among the

subsystems. It is well known that a different switching rule

would produce different behavior of the system and hence

lead to different system performances. However, the design

of a switching strategy is generally very challenging. Some

practical examples for switched systems are automated high-

way systems, automotive engine control system, networked

control systems, chemical process, power systems and pow-

er electronics, robot manufacture, and stepper motors [1–4].

Some methods such as multi-Lyapunov functions and convex

combination of vector fields have been used widely in the

study of the integer order switching systems which is closely

related to some investigations on differential inclusions [7–

10]. For more details about background of the stability of

integer order switched systems and related problems, see [18]

and references therein. On the other hand, the stability prob-

lem of fractional derivative systems has been the focus of

much attention in recent years [11–13]. This is due to the

applicability of equations based on fractional derivatives in

modeling various practical and engineering systems [19, 20,

21, 24]. Consequently, the study of fractional-order switching

system instead of integer order seems indispensable.

First, we briefly review the advancements in variable

structure control (VSC) because, the methodology of the pa-

per is based on it. VSC system changes the structure or dy-

namics of the system by switching at precisely defined states

to another member of a set of possible continuous functions

of the state [26]. This technique provides a framework for

definition of the appropriate control laws and the switching

structure. The distinguishing feature of VSC is a sliding mo-

tion. In order to eliminate chattering in a variable structure

control, the sliding sector was proposed to replace the sliding

mode [28]. It has been shown that in any system, there is a

subset of the state space in which some system norms are

reduced without any control input, even if this set may con-

tain only one element, i.e. the origin of the coordinate system.

This is called the sliding sector, which can be designed using

a Riccati equation [29, 30]. An extremum seeking control al-

gorithm has been used to find the predetermined norm of the

state, i.e. a Lyapunov function as in [30]. VSC that defined

the sliding surface for linear time invariant fractional order

systems (LTI-FOS) was introduced in [31]. In [27] the stabi-

lization of a particular class of nonlinear systems of fractional

order differential inclusions in fractional derivative chaos sys-

tems using variable structure control is considered. In [25] the

control of a special class of single input single output (SISO)

switched fractional order systems is considered. In [32], some

stabilization issue for fractional order switching systems of

fractional order linear systems has been addressed. In [17]

the stabilization of linear time invariant systems with frac-

tional derivatives using a limited number of available state

feedback gains, using switching method is studied. Author in

[5] has established the sufficient conditions for the asymptotic

stability of positive fractional switched continuous-time linear

systems for any switchings.

In this paper, a necessary and sufficient condition for sta-

bility of LTI-FO switched systems with different derivative in

two subsystems and a sufficient condition in more than two

subsystems is proved, and a switching law for continuous time

LTI-FO switched systems is derived. Firstly, the existence of

a system with integer order derivatives which has stability
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properties equivalent to the fractional system is proved. Then

the extremum seeking control algorithm is used to find the

Lyapunov function for the shadow LTI-FO switched system.

Finally, a switching law based on the sliding sector is derived.

The paper is organized as follows. In Sec. 2, a review of

fractional calculus and two important type of fractional order

switching systems are presented. In Sec. 3, the problem for-

mulation is given. In Sec. 4, we consider condition of stability

of the autonomous LTI-FO switched system and the Lyapunov

function for LTIFO switched system based on an equivalent

integer order system from the point of view of stability. In

Sec. 5, we present the conditions for stabilization of the LTI-

FO switched system based on the extremum seeking method

for computation of Lyapunov function and, the sliding sector

is defined. In Sec. 6, the switching law based on the sliding

sector is discussed. Finally, the results are illustrated using

two examples.

2. Preliminaries

Given 0 < q < 1, Riemann-Liouville definition of q-th order

fractional derivative operator 0D
q
t is given by

0D
q
t f(t) =

1

Γ(1 − q)

d

dt

t
∫

0

(t − τ)−qf(τ)dτ ,

where Γ(.) is the Gamma function generalizing factorial for

non-integer arguments

Γ(q) =

∞
∫

0

e−ttq−1dt.

For more details about other definitions of fractional deriva-

tive refer to [23]. In this paper Riemann-Liouville definition

has been used.

It has been shown that the system 0D
q
t X(t) = AX(t)

is asymptotically stable if the following condition is satis-

fied [22]

|arg(λ(A))| >
qπ

2
,

where 0 < q < 2, and λ(A) are eigenvalues of the matrix A.

The stable and unstable regions for 0 < q < 1 are shown in

Fig. 1.

Fig. 1. Stability region of LTI-FOS with order 0 < q < 1

Given a family of linear fractional derivative systems
{

0D
q
t X(t) = AiX(t), 0 < q < 1, i = 1, 2, . . . , N

0D
q−1
t X(t) |t=0 = X0

(1)

where X(t) ∈ Rn is the continuous state variable, and

0D
q−1
t X(t) |t=0 = X0 is initial condition of derivative. Frac-

tional differential equations in terms of the Riemann-Liouville

derivatives require initial conditions expressed in terms of

initial values of fractional derivatives of the unknown func-

tion [14]. For more details about how to impose physically

coherent initial conditions to a fractional system, see [15].

The following two types of switching systems can be de-

fined.

Type I switching systems: Switching logic among the sys-

tems is unknown. At each time instant, it is only known that

0D
q
t X(t) ∈ {AiX(t) : i = 1, 2, . . . , N} . (2)

To analyze this linear differential inclusion (LDI) we assume

that the switch is arbitrary.

Type II switching systems: The switch is orchestrated by

the controller/supervisor that can choose one of the systems

at each instant based on time, the measurement of the states

or a certain output. It is assumed that the state X is avail-

able for measurement. For this case, the switching strategy

can be optimized for the best performances. The system can

be written as

0D
q
t X(t) = Aσ(x)X(t), 0 < q < 1, (3)

where σ(x) = i for X ∈ Ωi and ∪
N
⋃

i=1

Ωi = Rn. The design

problem boils down to the construction of the sets Ωi with

a well-designed switching law. To differentiate the above two

switching types, we simply call the system (2) the fractional

order LDI and the system (3) the switched system.

3. Problem description

Consider a LTI-FO switched system described by the pseudo-

state space equation as follows
{

0D
qσ

t X(t) = AσX(t), 0 < qσ < 1

0D
qσ−1
t X(t) |t=0 = X0

(4)

where X(t) ∈ Rn is the continuous state variable, σ de-

note a switching signal taking values as σ = 1, 2, . . . , N

and a finite set of matrices ∩A := {Aσ : σ = 1, 2, . . . , N}
is given, and 0D

qσ

t X(t) is the Riemann-Liouville deriva-

tive of order qσ , 0 < qσ < 1, of X(t) relative to time,

and 0D
qσ−1
t X(t) |t=0 = X0 is initial condition of deriva-

tive. This paper presents conditions for stabilization of LTI-

FO switched systems and extracts stabilizer switching control

based on sliding sector.

4. Stability conditions of LTI-FO switched

system with different derivative

The objective of this section is to construct a continuous Lya-

punov function whose derivative along any state trajectory is
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negative for each subsystem, within some regions in the state-

space. Moreover, these regions must cover the entire state-

space. A necessary and sufficient condition for stabilization

in the case of two subsystems and a sufficient condition in the

general case with different derivative order will be presented.

The following theorem has been proved in LMI studies for

LTIFOS based on the mapping in Ω plane.

Theorem 1. [11]: The system 0D
q
t X(t) = AX(t), where

0 < q < 1, is t−q – stable if and only if there is a symmetric

positive definite matrix P such that

(

− (−A)
1

2−q

)T

P + P
(

− (−A)
1

2−q

)

< 0 (5)

where (−A)
1

2−q is defined as e(1/(2−q)) log(−A).

Theorem 2. Given the switched system (4) with N = 2, the

point X = 0 is a stabilized switched equilibrium if there exists

α ∈ (0, 1) such that

A = α
(

−(−A1)
1

2−q1

)

+ (1 − α)
(

−(−A2)
1

2−q2

)

(6)

and A is Hurwitz i.e. all of eigenvalues of matrix A are in

the left half plane.

Proof. (Sufficiency) if the convex combination A is stable,

there exist two positive definite symmetric matrices P , Q

such that according to LMI problem

AT P + PA = −Q. (7)

Using (6) and state vector of the system according to solu-

tion method of the LMI problems in order to construction of

quadratic function, we can rewrite (7) as

αXT

[

(

−(−A1)
1

2−q1

)T

P + P
(

−(−A1)
1

2−q1

)

]

X

(1−α)XT

[

(

−(−A2)
1

2−q2

)T

P +P
(

−(−A2)
1

2−q2

)

]

X

= −XT QX.

(8)

Let λmin be smallest (positive real) eigenvalue of Q. Given

0 < ε ≤ λmin, we have

−XT QX ≤ −εXT X (9)

so that (8) can be rewritten as

αXT

[

(

−(−A1)
1

2−q1

)T

P + P
(

−(−A1)
1

2−q1

)

]

X

(1 − α)XT

[

(

−(−A2)
1

2−q2

)T

P

P
(

−(−A2)
1

2−q2

)]

X ≤ −εXTX

(10)

or equivalently

α

(

XT

[

(

−(−A1)
1

2−q1

)T

P +P
(

−(−A1)
1

2−q1

)

]

X+εXT X

)

+(1 − α)

(

XT

[

(

− (−A2)
1

2−q2

)T

P

+P
(

−(−A2)
1

2−q2

)]

X + εXT X
)

≤ 0.

(11)

This means that for every nonzero X we have either

XT

[

(

−(−A1)
1

2−q1

)T

P +P
(

−(−A1)
1

2−q1

)

]

X+εXT X ≤ 0

or

XT

[

(

−(−A2)
1

2−q2

)T

P +P
(

−(−A2)
1

2−q2

)

]

X+εXT X ≤ 0

or equivalently we have either

XT

[

(

−(−A1)
1

2−q1

)T

P +P
(

−(−A1)
1

2−q1

)

]

X≤−εXT X

(12)

or

XT

[

(

−(−A2)
1

2−q2

)T

P +P
(

−(−A2)
1

2−q2

)

]

X ≤−εXTX.

(13)

Now, define two regions

Ωi =

{

XT

[

(

−(−Ai)
1

2−qi

)T

P +P
(

−(−Ai)
1

2−qi

)

]

X

≤ −εXT X

}

, i ∈ {1, 2} .

(14)

There are two closed regions which overlap. It is easy

to show that any strategy where the system
∑

i is active

in region Ωi assures stability, using the Lyapunov function

V (X) = XT PX (with P given by Eq. (7)). In fact, within

the region Ωi

V̇ (X) = V̇i(X)

= XT

[

(

− (−Ai)
1

2−qi

)T

P + P
(

− (−Ai)
1

2−qi

)

]

X

≤ −εXT X,

while at the switching points (which are interior to the region

Ω1 ∩ Ω2)

V̇ (X) = sup
γ∈[0,1]

{

γV̇1(X) + (1 − γ)V̇2(X)
}

≤ max
i=1,2

{

V̇i(X)
}

≤ −εXT X.

(Necessity) If the switched equilibrium is stable, for every

X 6= 0 one of the conditions (12) or (13) must be satisfied,

or stated otherwise it is necessary that

XT

[

−
(

−(−A1)
1

2−q1

)T

P−P
(

−(−A1)
1

2−q1

)

− εI

]

X ≥ 0

when

XT

[

(

−(−A2)
1

2−q2

)T

P +P
(

−(−A2)
1

2−q2

)

+ εI

]

X ≥ 0

(15)

and

XT

[

−
(

−(−A2)
1

2−q2

)T

P−P
(

−(−A2)
1

2−q2

)

− εI

]

X ≥ 0

when

XT

[

(

−(−A1)
1

2−q1

)T

P +P
(

−(−A1)
1

2−q1

)

+ εI

]

X ≥ 0.

(16)
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We do not consider the case in which Ai is stable for some i.

In this case the condition is trivially true because one of the

two inequalities is always satisfied. Using of the S-procedure

in [7] to one of the previous conditions (e.g. to (15)), we

conclude that for some η ≥ 0 the following relation holds

XT

[

−
(

−(−A1)
1

2−q1

)T

P−P
(

−(−A1)
1

2−q1

)

− εI

]

X

−ηXT

[

(

−(−A2)
1

2−q2

)T

P +P
(

−(−A2)
1

2−q2

)

+ εI

]

X ≥ 0

(17)

or equivalently

XT

[(

(

−(−A1)
1

2−q1

)T

+ η
(

−(−A2)
1

2−q1

)T
)

P

+P
((

−(−A1)
1

2−q2

)

+ η
(

−(−A2t)
1

2−q2

))]

X

≤ −ε(1 + η)XT X.

(18)

We can rewrite (18) in terms of a convex combination of

Ai as follows

XT









(

(

−(−A1)
1

2−q
1

)T

+η
(

−(−A2)
1

2−q2

)T
)

(1+η)
P

+ P

((

−(−A1)
1

2−q1

)

+η
(

−(−A2)
1

2−q2

))

(1 + η)



X

≤−εXT X.

(19)

This means that X = 0 must be stable equilibrium

for the average system in Eq. (6) where α =
1

1 + η
and

1 − α =
η

1 + η
. Thus the condition is also necessary.

When there are more than two subsystems with different

derivative order, it is possible to search for a pair of subsys-

tems satisfying in Theorem (2). Moreover, Theorem (2) can

be generalized to the case of N subsystems with different

derivative order as a sufficient condition only.

Theorem 3. Given the switched system (4), if there exist

αi ∈ (0, 1), i = 1, . . .N such that

N
∑

i=1

αi = 1, (20)

A =

N
∑

i=1

αi

(

− (−Ai)
1

2−qi

)

(21)

and matrix A is Hurwitz, then the point X = 0 is a stabilized

switched equilibrium under switching law.

Proof. The proof immediately follows from the proof of suf-

ficiency for Theorem (2) with minor modifications.

The following lemma can be deducted from Theorem (1),

for definition of the integer order system for each LTI-FO

switched system in point of view of stability.

Lemma 1. The system 0D
qσ

t X(t)=AX(t), where 0<qσ <1,

is stable if and only if the following integer-order system is

stable:

Ẋ(t) =
(

−(−A)
1

2−qσ

)

X(t). (22)

Proof. Assume that system (22) is stable. Consider the Lya-

punov function below,

V (t) = ‖X‖
2
p = XT (t)PX(t) > 0,

∀X ∈ Rn, X 6= 0,
(23)

where P is a symmetric positive definite matrix. According

to system (22), we have

V̇ (t)=XT (t)

(

(

−(−A)
1

2−qσ

)T

P +P
(

−(−A)
1

2−qσ

)

)

X(t).

Since system (22) is stable, we will have V̇ (t) < 0. There-

fore, Eq. (5) holds. The proof for the reverse case is obvious.

Lemma (1) and Theorem (3) shows the relationship of the

LMI inequality in Eq. (5) with an integer-order linear system

which ensures the stability of the LTIFO switched system

under consideration in Eq. (4). Therefore, system (22) is a

shadow (equivalent) system of LTI-FO system from the point

of view of stability. Therefore, according to Theorem (3) and

Lemma (1) the sufficient condition for stability of LTI-FO

switched system in Eq. (4) is obtained, i.e. the following re-

lationship holds after choosing the Lyapunov function:

V̇ (t) = XT (t)
(

AT P + PA
)

X(t)

< −XT RX, ∀X ∈ Rn,
(24)

where A is given in Eq. (21), P is a symmetric positive defi-

nite matrix, and R is a symmetric positive semi-definite ma-

trix.

5. Extremum seeking algorithm and definition

of sliding sector

In this section we propose a method based on extremum seek-

ing algorithm for finding the Lyapunov function Eq. (23) and

its derivative in Eq. (24). The extremum seeking algorithm

has been used in [6, 16, 28] for determination of the sliding

sectors in systems with integer derivatives. Here we need to

make some modifications to details of this method, in imple-

mentation.

5.1. Lyapunov function found by extremum seeking algo-

rithm. Define a cost function J as

J = Max
1≤j≤n

(Real (λj(A))) , (25)

where A is the defined matrix in Eq. (21). By minimizing

the cost function (25) subject to the convex combination in

Eq. (20), if the value of the minimized objective function

is negative, we can guarantee the existence of the stabiliz-

ing control for system (4) using a convex combination of the

subsystems, and consequently, we can guarantee the presence

of α∗
i and define its value. This is because the convex com-

bination ensures that system states converge by the obtained

switching between subsystems. It is assumed that there is a set
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of points α∗
1, . . . , α

∗
N that minimizes the cost function J with

constraints αi to the minimum value J∗(α∗
1, α

∗
2, . . . , α

∗
N ), i.e.

J(α1, α2, . . . , αN ) ≥ J∗(α∗
1, α

∗
2, . . . , α

∗
N )

∀αi ∈ (0, 1), (i = 1, 2, . . . , N);

N
∑

i=1

αi = 1,
(26)

J∗(α∗
1, α

∗
2, . . . , α

∗
N ) = Max

1≤j≤n
(Real (λj (A∗))) ≤ 0, (27)

where A∗ is determined by

A∗ =

N
∑

i=1

α∗
i

(

− (−Ai)
1

2−qi

)

. (28)

Note: If the minimum value of the cost function (25) subject

to constraints in Theorem (3) i.e. αi ∈ (0, 1), i = 1, . . .N

and
N
∑

i=1

αi = 1 turns out to be negative, it means that, we can

place the eigenvalues of the LTIFO switched system in the

stable area by switching between subsystems.

Now, consider a system described by the following state

equation.

Ẋ(t) = A∗X(t), (29)

where X(t) ∈ Rn is the stable variable and A∗ is the system

matrix determined by the extremum seeking method algo-

rithm in Eq. (28). It is clear that the system in (29) is stable

as all eigenvalues of A∗ are in the stable region of complex

plane. Thus there exists a positive definite symmetric matrix

P and a positive semi-definite symmetric matrix R according

to Lemma (1) such that

V̇ (t) = XT (t)
(

(A∗)
T

P + PA∗
)

X(t) < −XT RX,

∀X ∈ Rn,

where P ∈ Rn×n, R ∈ Rn×n, and V (t) is the Lyapunov

function candidate defined as Eq. (23) which is used to de-

sign a sliding sector in the next section.

5.2. Sliding sector for LTI-FO switched systems with dif-

ferent derivative order. For each subsystem

0D
qσ

t X(t) = AσX(t) (30)

the inequality

V̇ (t)=XT (t)

(

(

−(−Aσ)
1

2−qσ

)T

P +P
(

−(−Aσ)
1

2−qσ

)

)

X(t)

< −XT RX, ∀X ∈ Rn

may not hold especially when the subsystem is unstable. It is

possible to decompose the state space for each subsystem into

two parts such that one part satisfies the condition

V̇ (t)=XT (t)

(

(

−(−Aσ)
1

2−qσ

)T

P +P
(

−(−Aσ)
1

2−qσ

)

)

X(t)

> −XT RX

for some element X ∈ Rn, and the other part satisfies the

condition

V̇ (t)=XT (t)

(

(

−(−Aσ)
1

2−qσ

)T

P +P
(

−(−Aσ)
1

2−qσ

)

)

X(t)

≤ −XT RX

for some other element X ∈ Rn.

Definition 1. The sliding sector defined in the state space Rn

for the system given by Eq. (4) is as

Sσ =

{

X |XT (t)

(

(

−(−Aσ)
1

2−qσ

)T

P

+P
(

−(−Aσ)
1

2−qσ

))

X(t) ≤ −XT RX, X ∈ Rn
}

,

(31)

where P and R are matrices used in the Lyapunov function

in Eqs. (23) and (24). Inside the mentioned sliding sector the

norm of the LTI-FO switched system decreases.

The presence of such a sliding sector for systems with in-

teger derivatives is proved in [28], and based on Lemma (1),

this result is also valid for LTIFO switched systems.

6. Switching law

Based on the sliding sectors defined in the last section, a

switching law is designed in the following theorem.

Theorem 4. The variable structure control to stabilize the

switched system given by Eq. (4) is

u(t) = σ(t), (32)

where σ(t) is a switching function of t taking values from

a finite set
∑

:= {σ : σ = 1, 2, . . . , N} and specified by the

VSC rule σ(t) = j, j ∈ {1, 2 . . .N} if

X(t) ∈ Sj

and

V̇ (t)=XT (t)

(

(

−(−Aj)
1

2−qj

)T

P +P
(

−(−Aj)
1

2−qj

)

)

X(t)

≤ XT (t)

(

(

−(−Aσ)
1

2−qσ

)T

P +P
(

−(−Aσ)
1

2−qσ

)

)

X(t),

∀σ = 1, 2, . . . , N
(33)

in which Sj is the sliding sector defined in Eq. (31).

Proof. Consider the Lyapunov function defined in (23), i.e.

V (t) = ‖X‖2
p = X(t)PX(t), ∀X ∈ Rn, X 6= 0.

Its derivative for the autonomous system in Eq. (29) is

V̇ (t) = XT (t)
(

(A∗)T
P + PA∗

)

X(t) ≤ −XT RX

using A∗ from Eq. (28

V̇ (t) = XT (t)

[

N
∑

i=1

α∗
i

(

−(−Ai)
1

2−qi

)T

P

+P

(

N
∑

i=1

α∗
i

(

−(−Ai)
1

2−qi

)

)]

X(t) ≤ −XT RX.

(34)
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We can rewrite (34) as

α∗
1X

T

[

(

−(−A1)
1

2−q1

)T

P + P
(

−(−A1t)
1

2−q1

)

]

X

+ α∗
2X

T

[

(

−(−A2)
1

2−q2

)T

P +P
(

−(−A2)
1

2−q2

)

]

X

...

+ α∗
NXT

[

(

−(−AN )
1

2−qN

)T

P +P
(

−(−AN )
1

2−qN

)

]

X

≤ −XT RX
(35)

or equivalently using
N
∑

i=1

α∗
i X

T RX = XT RX

α∗
1

(

XT

[

(

− (−A1)
1

2−q1

)T

P + P
(

− (−A1)
1

2−q1

)

]

X

+ XT RX
)

+ α∗
2

(

XT

[

(

− (−A2)
1

2−q2

)T

P

+ P
(

− (−A2)
1

2−q2

)]

X + XT RX
)

+ · · ·

+ α∗
N

(

XT

[

(

− (−AN )
1

2−qN

)T

P

+ P
(

− (−AN )
1

2−qN

)]

X + XT RX
)

≤ 0

(36)

there exists a σ = j such that

V̇ (t) = XT (t)

(

(

−(−Aj)
1

2−qj

)T

P

+P
(

−(−Aj)
1

2−qj

))

X(t) ≤ −XT RX.

Therefore we choose the discrete state σ to be equal to j, then

the derivative function of the Lyapunov function in Eq. (23)

for the LTI-FO switched system with different derivative order

in Eq. (4) satisfies the following inequality:

V̇ (t)=XT (t)

(

(

−(−Aj)
1

2−qj

)T

P +P
(

−(−Aj)
1

2−qj

)

)

X(t)

≤ −XT RX, ∀X ∈ Rn

which means the proposed switching law in (32) stabilizes

Eq. (4).

Remark 1. According to the VSC proposed in Theorem (4),

the current subsystem Aσ should be chosen as Aj . If there

is only one sliding sector for the current state X(t), then the

derivative of the Lyapunov function in Eq. (23) for the system

(4) satisfies the following inequality:

V̇ (t)=XT (t)

(

(

−(−Aj)
1

2−qj

)T

P +P
(

−(−Aj)
1

2−qj

)

)

X(t)

< −XT (t)RX(t), ∀X ∈ Rn.

If there is more than one sliding sector for the current state,

the condition in (33) given in the theorem ensure that the

Lyapunov function (23) decreases with quickest speed over

all possible switching laws.

Remark 2. Theorem (4) gives a VSC law for a continuous-

time system. The VSC law switches the control input among

the subsystems such that a Lyapunov function continues to

decrease inside a sliding sector associated with the control

law.

Remark 3. Modern controller design schemes may yield a

controller for two (or more) plants (see e.g., [1, 2]). The result-

ing configuration, depicted in Fig. 2, can be described math-

ematically using a switched system, and its stability analysis

is clearly of great importance. The formulation of the closed

loop system is as follow






0D
qσ

t X(t) = Apσ
X(t) + BU(t), 0 < qσ < 1,

0D
qσ−1
t X(t) |t=0 = X0σ = 1, 2, . . . , N

where U(t) = KX(t) are input signal and K ∈ R1×n are

state feedback gain. According to result of the Theorems 2, 3

and 4, this problem can be analyzed. In this case, the switched

system is defined by

A1 = Ap1
+ BK, A2 = Ap2

+ BK, . . . ,

AN = ApN
+ BK.

Fig. 2. Switching between two controllers

7. Simulation results

Example 1. Consider the system given by Eq. (4) with the

following subsystems

Sys1 : 0D
0.7
t X(t) =







0 1 0

0 0 1

1 −3 −1






X(t),

Sys2 : 0D
0.5
t X(t) =







0 1 0

0 0 1

1 1 −4






X(t),

Sys3 : 0D
0.95
t X(t) =







0 1 0

0 0 1

−6 1 2






X(t);

It is desired to stabilize the above system by switching be-

tween the subsystems given by Sys1, Sys2, Sys3. Note that

eigenvalues of three subsystems defined by A1, A2, A3, are

as follow
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a) b)

Fig. 3. VSC for LTI-FO switched system (sampling interval, h = 0.005 second): a) continuous state X(t), b) switching function σ(t)
between subsystems

λ(A1) =
{

−0.6478± j1.7214, 0.2956
}

⇒

arg(λ) =
{

0◦, 110.622◦, 249.378◦
}

λ(A2) =
{

−4.1819, −0.4064, 0.5884
}

⇒

arg(λ) =
{

180◦, 180◦, 0◦
}

λ(A3) =
{

−1.4675, 1.7338± j1.0405
}

⇒

arg(λ) =
{

30.9703◦, −30.9703◦, 180◦
}

.

With the extremum seeking method, the positive coefficients

of the convex combination are found as α1∗ = 0.5186,

α2∗ = 0.3508, α3∗ = 0.1306 which gives A∗ in Eq. (28).

Choose the positive definite matrix as the identity matrix, i.e.

R = I3 =







1 0 0

0 1 0

0 0 1







and solve (A∗)T P + PA∗ < −R. This gives

P =







3.2269 3.0486 1.8602

3.0486 5.5730 2.4510

1.8602 2.4510 2.5768






.

The simulation result with the proposed VSC, the above pa-

rameters and the initial condition X0 = [ 5 2 −5 ]T and

h = 0.005 are as shown in Fig. 3.

Example 2. Consider the system given by Eq. (4) with fol-

lowing subsystems,

Sys1 : 0D
0.4
t X(t) =











0 1 0 0

0 0 1 0

0 0 0 1

1 −2 1 0











X(t),

Sys2 : 0D
0.6
t X(t) =











0 1 0 0

0 0 1 0

0 0 0 1

0 1.4 −2 0











X(t),

Sys3 : 0D
0.5
t X(t) =











0 1 0 0

0 0 1 0

0 0 0 1

−4 2 −0.8 2











X(t),

Sys4 : 0D
0.3
t X(t) =











0 1 0 0

0 0 −1 0

0 0 0 −1

−3 −1 −0.8 6











X(t).

It is desired to stabilize the above system by switching be-

tween the subsystems given by Sys1, Sys2, Sys3, Sys4.

Note that eigenvalues of subsystems defined by A1, A2, A3,

A4 are as follow

λ(A1) =
{

0.5 ± j0.866, −1.6180, 0.618
}

⇒

arg(λ) =
{

180◦, 60◦, −60◦, 0◦
}

,

λ(A2) =
{

−0.2974± j1.5051, 0.5948, 0
}

⇒

arg(λ) =
{

0◦, 0◦, 101.1772◦, 258.8228◦
}

,
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a) b)

Fig. 4. VSC for LTI-FO switched system (sampling interval, h = 0.01 second) a) continuous state X(t), b) switching function σ(t) between

subsystems

λ(A3)=
{

1.5403± j0.4511, −0.5403± j1.1229
}

⇒

arg(λ) =
{

16.3238◦, 16.3238◦, 115.6947◦, 244.3053◦
}

,

λ(A4) =
{

−0.4755± j0.5888, 0.8599, 6.0911
}

⇒

arg(λ) =
{

128.9255◦, 231.0745◦, 0◦, 0◦
}

.

With the extremum seeking method, the positive coefficients

of the convex combination are found as α1∗ = 0.3759,

α2∗ = 0.5445, α3∗ = 0.0597, α4∗ = 0.0199, which gives

A∗ in Eq. (28). Choose the positive definite matrix as the

identity matrix, i.e R = I4 and, solve (A∗)T P +PA∗ < −R.

This gives

P =















3.0237 0.7343 2.1162 0.3559

0.7343 7.4217 −0.1945 9.1760

2.1162 −0.1945 4.0334 −0.9892

0.3559 9.1760 −0.9892 15.1100















.

The simulation result with the proposed VSC, the above para-

meters and the initial condition X0 = [ 1 −1 0.5 −1 ]T

are as shown in Fig. 4.

8. Conclusions

In this paper, a stability condition of the LTI-FO switched sys-

tems with a different derivative order in subsystems is proved.

Then based on the proved sufficient condition, the Lyapunov

functions are found using the extremum seeking method. Also

the definition of a sliding sector in LTI-FO switched system

with a different derivative order in subsystems is presented.

Finally, a variable structure controller with a sliding sector is

designed for the switched system. Simulation results are used

to show the main points of the paper.
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