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Abstract. This article presents the development of a mathematical model of a quadrotor platform and the design of a dedicated control

system based on an optimal approach. It describes consecutive steps in development of equations forming the model and including all its

physical aspects without commonly used simplifications. Aerodynamic phenomena, such as Vortex Ring State or blade flapping are accounted

for during the modelling process. The influence of rotors’ gyroscopic effect is exposed. The structure of a control system is described with

an application of the optimal LQ regulator and an intuitive way of creating various flight trajectories. Simulation tests of the control system

performance are conducted. Comparisons with models available in the literature are made. Based on above, conclusions are drawn about

the level of insight necessary in creation of control-oriented and useable model of a quadrotor platform. New possibilities of designing and

verifying models of quadrotor platforms are also discussed.
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Nomenclature

v – underscore indicates that v is a vector quanti-

ty,

vr – superscript indicates that v is expressed in r
frame components,

v̂ – hat indicates that v is a unit vector,

v̂b – unit vector representing b frame axis,
i dv

dt
– left superscript (derivatives only) indicates

reference frame with respect to which deriva-

tive is taken,

A – disc area of rotor,

B – body frame symbol,

G – torque,

Gβ,j – flapping torque introduced by j-th rotor,

H – angular momentum,

I – inertial frame symbol,

I – tensor of inertia,

Iw – tensor of the rotor,

Is – combined inertia of the system composed of

body and rotor treated as a point mass,

M – platform’s mass,

Mw – rotor’s mass,

P – reference frame symbol,

R – rotor disc radius,

R – inertial position vector of platform’s Center of

Mass (CoM),

Rw – distance from platform’s CoM to rotor’s CoM,

Rrb – transformation matrix (DCM) from b to r
frame, indices are to be read right-to-left,

T – thrust force,

V – linear velocity of platforms’ CoM,

Vc – climb velocity,

V∞ – freestream velocity,

ai – longitudinal flapping angle,

g – Earth’s gravity acceleration,

b, i, r, w – indices of body, inertial, reference and rotor

frames, respectively,

vi – induced inflow velocity,

vh – induced inflow velocity in hover,

κ – measured induced power factor in hover,

λi – induced inflow ratio coefficient,

λi = vi/(ΩR),

θ, ϕ, ψ – roll, pitch and yaw orientation angle between

body and reference frame, respectively,

ρ – air density,

γ – Lock number,

ωbr – angular velocity of frame r relative to frame

b,

Ωbw – magnitude of rotor’s angular velocity in w
frame relative to b frame.

1. Introduction

Quadrotor platform has been an object of scientific interest

since its first successive take-off in 1920’s [1]. However, even

after overcoming the ground effect in 1960’s [2] no particular
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usage of this platform has been made only until recently. The

technological progress of the last two decades, especially in

sensing technologies, high density power storages and data

processing enabled another version of quadrotor to come into

picture.

This latest, smallest, four rotors equipped platform is mak-

ing a full usage of the minimalistic modern Inertial Mea-

surement Units (IMUs) composed of Micro Electromechani-

cal Systems (MEMS) and inertial and magnetic sensors, such

as those mentioned in [3]. It is mostly equipped with modern

CPUs (especially considering their power and space require-

ments), GPS receivers, HD Cameras and so on. A great exam-

ple of application this technology can be also found in another

domain, namely biocybernetics [4]. Adding a relative sim-

plicity in construction and maintenance of those Unmanned

Aerial Vehicles (UAVs) as compared to other helicopter-like,

it makes them a perfect platform for modern era research in

various fields.

Among those fields are subjects from guidance, naviga-

tion and control domain, from sensors and intelligent control,

from aircraft dynamics, from multi-vehicle control and many

others. For most of those researches, however, there is a ne-

cessity of a usage of mathematical description of quadrotor’s

dynamics at some point. This description is frequently notice-

ably simplified. The simplifications concern platform’s body

dynamics as well as the aerodynamic phenomena occurring

during the flight of a platform.

In the description of platform’s dynamics, the most fre-

quent simplifications are assumption of platform’s symmetry

[5, 6], implicit weightlessness of the rotors’ blades [5–9] and

the rigidity of the platform together with blades. In case of

simplifications in aerodynamic description, the most common

assumption is made about proportionality of rotor’s thrust to

the square of its angular velocity [5, 6, 8, 9]. In addition, the

rotor itself is treated, according to momentum theory devel-

oped for helicopters, as an infinitely thin actuator disk. While

some of those simplifications are acceptable at the early stage

of development, others do not withstand the time trial and

need to be released for future progress to be possible.

Considering platform’s dynamics, the assumption about

weightlessness of blades becomes far from reality when phys-

ical dimensions of quadrotors grow up. The same situation

takes place when quadrotors are expected to perform aggres-

sive manoeuvres and gyroscopic effects associated with the

inertias of the blades become considerable. This can be ob-

served in video materials provided by [10] and [11].

Considering platform’s aerodynamics, the assumption of

rotor’s thrust constant proportionality to the square of its an-

gular velocity is far from reality for every flight phase except

hover. The same statement can be found in [12]. Taking into

account the amount of attention put into blade flapping phe-

nomena in helicopter analysis, it is interesting why this aspect

is frequently neglected in quadrotor modelling, apart from the

work described in [7, 12–16].

When designing a control system for the quadrotor plat-

form, the most widely applied control algorithm is a PID

one [5–6, 12, 14–16]. There are also successful trails of im-

plementing sliding modes [17], dynamic contraction method

[18], robust and H∞ controllers [19] or optimal control [5–6].

The latter approach is of particular interest to the authors of

this article, as it is also used for the control system design of

the extended model presented below.

There are complications involved with every control

methodology mentioned above. With the PID algorithm, for

example, there are issues in terms of control quality connected

with the need of change of controller’s parameters depending

on flight conditions in given flight phase [12] or settings de-

pendence on physical realization of given platform [12, 14,

15]. Despite the above, PID is considered a fairly robust con-

troller. Interestingly, the PID methodology is compared with

the LQ approach in Ref. [4] and [5], based on the same math-

ematical model of the platform. As a result, the control sys-

tem based on PID is performing better than the one based

on LQ regulator. According to the authors of those articles,

this is mainly due to the lack of detail in a platform’s math-

ematical model. The model used by them is in their opinion

oversimplified and hence it prevents autonomous flight under

LQ regulator. Under the PID control however, the autonomous

hovering is achieved due to relatively high robustness of the

PID algorithm with respect to model details. A similar opin-

ion about PID approach is stated in [14].

Given above, the question about the necessary depth of

analysis of quadrotor platform and elaboration of its mathe-

matical description is justified. In this article a detailed math-

ematical model of quadrotor is developed. It contains an ex-

tended description of platform’s dynamics, including the in-

ertial properties of rotors’ blades, as well as extended de-

scription of aerodynamics. The thrust-to-rate proportionality

is dropped for the application of fully developed momentum

theory. The phenomenon of blade flapping is taken into ac-

count. For this extended model an LQ control approach is

proposed and compared to the one used in [5]. Such system

is then examined by simulations across different flight phas-

es. The conclusions are drawn about the usefulness of such

extended model. With all that, this article fills in the gaps in

the current state of argument about justifying the simplifying

assumptions made during the quadrotor dynamics modelling

process. The concluding section proposes further research di-

rection in this domain.

This paper is organized as follows: the first part (2), titled

“Mathematical model development”, focuses on the derivation

of a useable model of quadrotor platform. It starts with the

description of frames of reference, where the innovative con-

cept of introducing additional, entirely theoretical frame called

the “reference frame” (referring to the concept of “reference

value” in control theory nomenclature) is explained. Then sec-

tions describing kinematics, rotational dynamics, translational

motion, aerodynamics, blade flapping and actuator dynamics

follow. Next major part (3) – “Control system development”

– explains an idea and implementation of a dedicated con-

trol system. Consecutive part (4) describes results of simula-

tions. It shows the simulation outcomes for hovering flight,

forward flight in operator and automatic modes. This section

also looks at the comparisons with other models available in
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the literature and influences of disturbances. Article finishes

with conclusions and suggestions of further research (5).

2. Mathematical model development

The development of mathematical model of quadrotor’s dy-

namics is conceptually divided into three major parts. The

first one, given in section 1 and describing the frames of

reference used, is common for all later considerations. The

second major part is devoted to the description of platform’s

body dynamics. It comprises the specific features connected

with rigid body motion. This section does not consider the

origin or nature of aerodynamic forces, but is rather dealing

with their influence. The third major part is devoted strict-

ly to the analysis of aerodynamic phenomena present during

quadrotor operation. It includes the description and influence

of thrust force and blade flapping, as well as torques resulting

from them. The remaining sections complete the model and

give an instruction about its implementation.

2.1. Frames of reference. The frames of reference used dur-

ing modelling of quadrotor are shown in Fig. 1. Every frame

is right-handed, with north-east-down directions. Because of

the inertia tensor being constant in body frame, this frame is

chosen as a main one. Additionally, the Inertial Measurement

Unit (IMU) is also operating in this frame, what also supports

such choice.

Fig. 1. Reference frames used together with principal axes, forces

and moments

Let us introduce an auxiliary frame, called hereafter sim-

ply the reference frame. The origin of reference frame is in

the origin of the body frame, which is in the centre of mass of

platform’s body. Using the reference frame the control prob-

lem can be reformulated into the minimization of misalign-

ment between body and the reference frames, where the ori-

entation of the latter with respect to inertial frame is known a

priori. The interactions between reference and inertial frames

form the desired flight mode and are treated as a specific

set point the control system is to follow. This also explains

the name of reference frame. Such formulation of the control

problem enables every attitude and trajectory desired to be

regarded as a tracking problem.

2.2. Kinematics. The expression for linear velocity of plat-

form’s Centre of Mass (CoM) in inertial frame has the form

V i =
idR

dt
. (1)

The expression for angular velocity, which takes into account

all frames of reference, has the form

ωb
bi = ωb

br + Rbrω
r
ri. (2)

The attitude is parameterized using the Euler angles. Al-

though there are inevitable singularities connected with this

parameterization, its biggest advantage is intuitiveness in in-

terpretation. If required, the switch to quaternion is simple

and straightforward. This will be required for example when

designing manoeuvres lying outside the flight envelope ob-

tainable with Euler angles. Defining the axis – angle – name

relationship as in Fig. 1, taking E123 Euler sequence for the

transformation matrix Rbr in Eq. (2), the body relative to

reference frame rates become

θ̇ = (ωb
brx cosψ − ωb

bry sinψ)
1

cosϕ
,

ϕ̇ = ωb
brx sinψ + ωb

bry cosψ,

ψ̇ = ωb
brz − (ωb

brx cosψ − ωb
bry sinψ) tanϕ.

(3)

The superscripts for scalar values are stressing that this is

the component of angular velocity vector of the body frame

relative to reference frame, about given axis, expressed in

body frame components.

2.3. Rotational dynamics without momentum storage de-

vices. Quadrotor platform is equipped with four rotors, which

store angular momentum due to their rotational motion. This

is the reason of separate treatment of the angular momentum

of the platform and the rotors themselves. Adding to this sys-

tem external forces imposing additional torques, makes the

analysis even more complicated. The detailed derivation to-

gether with in-depth discussion of the equations in this and

next sections can be found in [20–21].

The angular momentum of the platform without any mo-

mentum storage devices takes the form

Hi = Ri × viM + Iωbi. (4)

The inertial torque, given as time derivative of Eq. (4) can be

written as

Gi =

(
Ri ×

id2R

dt2

)
M + I

bdω

dt
+ ωbi × (Iω). (5)

In Eq. (5) two terms can be distinguished. The first one, a

product of inertial position and acceleration, is resulting from

inertial motion of the platform. The second one, that is the

remaining terms in Eq. (5), is resulting from rotation of the

platform about its CoM with respect to inertial frame and can
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be seen as a gyroscopic effect from the spinning of the plat-

form. Equation (5) is essentially the main equation describing

rotational dynamics in [5, 6], [12, 14, 15]. It is clear that at

this stage Eq. (5) contains no specific information about the

quadrotor platform. It is rather a generic equation of a rigid

body in motion across inertial space.

2.4. Rotational dynamics with momentum storage devices.

The inclusion of rotating rotor is depicted in Fig. 2 [20]. The

angular momentum of the system comprising platform’s body

and rotor’s body (b+ w) is given by

Hi
b+w = (R× iṘ)Mb+w +R× ωbi ×RwMw

+Rw × iṘMw + ∆Iwωbi + IwΩwi + Iωbi,
(6)

where the term with ∆Iw is, by parallel axis theorem, an in-

ertia contribution of the rotor to the inertia of the platform,

∆Iwωbi = (Rw × ωbi × Rw)Mw. Time differentiation of

Eq. (6) gives total torque acting on the system as

Gb+w = (R × iR̈)Mb+w +
id

dt
(R× ωbi ×RwMw)

+
id

dt
(Rw × iṘMw) +

id

dt
(∆Iwωbi) +

id

dt
(IwΩwi)

+
id

dt
(Iωbi).

(7)

Fig. 2. Geometry of quadrotor with rotor incorporated into the model

Equations (6) and (7) are genuine for any platform con-

taining rotating elements and traveling across inertial space.

For the case at hand, a set of simplifying assumption is intro-

duced, namely

1. CoM of the body is inertially fixed, resulting in R = const;

2. CoM of the body is in the origin of the inertial frame,

hence R = 0.

In simplified form, Eq. (7) takes the form

G =
id

dt
(Isωbi + IwΩwi). (8)

After proper decomposing of rates in Eq. (8), it becomes

G = (Is + Iw)rω̇ri + (Is + Iw)bω̇br + Iw
bΩ̇wb

+Wri(Is + Iw)ωri + (Wri +Wbr)(Is + Iw)ωbr

+(Wri +Wbr)IwΩwb,

(9)

where and ω × x = Wx and W is a matrix composed of

elements of ω, and x is any appropriate vector. For Eq. (9)

to convey information about internal placement of rotor, its

angular velocity is presented as

Ωb
wb = Ωwbk̂

b
, (10)

where k is a direction vector of the rotor’s spin axis in the

body frame, as in see Fig. 2. Quadrotor contains four rotors

grouped into counter-rotating pairs, which differ only in the

direction of rotor’s spin vector (see Fig. 1). Aligning the spin

axes with vertical principal axis of the platform, the following

assignment takes place: pair (1, 3) → −k3 = [0 0 − 1]; pair

(2, 4) → k3 = [0 0 1], where k3 is a unit vector in the direc-

tion of zb axis in body frame. This enables proper expansion

of Eq. (9) by means of Eq. (10).

2.5. Influence of aerodynamic forces on rigid body dynam-

ics. The total torque coming from, say, rotor 1, expressed in

inertial frame, is a vector sum of the form

Gw,1 = G′

w,1 +G′′

w,1. (11)

The first component in Eq. (11) results from rotor’s rota-

tional motion. The second component results from the rotor-

produced thrust force. Similarly to Eq. (9), taking first deriva-

tive expressed with respect to reference frame and the two lat-

ter with respect to body frame, the first component of Eq. (11)

becomes

G′

w,1 = Iw
rω̇ri + Iw

bω̇br + Iw
bΩ̇wb +WriIwωri

+(Wri +Wbr)Iwωbr + (Wri +Wbr)IwΩwb.
(12)

The second component in Eq. (11) is of aerodynamic origin.

It represents the torque coming from the thrust force created

by the airflow through the rotor’s disk and associated flapping

effect. Suppose that the projection of thrust force produced by

the j-th rotor on the zb axis in body frame is T j . Hence, from

geometry of Fig. 2 and axes assignment

G′′

w,1 = −RirRrb(k̂1Rw × k̂3T1) +Gi
β,1. (13)

The net torque acting on a platform’s body differs from

the one given by Eq. (8) by the terms representing thrust and

drag. Thus the extended form

G =
id

dt
(Isωbi + IwΩwi) +

4∑

j=1

ri
j × T i

j +Gi
β +Di

r, (14)

where the last term is related to aerodynamic drag. To ob-

tain the total torque from Eq. (14) in body frame, that is in

the frame controller is operating, appropriate transformation

is performed. The resulting equation is marked (15). Equa-

tion (16) clearly shows the influence of wheel’s inertia. It can

be easily quantified for given quadrotor setup and its impor-

tance compared to other elements present in this equation.
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This is an element frequently missing in an up-to-date treat-

ment of quadrotor modelling, as stated in the introductory

part.

Summing up, rotational dynamics of quadrotor can be put

into one equation comprising the general torque acting on

the system (16) and individual torques originating from every

rotor in the form of Eq. (11). In order to preserve readable

content, such equation will have the form




Gb

Gb
1

Gb
2

Gb
3

Gb
4




=fr(

rω̇ri,
b ω̇br,

b Ω̇1−4, ωri, ωbr,Ω1−4, T1−4, G
b
β,1−4),

(15)

Gb = (RirRrb)
−1





(Is + 4Iw)rω̇ri + (Is + 4Iw)bω̇br

+ Iw[−k̂3 k̂3 − k̂3 ; k̂3]





bΩ̇1

bΩ̇2

bΩ̇3

bΩ̇4










+(RirRrb)
−1





Wri(Is+4Iw)ωri+(Wri+Wbr)(Is+4Iw)ωbr

+(Wri +Wbr)Iw [−k̂3 k̂3 − k̂3 ; k̂3]





Ω1

Ω2

Ω3

Ω4










+[−(k̂1Rw × k̂3T1) − (k̂2Rw × k̂3T2)

+(k̂1Rw × k̂3T3) + (k̂2Rw × k̂3T4)] +Gb
α +Db

r,
(16)

where fr is a function of appropriate variables. The arguments

of fr such as Ω1−4 are to be read Ω1−4 := {Ω1,Ω2,Ω3,Ω4}.

It is important to notice, that the left hand side of Eq. (15) con-

tains also environmental disturbances and aerodynamic drag,

which are hidden under the term G.

2.6. Translational motion. The inertial net force acting on

the body is composed of gravity and thrust with direction

and magnitude dependent on an instantaneous orientation of

the platform with respect to inertial frame and operational

conditions of rotors. Let us introduce the notion of

T c :=

4∑

j=1

T j (17)

which defines a vector sum being the total thrust produced

by rotors, taken about platform’s centre of mass. The linear

acceleration of platform is than

idV

dt
= g −

1

M
RirRrbT

b
c +

1

M
Dt, (18)

where Dt is aerodynamic translational drag force.

2.7. Aerodynamics of flight. In the description of aerody-

namics, the airflow is described under classical assumptions

for the momentum theory, as considered in helicopter analysis

[1]. The airflow is steady, incompressible, inviscid and quasi

one-dimensional. The last assumption means that mostly only

vertical component of the airflow through rotor’s disc plays

important part. Basic assumption concerning the rotor itself is

that it is infinitely thin actuator disc (as for thrust generation).

Similar approach is also widely applied in previous work on

this subject. However, as stated in the introduction, in this

article momentum theory is used consequently in full extent

to cover all flight phases. Additionally, elements of blade el-

ement theory are applied for the description of flapping.

In the simple case of axial flight, where only vertical mo-

tion is considered, the conditional equation for thrust is de-

rived from conservation of mass flow and its momentum, as

can be found in [1, 22] and other classical books on helicopter

aerodynamics. This conditional equation is

T =






2ρA(Vc + vi)vi if Vc > 0

2ρAv2
i if Vc = 0

−2ρA(Vc + vi)vi if Vc ≤ −2vh

(19)

Equation (19) shows, that using the definition of induced in-

flow ratio coefficient, λi = vi/(ΩR), thrust can be treated as

constantly proportional to the square of rotor’s angular veloc-

ity, but only in hovering flight.

The region not covered by Eq. (19), where the method

of derivation of Eq. (19) is invalid, is called the Vortex Ring

State (VRS). This situation is dealt with by applying empiri-

cally found coefficients, by means of which the thrust curve is

fitted to the measurements and elongated in continuous man-

ner. This results in the following equation

vi

vh
=






− Vc

2vh
+

((
Vc

2vh

)2

+ 1

)1/2

κ+ k1

(
Vc

vh

)
+ k2

(
Vc

vh

)2

+ k3

(
Vc

vh

)3

+ k4

(
Vc

vh

)4

− Vc

2vh
−

((
Vc

2vh

)2

− 1

)1/2

(20)

where Vc > 0 in the first case, 0 > Vc ≥ −2vh in the sec-

ond case and Vc ≤ −2vh in the third one. The constants are

k1 = −1.125, k2 = −1.372, k3 = −1.718 and k4 = −0.655
and the average value of κ may be taken as 1.15 for prelimi-

nary design [1].
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In more general case of forward flight, the symmetry of

flow is lost and one has to additionally consider the freestream

velocity V∞ of the air relative to each of the rotors. The thrust

force in this case for given rotor is given by (rotor’s index

omitted for clarity)

T = 2ρAvi((V∞ cosα)2 + (V∞ sinα+ vi)
2)1/2, (21)

where α is rotor’s disk angle of attack. Introducing tip speed

ratio coefficient µ = V∞ cosα/(ΩR) the induced inflow ratio

becomes

λ = µ tanα+
λh

(µ2 + λ2)1/2
+ λc cosα, (22)

where λc = Vc/(ΩR) and index h stands for hover state. From

Eq. (22) it is straightforward to numerically obtain inflow ve-

locity and, in consequence, thrust force for each type of flight.

However, according to [1], a nonphysical solution will always

be obtained if there is a descent (upward) component of the

velocity normal to the rotor disk which is between 0 and 2vh.

Hence, when the rotor is operating in a VRS type conditions,

caution should be paid. The numerical algorithms can behave

in various ways, so a cross-check should be applied wherever

possible.

2.8. Blade flapping. The phenomenon of blade flapping is

strictly connected with rotating nature of rotor’s blades. Blade

flapping was recognized as an important factor influencing

stability and control performance [12, 14]. A derivation of de-

pendence between flapping angles and helicopter flight prop-

erties is shown e.g. in [1] or [22, 23]. Following the deriva-

tion in [22], it can be shown that for fixed pitch blades of

quadrotor with linear twist the first harmonic approximation

of longitudinal flapping angle in steady level flight is

a1s =

8

3
θ0µ+ 2θ1µ



µαs −
CT

σ
µ2

2





1 −
µ2

2

+
12
e

R

γ
(
1−

e

R

)3
(

1−
µ4

4

)




CT

σ





8µγ

9Clα

(
1−

e

R

)2

)

1+
e

2R

+
σ

2µ







,

(23)

where γ = ρCl∞cR
4/Ib is a Lock number, e is a blade

hinge offset, θ0 and θ1 are blade linear twist coefficients,

σ = Ablades/Arotor is called rotor solidity and CT is a ro-

tor thrust coefficient. During pitching and rolling motion of

the platform Eq. (23) needs to be extended by a component

related to pitch q and roll p platform velocities giving

a1s = (23) +

−16
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2
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4

(24)

The lateral flapping was neglected in above considerations,

as due to quadrotor’s symmetry and in-pair counter rotations

of rotors its net influence is negligibly small in all instances of

forward flight. Having flapping angle given above, expression

of flapping torque in vector notation for j-th rotor takes the

form

Gb
β,j = −

dMM

da1sj

a1sj
V̂ ip × k̂3

+ hM (Ta1sj
+Ha1sj

=0)k̂3 × V̂ ,

(25)

where V ip is a projection of a unit vector in the direction

of platforms’ linear inertial velocity expressed in body frame

onto the (k1, k2) plane, H is a rotor in-plane force, hM and

lM are vertical and horizontal distances from CoM to rotor

hub and MM is the total rotor moment in pitch direction. Its

a1s – derivative, under the assumption of uniform blade mass

distribution is

dMM

da1s
=

3

4

( e
R

) ANb
Clαρ(ΩR)2R

γ
, (26)

where ANb is the total area of Nb blades, Clα is a 2D blade

aerofoil lift-curve-slope. The geometry of the problem is pre-

sented in Fig. 3.

Fig. 3. Thrust vector deflection caused by flapping

2.9. Complete model of dynamics. Above equations for

kinematics (1), (3), body dynamics (15), (18), and aerodynam-

ics (21), (25) give a complete model of quadrotor’s behaviour.
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It includes both, the influence of blades’ inertias with asso-

ciated gyroscopic effects as well as flapping torques. In that

matter it is an extension as compared to work in [5–9, 12].

Having all phases of flight described by means of momen-

tum theory it is possible to introduce appropriate switching

during simulation so as to obtain best possible approximation

of rotor thrust. Such approach is much closer to reality than

stiff assumption about thrust-to-square-rate proportionality, as

assumed in [5–9].

2.10. Actuators dynamics. To complete the model of

quadrotor’s dynamics the description of actuators needs to

be included. The motor selected is a brushless direct current

(BLDC) electrical unit, what is similar to [5–6, 12, 14, 15].

The detailed description and model derivation for a standard

BLDC, applicable in Matlab/Simulink environment, can be

found in [24]. However, for the purpose of this work, a sim-

plified model of BLDC motor is used. Those simplifications

are similar to the ones applied and experiment-validated [12].

The description follows the one in [25].

The rotor power manifested on the shaft is given by

Pshaft = GmΩm. (27)

Assuming that the blades of the j-th rotor are mounted di-

rectly on the motor shaft, and that the shaft’s axis of rotation

is collinear with rotor’s axis of rotation, the angular veloci-

ty of the shaft is equal to the angular velocity of the rotor,

Ωm,j = Ωj . The j-th motor torque Gm,j is then given by

G(m, j) =

((
vm,j −

Ωj

KV

)
1

Rm
− i0

)
1

KQ
, (28)

where KQ is a motor specific torque constant, i0 is a zero-

load current, Rm is internal resistance of the motor, KV is a

motor specific speed constant. All motor units are the same.

Equation (28) is a basic equation which is applicable and de-

scribes the behaviour of actuators.

3. Control system development

Analysis of equations forming the model is an important stage

during selection of a controller. From the structure of men-

tioned equations it is obvious that the system at hand is a

MIMO one. Furthermore, it is already described in the state

space form. For the state vector x defined as

x := [xang, xrot, xpos],

xang = [θ, ϕ, ψ, ωbr],

xrot = [Ω1,Ω2,Ω3,Ω4],

xpos = [R, V ]

(29)

it may be possible to obtain measurements of all state vari-

ables. Scope of this work and hence interest in controller

design is limited to some of possible flight phases. We are

not taking into account the take-off or landing phases, as spe-

cific aerodynamic phenomena occurring then require separate

treatment in terms of modelling [1]. A similar situation is

when considering aggressive manoeuvres like flips. For all

remaining flight phases it was proven by preceding experi-

mental work in this field that linear approximation of quadro-

tor platform resembles well enough a real system. That allows

a choice of controller among those created for linear systems,

ranging from classical PID control to fuzzy logic [26]. Howev-

er, all of above justifies the choice of developing a well-known

LQ controller with infinite horizon as a basic controller in this

work, especially taking into account how little attention is put

to this control methodology in quadrotor literature. What is

more, this type of controller is still being developed [27],

what enables further improvements in the field of its applica-

tions.

The working point x0 about which the system is linearized

for LQR implementation is in fact a given flight phase. An

example of it is a hover case

x0h := [xang, xrot, xpos],

xang = [0, 0, 0, 0, 0, 0],

xrot = [Ω1h,Ω2h,Ω3h,Ω4h],

xpos = [Rh, 0, 0, 0],

(30)

where first three entries in x0h denote alignment between

body and reference frame; entries four to six denote no ro-

tation between reference and body frame; entries seven to

ten denote the rotational velocity of rotors in hover; entries

eleven to thirteen under Rh denote inertial coordinates of

platform’s CoM; entries fourteen to sixteen denote no inertial

movement of platform’s CoM. The system diagram is giv-

en in Fig. 4. One can notice clear separation of platform’s

dynamics and aerodynamics, what is consistent with above

analysis.

Fig. 4. Schematic of a control system, where part between A and B

is linearized for LQR design

3.1. Controller’s synthesis. For implementation of the LQ

controller linearization about the working point x0 has to be

performed. In general, the procedure of controller synthesis

may be summarized in the following steps:
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1. Choose given flight phase (i.e. select working point x0);

2. linearize about given working point x0;

3. set values for Q and Rand obtain optimal gain K .

Above approach is in fact a specific form of gain schedul-

ing, where the “switching” is dependent on a particular flight

trajectory the system is to follow.

The linearization process is based on numerical perturba-

tion around a set working point and is performed by a Mat-

lab/Simulink software. The points between which system is

linearized (disregarding disturbances) are marked as A and

B in Fig. 4. It is important to notice that they include al-

so the actuators. After linearization, system’s dynamics are

described by

ẋ = Ax+Bu, (31)

where A and B are constant matrices. The control signal u
is composed of control voltages which are applied to the mo-

tors. This makes the implementation of an LQR algorithm

with infinite horizon a straightforward task.

3.2. Flight modes. When designing a control system, two

modes of flight are analysed. The first one, labelled as oper-

ator mode and the second one, labelled as automatic mode.

The concept of operator flight is to align operator’s joystick

from RC controller with a reference frame (see Fig. 1). Reg-

ulator is then forced to align body and reference frames. In

that way a simple control mechanism is created, where most

of the classical helicopter pilot’s tasks are performed by the

regulator.

The idea of the automatic flight mode is simply to force

the platform to follow a predefined inertial trajectory. This

trajectory needs to be decomposed into consecutive operating

points and inertial-reference frames interactions, as described

with the hover example. Such approach leads to a control sys-

tem composed of two levels. The upper level is responsible

for decomposition of a user-defined trajectory, while the low-

er level is responsible for driving the platform to the working

point delivered by the upper level system.

4. Simulations’ results

The simulations below are performed with the usage of Mat-

lab/Simulink software. For the simplicity it was assumed in all

sections below that platform’s centre of pressure is coincident

with its centre of mass. As this assumption is frequently an

oversimplification in aerodynamic studies, it is believed that

at this stage of control system design it is acceptable to asses

control system capabilities upon it. See also discussion in [20,

28, 29]. Table 1 gives the values of physical parameters used

for simulation. Figure 5 presents the conceptual drawing of

a quadrotor we simulate. It is adapted from [30], an article

by other members of our faculty engaged in physical realisa-

tion and analysis of classical control algorithms for the same

platform.

Table 1

Physical parameters used in simulation

physical constants

quadrotor’s
total mass

1 kg

quadrotor’s
moment of

inertia about
its CoM

10(
− 4) · diag175, 175, 300 kg m2

geometrical constants

distance
from paltform’s

CoM to rotor’s shaft
0.3 m

rotor’s radius 0.15 m

vertical
distance

from rotor’s
CoM to platform’s CoM

0.03 m

motor constants

motor speed constant 115 rad/s/V

motor torque constant 120 A/N/m

motor internal resistance 0.26 Ohm

motor zero-load current 0.35 A

Fig. 5. Conceptual drawing of a simulated quadrotor

4.1. Hovering flight. Having a working point defined by (30)

and setting Rri to be an identity matrix, a test with initial 20

degrees misalignment in every axis was performed. Controller

is forced to control attitude as well as inertial position of the

platform.

The results of tests performed on full nonlinear model are

shown in Fig. 6 and 7. Controller performs very well, as it is

able to stabilise both, attitude and position in relatively short

time. Additionally, position is not only stabilized in the sense

that it is not changing, but controller is able to force the plat-

form to maintain itself in a specified inertial spot. This is a

considerable improvement when comparing to previous work

in the field, notably [5], where only attitude control realisation

was considered with the usage of LQR.
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Fig. 6. Attitude angles evolution of hover flight with initial 20 de-

grees misalignment in every axis

Fig. 7. Inertial position in X, Y and Z axes for hover test with 20

degrees initial misalignment

4.2. Forward flight in operator mode. In terms of hovering

flight, the extended quadrotor model developed in this article

and the simplified models mentioned in multiple references

are reduced to essentially the same set of equations. For this

reason it is important to examine the extended model derived

here together with the control system in other flight phases,

notably in forward flight.

Figure 8 presents the operator commanded input, that is

the orientation angles time history between inertial and refer-

ence frames. As the role of the controller is to align body and

reference frames, those operator inputs are forcing forward

flight of the platform.

It is important to mention, that operator is using only

cyclic stick (responsible for pitch and roll control) without

touching collective lever (responsible for total thrust). The

controller itself is responsible for maintaining all other flight

parameters unchanged. After sixth second operator uses a pre-

defined ‘stop’ command, forcing the platform to stop. The

time history of inertial position and velocity is given in Fig. 9.

It shows that the controller is operating almost as expected.

It is enough for the operator to use “cyclic stick” to fly for-

ward, as the “collective lever” action is in fact performed by

the controller. This is certainly a great simplification in terms

of acquiring necessary skills to pilot the platform. With in-

tended motion only in X direction, after about 7 meters the

displacement in Y direction is less than 5 · 10−3 m, which is

a negligible value.

Unfortunately the displacement in Z direction, resulting

from forward flight only (first six seconds in Fig. 9) is about

0.1 m, what might be a considerable issue. Additionally, after

initiating

hover flight, there was a steady state error in both, Y and Z
channels. In search of solution to this problem the integral

action was implemented in “position in Z direction” channel

into the LQR algorithm. With an integral action in the verti-

cal inertial position channel, controller is capable of reducing

steady state error. Because of relative simplicity of controller’s

modification, the integration action can be applied to more

channels if necessary.

Another aspect of quadrotor behaviour, visible in Fig. 9, is

of crucial importance. Namely, when transitioning from hover

to forward flight there is an upward motion of the platform.

This is a fundamental characteristic of a helicopter, examined

in much detail in literature devoted to helicopter aerodynam-

ics [1, 31]. This phenomenon originates in the excess pow-

er available when transitioning from hover to forward flight.

Unless any significant acceleration is involved, rotors lift is

equal to platform weight and platform climbs by virtue of

excess power available. It needs to be noticed that it is im-

possible to see this phenomenon if thrust is assumed strictly

proportional to square of rotors angular velocity, as is done

e.g. in Ref. [5–8, 13]. This phenomenon is closely inspect-

ed in “Importance of model elements” section. As foresee-

ing such behaviour might be critically important, especially

for indoor inspection missions, this constitutes another reason

for, and justifies, development of the model described in this

article.
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Fig. 8. Operator commanded inputs for roll, pitch and yaw angle

Fig. 9. Inertial position and velocity for operator commanded inputs when regulator is implemented with integral action in “position in Z

direction” channel

4.3. Forward flight in automatic mode. The automatic for-

ward flight test shows the results for flight with a predefined

trajectory. Platform, being initially at hover, is supposed to

cover distance of 10 m in X direction with velocity of 1 m/s,

then change to 2 m/s again in X direction, simultaneously

climbing in Z direction with the velocity of 1 m/s. After

covering total horizontal distance of 30 m it is to perform

a stop manoeuvre. Figure 10 shows designed velocity profile

and system response versus inertial displacement. Figure 11

shows time evolution for the same variables. Regulator again

performs very well, there are no significant overshoots and the

response is very quick. It needs to be pointed out, however,

that in order to prevent steady state error an integral action

was again introduced into controller to every velocity channel.
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Fig. 10. Commanded velocity profile (violet) and system response (blue) for X direction (upper) and Z direction (lower picture)

Fig. 11. Time history of system response for X and Z direction with a predefined trajectory
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For that test system was linearized around three operating

points, namely

x01 := [xang, xrot, xpos],

xang = [0, ϕvar, 0, 0, ωyvar, 0]),

xrot = [Ω1var ,Ω2var,Ω3var,Ω4var],

xpos = [Rxvar, 0, 0, 1, 0, 0],

(32)

x02 := [xang, xrot, xpos],

xang = [0, ϕvar, 0, 0, ωyvar, 0]),

xrot = [Ω1var ,Ω2var,Ω3var,Ω4var],

xpos = [Rxvar, 0, Rzvar, 2, 0,−1],

(33)

and (30). The entries with index var denote state variables

that are not supposed to be in steady state. Results of this

simulation test are very promising, as they allow a simple

composition of more sophisticated trajectories, such as circu-

lar or spiral one. For that purpose it is enough to operate on

working points similar to defined above and on interactions

between inertial and reference frames, as controller tries at

each time to align body and reference frames.

An example of such approach is shown in Fig. 12. The

platform is supposed to flight upward in a spiral-like trajecto-

ry. In the simplest version presented in Fig. 12, this trajectory

is approximated by means of linearization around working

point similar to (33) and rotations of (initially aligned) refer-

ence frame with respect to inertial frame around the direction

of zi by 60 deg. consecutively after appropriate time period.

Fig. 12. An alpha-helix (spiral) trajectory of platform’s CoM (blue) with its approximation (green). It is a great example where the innovative

approach of introducing additional reference frame brings benefits. Green trajectory above is obtained using only one working point, the

system is linearized about, and rotations of reference frame with respect to inertial frame by given angle in specified time intervals
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4.4. Comparison tests. This part focuses on comparison

tests between the model and control system developed in this

article and the ones presented [5, 12, 13], or [32]. This is

because the work performed by those particular groups of

scientists is frequently cited in articles concerning quadrotors

and their optimal attitude control. The authors in [5] and [32]

are not able to obtain autonomous hover on the basis of their

model and LQ controller design. They state that this situa-

tion is partially resulting from poor model quality, but do not

investigate it further. After obtaining very promising simu-

lation results, their physical system is behaving poorly. It is

interesting that the authors do not give any comment about the

working conditions of the rotors’ engines. Even at the simula-

tion stage, the controller they designed is requesting the rotors

to operate in a bang-bang mode, even after obtaining correct

attitude [32], p. 47. Taking additionally into account the spe-

cific linearization performed by the authors of [5] and [32],

it is interesting to examine the same aspect in the extended

model presented here. The control signals and motors’ speeds

in the test presented in section A of part IV of this article,

after initial transients, are kept at a constant level, as present-

ed in Fig. 13. During simulation appropriate constraints were

imposed in the model to represent off-the-shelf components

and their limitations in terms of maximal voltage or current,

as well as rotational velocity. The inspection of actuators be-

haviour shows an obvious advantage of the design proposed

in this article over the one in [5] and [32]. It follows from less

demanding operation of the rotors and considerable savings

in power required, as the biggest battery drain occurs during

transients. However, to definitely state about the advantages

of the design proposed in this article, the tests on physical

object are necessary.

Models from [5, 12] and [13] in hover flight reduce to the

same set of equations. It is though interesting to see what are

the differences in the behaviour of model derived here when

particular aspects of it are simplified to resemble the ones

presented in [5, 12, 13] while still relying on LQ control. To

analyse those differences the transition from hover to forward

flight is scrutinized.

For that purpose the LQ regulator is constructed, each

time using the same Q and R matrices, but the components

of model are different. The results of those tests are presented

in Fig. 14.

Figure 14 presents the angular rates of rotors during the

transition from hover into forward flight for the extended mod-

el and the model equivalent to the one in [12], where gyro-

scopic effects are neglected. Appropriately designed LQ con-

troller makes the differences in behaviour of quadrotor dur-

ing transition from hover to forward flight negligible. In both

models also the helicopter-characteristic behaviour of excess

power climb [1, 23] is visible. Figure 14 (lower row) presents

the behaviour of more simplified model during the same hover

to forward flight transition. Here not only gyroscopic effects

are neglected, but also the thrust is assumed constantly pro-

portional to the square of rotor’s angular velocity, as in [5–9,

32]. Not only quantitative, but also qualitative change is easy

to notice comparing to Fig. 14, upper row. The rotors’ rates

are increased, when in reality they should be decreased to

maintain a constant level of flight. Such behaviour may lead

to a collision with any obstacle being above hovering craft,

leading potentially to its crash. This emphasizes the impor-

tance of accurate description of aerodynamics and justifies

the studies undertaken to develop more precise description of

quadrotor platform dynamics.

Fig. 13. Controller commanded voltage for motor 1 (left upper corner) and resulting motor rates, current and power consumed during attitude

stabilization
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Fig. 14. Upper row: comparison of rotor angular rates for the extended dynamics model presented in this article (blue) and the model

without gyroscopic effects (red) from Ref. [14]. Lower row: time responses of the angular rates of rotor for the model with simplified thrust

description

4.5. Influence of disturbances. In this section a hovering

capability, as well as following a predefined trajectory under

wind gusts disturbances is examined. According to [33] the

Statistical Discrete Gust (SDG) method is ideally suited for

low-level helicopter applications, as it gives a possibility to

asses a response to, and recovery from, large disturbances.

Test results for disturbances, for the same hover flight and

trajectory following as in sections A and C of part IV, are

given in Figs. 15 and 16, respectively.

Fig. 15. Hover flight under SDG disturbance with amplitude 3.5 m in X direction and 3 m in Y direction, with rise time w.r.t. hovering

quadrotor platform of 5 s
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Fig. 16. Commanded velocity profile (magenta), system response (blue) and gust disturbance (red) for X axis (upper picture) and Z axis

(lower picture). Gust is coming from a direction opposite to motion

The system shows to be fairly robust in terms of distur-

bance rejection. With total mass assumed of 1 kg it is able

to maintain hover in designated spot in relatively harsh con-

ditions. It is important to observe that although the simulat-

ed gust is strictly horizontal with no vertical component, the

variation in platform’s position and velocity along Z axis of

inertial system is considerable. It is caused by variation of

thrust on each rotor due to variation in the inflow velocity.

This scale of Z axis motion is an inherent feature which can-

not be compensated for by the change in regulator’s settings.

It originates in the fact that quadrotor with constant-pitch ro-

tor blades is incapable of creating vertical downward thrust.

Unless any aggressive manoeuvres are taken in account, it

relays on gravity only for downward motion. This is a consid-

erable drawback in constant-pitch quadrotor design, possibly

limiting its applications and forcing caution when designing

a flight trajectory or piloting the platform. Similar considera-

tions are standing behind the recent development of variable-

pitch quadrotors [34].

Following a predefined trajectory under disturbances is

shown in Fig. 16. Under disturbances which magnitude is

equal almost two times the set point value, a control system

is able to maintain given flight parameters and even switch

from forward flight to hover stop. Such robustness to exter-

nal disturbances is partly resulting from embracing all state

variables in the control loop. This is an easily obtainable fea-

ture in optimal control what constitutes another advantage of

the approach proposed in this work and justifies research on

enhanced model of quadrotor platform.

5. Conclusions

In this article an extended model of quadrotor platform was

presented. In modelling of body dynamics the physical real-

ization of the rotors’ blades was taken into account, together

with the associated gyroscopic effect. In modelling of aero-

dynamics the momentum theory was used to describe every

phase of quadrotor’s flight. The blade-flapping phenomenon

was accounted for in the model. The controller choice was

justified and the way of constructing the control system was

described. Multiple simulation results were presented, show-

ing that the system is capable of performing assigned tasks.

These tests also showed which parts of the dynamic’s model

are important and which can be simplified without significant

loss of model’s accuracy. In that matter this article fills in the

gap in discussion about possible intuitive simplifications of

quadrotor model and the consequences they bring.

The results are very promising as they predict typical heli-

copter behaviour seldom present in preceding analysis of this

subject, such as for e.g. excess power climb. This indicates

high accuracy of the model. It also convinces the authors that

it is possible to obtain a high precision and reliable full op-

timal control of quadrotor system. The entire community of

researchers interested in this problem can benefit from so-

lutions presented in this article, as in terms of tuning the

behaviour of system under LQ control is intuitive and simple.

At the cost of more advanced model, a relative simplification

in terms of handling such flying platform is obtained.

In terms of future work, tests on the real system are the

most important step. The description of platform built for that

purpose can be found in [30, 35]. They will definitely reveal

if here-designed model and LQ controller perform as expect-

ed. It is especially interesting to check whether an extended

model presented here along with a dedicated controller will

suffice for autonomous flight, which is a next logical step on

the way of development of this project. It will also allow final

conclusive comparisons with previous work in this field.
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[32] A. Noth, “Synthèse et implémentation d’un contrôleur pour
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