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STRENGTH OF THE THREE LAYER BEAM
WITH TWO BINDING LAYERS

M.J. SMYCZYNSKI', E. MAGNUCKA-BLANDZI?

The paper is devoted to the strength analysis of a simply supported three layer beam. The sandwich beam consists
of: two metal facings, the metal foam core and two binding layers between the faces and the core. In consequence,
the beam is a five layer beam. The main goal of the study is to elaborate a mathematical model of this beam,
analytical description and a solution of the three-point bending problem. The beam is subjected to a transverse
load. The nonlinear hypothesis of the deformation of the cross section of the beam is formulated. Based on the
principle of the stationary potential energy the system of four equations of equilibrium is derived. Then deflections
and stresses are determined. The influence of the binding layers is considered. The results of the solutions of the
bending problem analysis are shown in the tables and figures. The analytical model is verified numerically using

the finite element analysis, as well as experimentally.

Keywords: metal foams; sandwich beams; deflections; stresses, analytical description and solution; nonlinear
hypothesis

1. INTRODUCTION

Sandwich structures have been widely applied since the mid of the 20" century, for example in
aerospace, automotive, rail and shipbuilding industry. These structures are characterized by high
stiffness in relation to their mass. Ashby et al. [1] described the mechanical properties of metal foams.
Banhart [2] provided a comprehensive description of various manufacturing processes of metal foams

and porous metallic structures. Jasion et al. [6], Jasion and Magnucki [7], [8] studied analytically,

' PhD., Eng., Poznan University of Technology, Institute of Applied Mechanics, Poznan, Poland,
e-mail: mikolaj.smyczynski@put.poznan.pl,

2 DSc., PhD., Eng., Poznan University of Technology, Institute of Mathematics, Poznan, Poland,
e-mail: ewa.magnucka-blandzi@put.poznan.pl



190 M.J. SMYCZYNSKI, E. MAGNUCKA-BLANDZI

numerically and experimentally the global and local buckling-wrinkling of the face sheets of
sandwich beams. Gosowski and Kozow [4] presented a distributional solution of the continuous
sandwich panel (beam) bending problem. They carried out a numerical analyses based on this solution
in order to illustrate the effect of the spacing of intermediate supports and their compliance on the
strain of continuous sandwich panels, and the joints fixing them to the steel framing. Ostwald [16]
presented multiobjective optimization of the thin-walled sandwich cylindrical shells subjected to
axial compression with core of different mechanical properties. Muc and Zuchara [15] established an
approach for analyzing the effect of shear deformations in sandwich plates and panels having fibre
reinforced plastic faces using a formulation based on the Hamilton principle. Matachowski et al. [13]
presented the experimental investigations and numerical modeling of closed-cell aluminum alloy
foam (Alporas). Magnucka-Blandzi and Magnucki [10] optimized the sandwich beam with a metal
foam core under strength and stability constrains. Magnucki et al. [11], [12] presented the strength
analysis of a simply supported five layer sandwich beams with a metal foam core. Smyczynski and
Magnucka-Blandzi [21] analysed the stability of a five layer sandwich beam with the use of broken
line hypothesis of the deformation of a flat cross section of the beam. Grygorowicz et al. [5] studied
analytically and numerically the elastic buckling of a three-layered beam with variable mechanical
properties of the core. Loja et al. [9] considered the use of different shear deformation theories to
formulae different layerwise models, implemented through kriging-based finite elements. They
solved the dynamic problem in the frequency domain of soft core sandwich beams. Mohanty et al.
[14] presented the evaluation of the static and the dynamic behavior of functionally graded
Timoshenko beams. Smith et al. [20] and Szyniszewski et al. [22], [23] characterized mechanical
properties of hollow sphere steel foam. They provided and verified a new design method for the in-
plane compressive strength of steel sandwich panels comprised of steel face sheets and foamed steel
cores. Romanow and Malinowski [17] presented a linear approach to the deflection of sandwich shells
and hyperbolic state of displacement of the core as regards dynamic stability. Cernescu and Romanoff
[3] proposed a correction to the first and Reddy’s third order shear deformation theory to determine
the bending deflection of sandwich beams. Shimizu [19] studied numerically the strength and
behaviour of sandwich plates as the the laminated damping steel plates which is composed of a soft
core subtended by two steel surface layers. Salami et al. [18] presented an advanced high order
sandwich panel theory for bending analysis of the moderately thick faced sandwich beams with a soft
core. Wang et al. [24] performed a three-point bending of a new composite structure based on

aluminum foam sandwich and fiber metal laminate.
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The present paper is devoted to the strength analysis of a simply supported sandwich beam, which
consists of five layers: two thin facings (aluminium sheets) of a thickness %y, one core (an aluminium
foam) of a thickness 4. and two thin binding layers (e.g. glue) of a thickness /5. The mechanical
properties are different for each layer, and depend on its material. The beam has the length L, the

width b and the total depth H. The beam carries a transverse load F' (Fig.1).

htrio

L

z

Fig 1. Scheme of the five layer beam subjected to a transverse force

2. NONLINEAR HYPOTHESIS OF DEFORMATION OF A FLAT CROSS

SECTION OF THE BEAM

The field of displacement for the flat cross section of the five layer beam is presented in Figure 2.

Assuming the nonlinear hypothesis the shear effect is taken into account.

Fig 2. The field of displacement — a nonlinear hypothesis

The longitudinal displacements on the basis of the above hypothesis are formulated as follows:

1. for the upper facing —(1/2+x, +x,)< <(1/2+x,)

@1 u(xC)=—h, {;%WWI (x)}
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2. for the upper binding layer —(1/2+x,)<¢<-1)2

2.2) u(x,&)=—h, {4’ %wz (X)—xil(é +%j[l//l (x)-w, (x)]}

3. for the core -1/2<4<1/2
2.3) u(x,c;) =—h, {g{%—z% (x)} +i1//3 (x)sin(27r§)}

4. for the lower binding layer 1/2<¢ <12+,

24) u(x.)=~h, {é%—wz (x)—xi[é —%)[% (x)-v, (x)]}

1

5. for the lower facing 1/24+x, <5 <1/2+x, +x,
aw

3) ()= ¢ B ()|
dx

where

x,=h,/h,,x,=h,/h — dimensionless parameters,

¢ =z /h,— dimensionless coordinate,

w — deflection,

v, (x)=u,(x)/ h,, v,(x)=u,(x)/h,, y,(x)— dimensionless functions of displacement, which
determine the field of displacements, and displacements u,, u, are indicated in Fig. 2..

If y, = 0 then the proposed nonlinear hypothesis becomes the broken line hypothesis. So the assumed

hypothesis is a generalization of the classical one described in [12, 21].
Strains of the layers of the five layer beam are defined by the following geometric relations:

du dw du
8\' = bl }/ Xz = + 2
Todx dx dz

S0
1. for the upper facing —(1/2+x, +x,)< ¢ <—1/2+x,)
d*w dy.
2.6 e . =—h, +—=L|, =0
(2.6) » =N [é’ PRI J Ve

2. for the upper binding layer —(1/2+x,)<¢ <12
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2
e =—h gd?ﬁrd% _i(§+l) dy, _dy, ,
’ dx dx X 2)\dx  dx

2.7)
1
Ve =x—l(l//1 ~¥),
3. for the core —-1/2<4<1/2
2
e =—h|¢ d?—Z% +L%Sin(27r§) ,
(2.8) dx dx ) 27 dx

Ve =21, (x)=y; (x)cos (274,

4. for the lower binding layer 1/2<¢ <1/2+x,

gx:_hc{;d;w_%_i(g_lj[%_%ﬂ,

dx®  dx 2)\dx  dx
2.9) i
1
Ve = X, (l//l _‘//2)5
5. for the lower facing 1/24x, <5 <1/2+x, +x,
d’w dy,
2.10 & =—h -1 .=0.
(2.10) g c[é o dxj Vs

Stresses in all layers of the beam, according to Hooke’s law, for individual layers are

2.11) o.=Es, 1_=Gy,_.

3. EQUATIONS OF EQUILIBRIUM

Based on the principle of stationary total potential energy
(3.1 s(U,-w)=0
the system of four equations of equilibrium was obtained.

The elastic strain energy of the beam
1
(3.2) U, =5 j [co +rordr

where G, =E, /2(1+v,)— shear modulus of the core, G, = E, /2(1+v,)— shear modulus of the

binding layers, E., E,— Young’s moduli of the core and binding layers respectively.

The work W of the load is as follows:
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(3.3) szqw(x)dx,

0
where g — continuous load intensity of a constant value.

The system of four equations of equilibrium has been derived based on the principle (3.1):

4 3 3 3
d_zv_alz d ‘/:1 —da; d W32 +a, d ',1;3 = i q,
dx dx’ ’ dx bhE,
d*w d’y, dw, 1
a; E —dy dle —ay dxzz + h_2a24 [‘//1 (x) -y, (x)] =0,

ap

(3.4)
d*w d’y, dy dy, 1
anﬁ_am dle —ay dxzz +as, dx; +?[_az4‘//1 (x)+a24l//2(x)+a351//2(x)] =0,
d*w dy dv, 1
_al4ﬁ+a34 dx22 —day dx23 +;a44l//3(x) =0,
where

a, =2ae,+20ne +35, a, =2a,e,+1x,(3+4x)e, a; =%[1+(3+2x1)x,e1],

a,=1/47", a, =a,, a, :2(x2e2+%xlel)’ ay =1X€, ay :el/xl(l+vl7)’ a3 =43, Ay =04y,
ay, =1(1+2x¢e), a, =1/27°, a;; =2/(1+v,.), a,=a,, a,=ay, a,=1/87",

ay =1/(4+4v,), oy =3x(4x +6x+3), 0 =5 x, (125 +12xx, +12x, +4x; +6x, +3),
a,=41x,(2x+x,+1), &, =1x(1+x), ¢=E,/E., e,=E,/E,, E,—Young’s modulus of

facings.

4. THREE-POINT BENDING OF THE FIVE LAYER BEAM

4.1. ANALYTICAL SOLUTION

The subject of the research is a simply supported sandwich beam, which carries a transverse load F.
For this load the bending moment M, (x) =Fx/2 for xe <0,L/ 2>. On the other hand the bending

moment (from definition and the assumed hypothesis) is as follows:

2
(4.1) Mb(x)z—bthc(a“ﬂ oW, W d%j.

dxz_ 12;_ 13 dx 14 dx
So, the first equation of the system (3.4) is equivalent to the bending moment (4.1). Therefore, for

further analysis purpose the system of four equations is applied:
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d’w_ dy, dy, dy,  M,(x)

g e g T e e T T,

(42) ﬂ _ dZWI _ dzl//Z d l//3

() () + () =0

d*w dy dy
T e T T h2

—auy,(x) =0,

The formulas of four unknown functions w, ¥,, v, and , are assumed as follows:

. [ 7x . (37zx . [ Smx " . [ (2n+1)7x
w(x)=w, sm(Tj —w, sin (Tj +w; sin (T] —. 7(=1)" w,,,sin (%}

X 3zx Smx 2n+l)x
Wl(x):V/IICOS(TJ_V/IS COS(T]'H//H COS[TJ_" +( 1) Vi2nn © (( —) }

X 3zx Srx 2n +1)x
W, (X) =y COS| — (=3 COS| —— |+/,5COS| —— |—... +( V’z 2441 €O8
L L L

X 3nx Smx 2n +1
¥5(x) =y, cos 7 — 33 COS A ;55 COS ) +( "Wy 2 COS

for ne N, and the bending moment is developed in Fourier series

(4.3)

2 zx 1 3zx 1 Srx
4.4 M, (x)=—|sin———sin——+—sin———... |FL.
@4 (%) nz( L 3 L 5 L J

The functions y,, v, and , describe a transverse shear effect and transverse forces. Each of the

above functions (4.3) and (4.4) identically satisfies boundary conditions:

v

4.5) w(x)
M, (x)

=0,y (X)L:g =0, W;(X)lxzé =0,

=0 0’ W(x)lx:L = 0’

w=0=0, M, (x)lx:L:O'

Substituting these assumed functions (4.3) and (4.4) into the system of equilibrium (4.2) gives n+1

systems of equations for k=2i+1, i=0,1,2,...,n
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1 2FC
K TbRE,”

2 2
a, | L a, (L w,
I:kzazz +ﬁ[ZJ ‘|W1k +I:k2a23 _ﬁ(zj :l'v’/zk = k37[a12 Tka

2 2
a, | L 1(L w
I:kzazz _ﬂ_zg[h_LJ :|‘//1k +|f£“33 +?(h_cj (a24 +a;s ):l‘//zk _k2a34‘//3k = k37[a13 Tk,

2
LY 1 Vs
Kayy,, — |:k2a43 + [;j h_3a44:|V/3k =Ka, ZWk-

T
—ka,, ZWk T apV AV —auYs = —

(4.6)

From the second, third and fourth algebraic equations of the system (4.6) unknown functions v, ,

¥,, and y;, may be calculated, namely

LW, LW, W
4.7 Vi =Wk lj Z, Wi :l//zkkflﬂ’ Wik :l//yckfk”r
where
~ W/I" ~ Wu ~ Wzk
Vie = V;/W Vo = V;// > W3k:#’
and W, w,.w, W, are the following determinants:
2 2
1( L 1( L
ayp+— ﬁ ayy 23_? ﬁ Qyy 0
1 (LY 1 ’
W =la, ?(hf_kj Ay O3 +?(hck] (a24 +ass) N >
L 2
0 —a, 3 2[]7(_]{} 44
1LY
a; 22_?[ﬁJ 24 0
1 (LY
W.,/,A =| i3 a}s"'? h_k (a24+a35) —ay >
2
1( L
—ay N a43+? ﬁ Ay
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2
1 L
aynt 2(_j Ay 4y 0
hk
(LY
W,. :azs_?[h_kj Ay Gy —ay )
(LY
0 Ay a43+?{hc_kJ 44

2
1 1( L
W%k =193 _;[hckj Gy Uy +?[h(_k] (a24 +a35) a;

for k=2i+1,i=0,1,2,...,n.
Substituting functions (4.7) into the first equation of system (4.6) gives the amplitudes wy of
deflection:

1 2FC 1
4.8) W= — — —.
k* bR E, —ay, +ap, +an,, —auiy,

Then, the deflection w in any place of the beam and the maximum deflection wmax (in the middle

span of the beam, i.e. for L=x/2):

4.9) w(x) = w,., sin (Mjsin(z Qi+ 1)) ,
i=0 L 2
L n
(4.10) W =w[—j=2wm.
2) i3
Based on equations (2.11), stresses of each layer of the beam are:
1. for the upper facing —(1/2+x,+x,)<¢ <—(1/2+x,)
L AR
(4.11) Uf-f]) (E,gj:thc [ZJ Zkzwk (C;H/;lk)» Z-)((zf]) =0,
i=0
2. for the upper binding layer —(1/2+x,)<¢ <12

ay( L N 2 7 ! e %
Pt el e o]

1

1 i - . k
Tifl) =G, %Z;(_l) wk (7, V/Zk)cos[%j,

(4.12)
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3. for the core —-1/2<4<1/2
L 7Y & 1
ot [E’gj =Eh (fj ;wkk2 {4’(1—2(/72k)+54/73,{ Sin(zﬂ'é/):l,

4.13)
L k
=GC%;( ) wik [ 207, — i, cos (2725 ]cos( 7sz}

4. for the lower binding layer 1/2<¢<1/2+x,

(5 an(g] goofeenrie o]

/—\\
~ |
;/

(4.14)
71 i L kmx
7.',(:2) G, Z_ (— ) Wkk(l/llkl/IZk)COS(T),
1

5. for the lower facing 1/24x, <5 <1/2+x, +x,

L AR
(4.15) o [3’4 ] =Eh, (Z) YEw (). =0,

i=0

4.2. FEM MODEL

The finite element model of the five layer sandwich beam has been built with the use of ANSYS
system. It consisted of the core modelled with the use of brick elements, two binding layers for which
the same elements have been used and two facings modelled with the use of shell elements. The tie
conditions have been applied between the layers. The facings were offset from the glue layers by
about half of the thickness. Whole beam has been modelled. To obtain the boundary conditions
corresponding to those assumed in the analytical model, all layers have been joined with a rigid plate
at the both ends of the beam. Here the rigid plate distributes the applied force equally to all layers
which prevents from local deformations. As to the bended beam the static analysis has been

performed as a result of which the deflections and stresses have been obtained.

the upper facing
the upper binding layer

the core

the lower binding layer

the lower facing

the rigid plate

Fig 3. Numerical model of the five layer beam
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4.3. NUMERICAL CALCULATIONS

The example of numerical calculations for the five layer beam is presented below. The beam made
of aluminium alloy is considered. The parameters of the beam are: thickness of the facings 4, =1 mm
, thickness of the core /2, =17.8 mm, thickness of the binding layers /#, =0.1 mm, Young’s modulus

of the facings £, = 65600 MPa, Young’s modulus of the core E, =700 MPa , the width 5 =50 mm

, Poisson’s ratios v, =v, =0.3. The analytical results are collected with the numerical ones for
different Young’s moduli of binding layers. The maximum deflection and a difference (the relative
error) between analytical and numerical solutions for E, € <50,1500MPa> are shown in Table 1 and

Fig 4. The analytical solutions are compared to the numerical one, and the relative error has been

calculated according to the formula

max

&= -100% .

(Analytical)

max

(FEM ) (Analytical)
W

In analytical solution one (#=0), two (n=1) and three (»=2) components of functions w, ¥, , ¥, and
v, are taken into account.

Tab 1. Maximum deflection wy for different £

E[MPa] 50 100 250 500 1000 1500

0.0870 [ 9.3 [ 0.0818 [ 9.5 [ 0.0786 [ 9.4 | 0.0776 [ 9.3 | 0.0770 [ 9.2 | 0.0768 [ 9.1
wdnabticad [y | [%] | 0.0933 | 1.9 | 0.0876 | 2.3 | 0.0840 | 2.4 | 0.0829 | 2.3 | 0.0822 | 2.3 | 0.0820 | 2.2
0.0954 | 0.3 | 0.0895 | 0.1 | 0.0859 | 0.1 | 0.0846 | 0.2 | 0.0840 | 0.1 | 0.0838 | 0

WwEEM) [ mm] 0.0951 0.0896 0.0860 0.0848 0.0841 0.0838

0.1

- FEM

- n=0
0.095

n=1

——n=2
'g 0.09
50085

=
0.08
0.075
0 500 1000 1500
E,[MPa]

Fig 4. Maximum deflection for different E,
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It could be observed that with increase of Young’s modulus E; of binding layers the deflection

decreases.

Based on equations (4.11)-(4.15) stresses were obtained for £,=1500MPa. The normal stresses have
also been obtained numerically for x=L/2 (in the middle span of the beam). The results are presented
in Fig 5, and the selected values in Table 2.

O, [MPa]
Analytical ’ FEM

Fig 5. Normal stresses
The relative errors between analytical and numerical results have also been calculated according to

the formula

FEM A i
‘O'( ) _O_i nalytical)

= . 0
(4.16) ¢ mm( (FEM) (Analylical)) 100% .

Tab 2. Normal stresses o [MPa] in characteristic points

Method Analytical | Numerical Relative

cIror

o(E ~(L+x+x,)) | 2284 2322 1.7%
(& ,~(E +x,)) 17.87 17.44 2.5%
o"(&,~(L+x)) 0.41 0.40 2.5%
o(L,—1) 0.32 031 3.2%

The shear stresses have been calculated analytically and numerically for x=L/4. The results are

presented in Fig 6, and the selected values in Table 3.
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2-.\': lMPaJ
Analytical FEM

0.453 0.447

0481

Fig 6. Shear stresses

The relative errors between analytical and numerical results are calculated similarly to the expression
(4.16).

Tab 3. Shear stresses 7.- [MPa] in characteristic points

Method Analytical | Numerical | Relative error
(25,1 +x, +x,)) 0 0 0%
(251 +x,)) 0.453 0.447 1.3%
79(25,-1) 0.462 0.447 3.4%
719(25,0) 0.487 0.481 1.2%

It could be observed that two components (n =1) of the series (2.25) are sufficient to determine the
deflection. The maximal difference between analytical and numerical solutions does not exceed 2.5%.
In case of stresses, discrepancies are also slight. Moreover the shapes of a distribution of shear stresses
are nearly the same for both analytical and numerical results (in the beam core the shear effect is

occurred).

4.4. EXPERIMENTAL INVESTIGATIONS

In the experimental investigations a sandwich beam with a metal foam core was bended on the

universal testing machine Zwick Z100/TL3S. The test stand is shown in Fig. 7.
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Fig 7. Test stand

The dimensions of a cross-section of the beam are as follows: the width 5=100.3 mm, the total

thickness # =19.56 mm, thickness of the facings 4, =1 mm. The facings were made of aluminium

and the core was aluminium foam. Particular layers of the beam were glued together — thickness of

the binding layers 4, = 0.1 mm. The distance between supported ends of the beam was equal 400 mm.
The material constants for the aluminium alloy of the facings was E, = 65600 MPa, the binding glue
layers: E, =1500 MPa, and for the core £, = 700 MPa (these values of material constants are obtained
from the producer of the beams).

Beam bending process was recorded — the deflection and the transverse load F have been measured.

The analytical and numerical calculations have also been realized for the same data. The obtained

results (the maximum deflections) for F'=1KkN are given in Table 4.

Tab 4. The comparison of the results

Method | Analytical | Numerical | Experimental
Winax[mm] 1.727 1.726 1.743

A good agreement can be seen between the results obtained from these methods — the

difference is not greater than 1%.

5. CONCLUSIONS

The paper is devoted to the strength analysis of a simply supported five layer sandwich beam under
bending. A nonlinear hypothesis has been assumed to describe the deformation of the cross section

of the beam. The influence of the mechanical properties of the binding layers has been investigated.
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It occurs that a change to the mechanical property of binding layers or its thickness is not significant
for stresses and deflections. The analytical model has been built, and the problem has been
analytically solved. Then numerical calculations have been conducted, and finally the experimental
ones to verify obtained results. It could be observed that two components of the series are sufficient
to solve analytically the strength problem. Moreover the shear effect is taken into account because of
the assumed nonlinear hypothesis which is a generalization of the classical one (the broken line

hypothesis).
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WYTRZYMALOSC TROJWARSTWOWEJ BELKI Z WARSTWAMI LACZACYMI

Stowa kluczowe: metalowe pianki, ugigcie, naprezenia, hipoteza nieliniowa, rozwigzanie analityczne

STRESZCZENIE:

Wielowarstwowe konstrukcje sa badane od wielu lat i wytwarzane z réznych materiatdéw, w szczegdlnosci rdzen
z materialéw porowatych, komdérkowych czy tworzyw sztucznych, w tym pianek metalowych. Szczegdlne znaczenie
w budowie maszyn lub budownictwie maja te konstrukcje, ktore charakteryzuja si¢ duza wytrzymatoscia przy
stosunkowo niewielkiej masie. Takimi konstrukcjami sa wiasnie struktury warstwowe, ktorych gesto$¢ rdzenia jest
znacznie mniejsza od gestosci oktadzin. Z uwagi na ich charakterystyczne whasnosci, takie jak odporno$¢ na obciazenia
dynamiczne czy absorpcja akustyczna, sa szeroko stosowane chociazby w budowie satelitow, statkow kosmicznych,
przemysle lotniczym, samochodowym, kolejowym i stoczniowym. Konstrukcje warstwowe wytwarzane sa rowniez
wspolczesnie, a ich modelowanie jest nadal aktualnym tematem badan, co jest zauwazalne w licznych publikacjach.

Przedmiotem pracy jest analiza wytrzymalosci pigciowarstwowej belki, ktorej warstwy zewngtrzne (oktadziny) potaczone
sg z rdzeniem wykonanym z pianki aluminiowej cienkimi warstwami. Wtasciwosci mechaniczne i fizyczne sa rozne dla

kazdej z warstw.

hy

oo

L

Rys 1. Schemat obcigzenia pigciowarstwowej belki

Przedmiotowa belke poddano trojpunktowemu zginaniu (Rys. 1). Sformulowane zadania rozwiazano analitycznie
i numerycznie. W badaniach analitycznych zastosowano nieliniowa hipotez¢ deformacji plaskiego przekroju

poprzecznego belki (Rys. 2.)
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Rys 2. Pole przemieszczen — hipoteza nieliniowa

Zdefiniowano energi¢ odksztalcenia sprezystego z uwzglgdnieniem przyjetej hipotezy oraz pracg obcigzenia. Z zasady
stacjonarnosci catkowitej energii potencjalnej wyznaczono uktad czterech rownan rownowagi statycznej, ktory nastepnie
rozwigzano i wyznaczono ugigcie belki oraz napr¢zenia. Wyniki rozwigzania analitycznego poréwnano z otrzymanymi
numerycznie metoda elementow skonczonych (ANSYS). Zwrdocono szczegdlng uwage na wptyw warstw taczacych
oktadziny z rdzeniem na wartosci ugieé. Wyniki otrzymane analitycznie oraz numerycznie zweryfikowano
doswiadczalnie. Zauwazono bardzo dobra zgodno$¢ pomigdzy wynikami otrzymanymi tymi metodami. Ponadto
zauwazono, ze zaproponowana hipoteza nieliniowa dokladniej opisuje rozklad naprgzen tnacych
w konstrukcjach pigciowarstwowych. Zatem umozliwia bardziej precyzyjnie sformutowaé warunki wytrzymatosci.
Rozwiazujac analitycznie problem wytrzymatosci nalezy przyja¢ przynajmniej 2 sktadniki rozwinigcia dla funkeji ugigcia

oraz nieznanych, bezwymiarowych funkcji ksztattujacych pole przemieszczen.



