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On transformation of STRIPS planning to linear
programming
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STRIPS language is a convenient representation for artificial intelligence planning prob-
lems. Planning is a task of coming up with a sequence of actions that will achieve a goal. In this
work a heuristic of polynomial transformation of STRIPS planning problem to linear program-
ming problem (LP) is presented. This is done because planning problems are hard computational
problems (PSPACE- complete in general case) and LP problems are known to be computational
easy. Representation of STRIPS planning as a set of equalities and inequalities based on the
transformation is also proposed. The exemplary simulation shows the computational efficiency
of solving planning problem with proposed transformation.
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1. Introduction

Artificial Intelligence is a study of design of intelligent agents. An intelligent agent
is a system that acts intelligently on its environment. There are various problems which
are being investigated by Artificial Intelligence, like knowledge, reasoning, learning and
planning (Russel and Norvig 2003, Krogt 2008). Planning is a problem of finding a
sequence of actions that will achieve a goal. Finding an optimal plan is generally a
hard computational problem and needs a lot of resources. The situation becomes even
more complicated when a planner does not have a complete set of information about an
environment for which the plan should be created (e.g. Madronero et al. 2010). This is
called uncertainty and is essential for exact description of a real environment. There exist
large number of different approaches and heuristics that try to deal with planning with
uncertainty depending on its kind (e.g. Bhattacharya and Vasant 2007). One can find
examples of planning applications in manufacturing, production planning (e.g. Peidro
and Vasant 2011), logistics and agentics (eg. Elamvazuthi et al. 2010).
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Planning should be distinguished from scheduling — well-known and frequently
used technique of improving the cost of a plan. Planning is understood as causal rela-
tions between actions, while scheduling is concerned with metric constraints on actions
(Backstrom 1998, Bartak 2008). When all states of a planning problem (including an
initial and a goal) are described by a given set of conditions (also called predicates), then
the problem is called STRIPS planning problem (Nilson 1980). The STRIPS system has
been successfully applied in planning modules of Deep Space One Spacecraft (Weld
1999) and for elevators control in Rockefeler Center in New York (Koehler and Schuster
2000). One should mention STRIPS system is no longer used in its original form. The
advanced version of STRIPS introduced in 1987 (Pednault 1994) is called Action De-
scription Language (ADL) and other extensions of planning languages are standardized
by Planning Domain Definition Language (PDDL) formalism (Ghallab M. et al. 1994).

In this paper, the planning problem environment is modeled as a Block World us-
ing the STRIPS representation. This domain is often used to model planning problems
(Slaney and Thiebaux 2001, Boutilier and Brafman 2001, Kraus et al. 1998, Smith and
Weld 1998, Galuszka and Swierniak 2010) because of complex action definition and
simple physical interpretation. One can say that starting from 1970s, STRIPS formalism
(Nilson 1980) seems to be very popular for planning problems (Weld 1999). Today this
domain can be a representation for logistic problems, where moving blocks corresponds
to moving different objects like packages, trucks and planes (e.g. Slaney and Thiebaux
2001). The case of Block World problem where the table has a limited capacity corre-
sponds to a container-loading problem (Slavin 1996).

1.1. Motivation

Finding a plan is generally a hard computational problem and needs a lot of re-
sources. This hardness is especially characteristic for domain-independent algorithms
(Ambite and Knoblock 2001) and it corresponds to difficulties with constructing general
solvers. However, it should be noted that even for methods specific for certain domains
(e.g. for block world), planning problems usually remain difficult (Bylander 1994). The
complexity of planning problems strongly depends on the complexity of the actions de-
fined for the assumed domain (also Bylander 1994). Moreover in real world applications
knowledge about environment is incomplete, uncertain and approximate. It implies that
planning in the presence of uncertainty is more complex than classical planning.

In general, planning with complete information is PSPACE-complete problem. In
Block World the problem of optimal planning is NP-complete (also Bylander 1997).
Planning in the presence of incompleteness is much more complicated (Blythe J. 1999)
and belongs to the next level in the hierarchy of completeness. Precisely speaking, if the
incompleteness is modeled by a set of possible initial states, then planning problem is
NPNP_complete or £,P-complete (Baral et al. 2000).

High level of computational complexity of planning is the reason that different
heuristic techniques are very popular in planning solver implementations (e.g. Rosa et
al. 2011). One of heuristics is a transformation of planning to Linear Programming prob-
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lem. The idea of representing STRIPS planning problems by linear constraints and ob-
jective function is not new in the literature (see e.g. Nareyek et al. 2005). In these cases
the planning problem takes the form of binary integer linear program. It implies that
the only allowed values of variables are 0’ and ’1° and they corresponds to false/truth
values of planning problem predicates and actions. The computational efficiency of the
approach is low (because of complexity of integer programming algorithms) and solu-
tion can be found only for small size planning problems. Another approach proposed by
Bylander (1997) is to introduce additional linear constraints to LP problem. It allows to
solve optimally some class of difficult planning problems using classical LP polynomial
algorithms. The cost was not always the LP solution can be interpreted as a plan (what is
followed by assumption P # NP). Also, the size of LP problem increased (polynomially)
very fast with the number of planning problem variables.

1.2. Contribution

In this paper a heuristic of polynomial transformation of STRIPS planning problem
to linear programming problem (LP) is used (Bylander 1997). This is done because
LP problems are known to be computational easy (Chaczijan 1979). The heuristic is
modified by cutting some linear constraints and introducing an additional heuristic, that
returns the plan. Also, it is proposed how to model uncertain information in planning
problem by linear constraints of transformed problem.

The following problems are presented and analyzed:

e polynomial transformation of Block World to Linear Programming,
e handling uncertain information by the transformation,

e a possibility of increasing efficiency by transformation of Linear Program to a set
of equalities and inequalities.

1.3. Organization of the paper

The paper is organized as follow: In section 2 the STRIPS language and block world
environment is defined. In section 3 the transformation of STRIPS planning to a Linear
Programming and an additional heuristic is described. In section 4 a possibility of han-
dling uncertainty is shown. In section 5 transformation of the planning problem to a set
of equalities and inequalities is presented. Exemplary simulations are shown in section
6. All is concluded in section 7.

2. STRIPS system and Block World

In general, STRIPS language is represented by four lists (C; O; I; G) (Bylander 1994,
Nilson 1980):

e a finite set of ground atomic formulas (C), called conditions;
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e a finite set of operators (O);
e a finite set of predicates that denotes initial state (/);
e a finite set of predicates that denotes goal state (G).

The initial state describes the physical configuration of the blocks. This description
should be complete i.e. it should deal with every true predicate corresponding to this
state. The goal situation describes what should be true. Each goal consists of subgoals
and has a form of conjunction of predicates. This description does not need to be com-
plete, i.e. does not need to describe a state of the problem.

The algorithm results in an ordered set of operators which transforms the initial state
I into a state with true predicates mentioned in the goal situation G. Operators in STRIPS
representation consist of three sublists: a precondition list (pre(0)), a delete list (del(0))
and an add list (add(0)). The precondition list is a set of predicates that must be satisfied
to apply this operator. The delete list is a set of predicates that will be false after applying
the operator and the add list is a set of predicates that are true after the operator is applied.
The two last lists show the effects of applying the operator into a current problem state
(Sco).

Let an operator o € O takes the form pre(o) — add(o),del(o). Following (Koehler
and Hoffmann 2000), the set of operators (01,02,...,0,) in a plan is denoted by PO.

If an operator o € O is applied to the current state of the problem then the state is
modified. This modification is described by function Result:

Result(S,(0)) = (SUadd(0)) del(o) if pre(o) CS, S inthe opposite case (1)

and
Result(S,(01,02,...,0,)) = Result(Result(S{01))(02,...,0n)). (2)

3. Transformation to Linear Programming

Following (Bylander 1997) the transformation from planning to Linear Program-
ming is based on mapping of conditions and operators in each plan step to variables.
Truth values of conditions are mapped to 0 and 1 for the planning without incomplete-
ness, and to any values between 0 and 1 for planning with incomplete information. The
objective function reaches the maximum if the goal situation is true in the last step of
planning.

As an example let us consider the problem 1 of planning in Block World environ-
ment with 4 blocks (called A, B, C, D) (Galuszka and Swierniak 2004). The goal is to
decompose the initial state. It is assumed one STRIPS operator that moves the block x
from the other block to the table, on(x) means that block x is on another block (or on the
table), clear(x) means that there is no other block on block x:
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move-to-table(x,y) : (3)
preconditions : on(x,y),clear(x)
del : on(x,y)
add : clear(y).

The goal is reached if the following conditions are true:
G = clear(A),clear(B),clear(C),clear(D). 4)
There are needed 16 conditions in set C to describe state of the problem:

C={ on(A,B),on(A,C),on(A,D),on(B,A),on(B,C),on(B,D),on(C,A),
on(C,B),on(C,D),on(D,A),on(D,B),on(D,C),clear(A),clear(B), ®))
clear(C),clear(D) },

and 12 actions in set O that correspond to 12 conditions on(x,y). Under assumption,
that the number of planning steps / = 2, the number of states is / + 1 = 3. So there are
needed 3 - 16 variables for conditions (state indices are i = 0,1,2), and 2 - 12 conditions
for actions (indices for actions are i = 0, 1) in LP problem. The number of all variables
x of LP is 72, and the variables are presented in Tab. 1.

It should be noted that conditions and actions parameters are extended by indices of
planning step. The goal function to be maximized in LP F(G) consists of conditions that
are true in goal state:

F(G) = (clear(A,2) + clear(B,2) + clear(C,2) + clear(D,2)). (6)

If the goal is satisfied then F(G) = 4. Linear constraints followed by STRIPS action
definition (3) are:

- at most 1 operator can be applied in each planning step:

Y. move-to-table(x,i) = 1 (7)

- action cannot be applied unless its preconditions are true:

on(x,y,i) > move-to-table(x,y,i) (8)

for all actions in each planning step,

clear(A,i) > move-to-table(A,B,i)
©)
+ move-to-table(A,C,i) + move-to-table(A,D, i),
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Table 1. Variables of LP problem in each step

conditions actions conditions
i=0 i=0 i=1
x1: on(A,B,0) | x17: move-to-table(A,B,0) | x29: on(A,B,1)
x2: on(A,C,0) | x18: move-to-table(A,C,0) | x30: on(A,C,1)
x3: on(A,D,0) | x19: move-to-table(A,D,0) | x31: on(A,D,1)
x4: on(B,A,0) | x20: move-to-table(B,A,0) | x32: on(B,A,1)
x5: on(B,C,0) x21: move-to-table(B,C,0) x33: on(B,C,1)
x6: on(B,D,0) | x22: move-to-table(B,D,0) | x34: on(B,D,1)
x7: on(C,A,0) | x23: move-to-table(C,A,0) | x35: on(C,A,1)
x8: on(C,B,0) | x24: move-to-table(C,B,0) | x36: on(C,B,1)
x9: on(C,D,0) | x25: move-to-table(C,D,0) | x37: on(C,D,1)
x10: on(D,A,0) | x26: move-to-table(D,A,0) | x38: on(D,A,1)
x11: on(D,B,0) | x27: move-to-table(D,B,0) | x39: on(D,B,1)
x12: on(D,C,0) | x28: move-to-table(D,C,0) | x40: on(D,C,1)
x13: clear(A,0) x41: clear(A,1)
x14: clear(B,0) x42: clear(B,1)
x15: clear(C,0) x43: clear(C,1)
x16: clear(D,0) x44: clear(D,1)
actions conditions
i=1 i=2

x45: move-to-table(A,B,1) | x57: on(A,B,2)

x46: move-to-table(A,C,1) | x58: on(A,C,2)

x47: move-to-table(A,D,1) | x59: on(A,D,2)

x48: move-to-table(B,A,1) | x60: on(B,A,2)

x49: move-to-table(B,C,1) | x61: on(B,C,2)

x50: move-to-table(B,D,1) | x62: on(B,D,2)

x51: move-to-table(C,A,1) | x63: on(C,A,2)

x52: move-to-table(C,B,1) | x64: on(C,B,2)

x53: move-to-table(C,D,1) | x65: on(C,D,2)

x54: move-to-table(D,A,1) | x66: on(D,A,2)

x55: move-to-table(D,B,1) | x67: on(D,B,2)

x56: move-to-table(D,C,1) | x68: on(D,C,2)

x69: clear(A,2)

x70: clear(B,2)

x71: clear(C,2)

x72: clear(D,2)
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clear(B,i) > move-to-table(B,A,i)

(10)
+ move-to-table(B,C,i) + move-to-table(B,D,i),
clear(C,i) > move-to-table(C,A,i)
(11)
+ move-to-table(C,B,i) + move-to-table(C,D,i),
clear(D,i) > move-to-table(D,A,i)
(12)

+ move-to-table(D,B,i) + move-to-table(D,C,i).

for all planning steps.
Next group of constraints describes changes of the state after applying an operator.
These are equality constraints:

clear(A,i+ 1) = clear(A,i) + move-to-table(B,A,i) (13)
+ move-to-table(C,A,i) + move-to-table(D, A, i)

and similar for blocks: B, C, D, and:
on(A,B,i+ 1) = on(A,B,i) — move-to-table(A, B, i). (14)

The initial state of the problem is also mapped into equality constraints:

1, if ,%,0) € G;

on(x,,0) = { i ontn0) (15)
0, in opposite case,
1, if ¢l 0) e G;

clear(x, 0) _ { , 1 C ear(x7 ) ) (16)
0, in opposite case.

Finally constraints for variables are needed: these should be mapped between 0 and 1
values what corresponds to truth degree of the variables. Transformation to Linear Pro-
gramming results to the problem with 72 variables, 34 inequality, 32 equality constraints.
In each planning step there are 16 conditions and 12 possible operators.

In general case the size of LP problem is as follow (I denotes number of steps, n
denotes number of blocks):

- the number of variables of LP problem:
p=(1+1)2n2+n), (17)
- the number of inequality constraints:

I(n2+n+1), (18)
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- the number of equality constraints:
I(n2+n), (19)

so the transformation is polynomial.
If the LP problem is defined as:

max, < f1x AX <b
Apgx =beg (20
0<x<1

then f defines the goal state of the planning problem, and the initial state is enclosed
in A.y and b,,. The vector x consists of all LP variables presented in Tab. 1, and the
solution of LP problem is denoted by x,,,. Matrix A, and vector b, correspond to
equality constraints (13-16), matrix A and vector b correspond to inequality constraints
(7-12). Matrices A and A, which correspond to the planning problem are sparse and
their nonzero elements are illustrated in the Fig. 1.

The parameter vector f of the goal function consists of 1’ for variables that cor-
respond to true conditions in goal state, so for goal state (4) and corresponding goal
function (6):

f = (zeros(1,68), 1111). 2D

3.1. Example 1

To illustrate the transformation Example 1 is shown. The problem (Fig. 2) is to de-
compose the initial state defined by the set: on(A,B), on(D,C), clear(A), clear(D).

The solution of Linear Programming algorithm is the set of variable values that
gives optimal (maximal) value of objective function: variables from 69 to 72 are
equal to 1. These corresponds to truth values of operators (variables 28 and 45):
move-to-table(D,C,0)=1 and move-to-table (A,B,1)=1 that solve planning problem in
2 steps (Tab. 2).

However, this result is very optimistic: all variables (conditions) are 0’s or 1’s. In
general case as a result we can receive any value from 0 tol. So the cost of the approach
is that algorithm can results in non-interpretable solutions for some initial states (what
is followed by assumption P # NP). This is because the discrete domain (truth or false)
is transformed to continuous domain (LP program), so solution of LP not always can be
directly interpreted as a plan. For such cases scoring functions to estimate quality of the
plan has been introduced in section 3.2, and the additional heuristic has been proposed
in section 3.3.

3.2. Scoring functions

The goal of introducing scoring functions is an estimation if the LP solution is a
“perfect’ solution (i.e. if it can be directly treated as the planning problem solution). The
LP solution can be ’imperfect’ for 2 reasons:
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Figure 1. Matrices for linear program of Example 1.

sensor

~

[a] [p]
(2] [8] [c][p]

Initial state Goal state

Figure 2. The initial and goal states for Example 1.

1. it is not binary vector (i.e. does not correspond to true/false conditions and ac-
tions),

2. the variable values that correspond to state in last step of planning does not cor-
respond to conditions for the planning problem goal situation (i.e. the LP solution
does not lead to goal of planning).



www.czasopisma.pan.pl P N www.journals.pan.pl
N
<

A. GALUSZKA

Table 2. Solution of Example 1.

conditions actions conditions actions conditions
i=0 i=0 i=1 i=1 i=2
x1:1.00 | x17:-0.00 | x29:1.00 | x45:1.00 | x57:0.00
x2:0.00 | x18:-0.00 | x30:0.00 | x46:0.00 | x58:-0.00
x3:0.00 x19:0.00 | x31:0.00 | x47:0.00 | x59:0.00
x4:0.00 x20: 0.00 | x32:0.00 | x48:0.00 | x60:-0.00
x5:-0.00 | x21:-0.00 | x33:-0.00 | x49: -0.00 | x61:-0.00
x6:-0.00 | x22:0.00 | x34:0.00 | x50:0.00 | x62:0.00
x7:0.00 x23:0.00 | x35:-0.00 | x51:-0.00 | x63:0.00
x8:-0.00 | x24:0.00 | x36:0.00 | x52:-0.00 | x64:-0.00
x9:0.00 | x25:-0.00 | x37:0.00 | x53:0.00 | x65:0.00
x10: 0.00 | x26:0.00 | x38:-0.00 | x54:-0.00 | x66:0.00
x11:-0.00 | x27:0.00 | x39:-0.00 | x55:-0.00 | x67: 0.00
x12: 1.00 | x28:1.00 | x40:0.00 | x56:-0.00 | x68:0.00
x13: 1.00 x41: 1.00 x69: 1.00
x14:-0.00 x42:0.00 x70: 1.00
x15:0.00 x43: 1.00 x71: 1.00
x16: 1.00 x44: 1.00 x72:1.00

Proposed scoring functions have common property: they are equal to 1 if the plan
is *perfect’ due to scored property, and are lower than 1 in the opposite case (Galuszka
2009). The first function, U(xopt), called planutility, estimates how close is the LP
solution to binary solution:

(22)

where: [ — number of planning steps, kK — number of non-zeros variables of LP solution
that correspond to actions, x,,; — LP problem optimal solution.

The second function, Saz(x, p,), called goal satisfaction degree, compares the value of
LP objective function to the expected value, that is equal to the number of true conditions
in planning problem goal situation:

fo()pt

Sat(Xopt) = -

(23)
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where: f Txop, — optimal value of LP objective function, m — the number of true condi-
tions in planning problem goal situation.

This definition is based on observation that the value of the objective function can
be useful as the value of the utility function of planning problem: if the value of the
objective function is divided by the number of truth predicates in the goal state G it
returns the "degree’ of satisfaction of the problem goal state. Sat(x,,,) has the property
that returns 1 if the plan satisfies all predicates in the goal definition, and O in the opposite
case. Value of Sat(x,,) between O and 1 indicates that there are some variables that
correspond to goal state not equal to 1, what follows that goal state is not reached.

3.3. Additional heuristic

In the heuristic the variables values are treated as a truth degrees’ and the algorithm
scheme can be summarized as follow:

a) Solve the Linear Programming problem that corresponds to planning problem:;

b) From the group of variables that correspond to operators in the 1st step choose the
one with the biggest value of truth degree;

c) Assume the value of this variable equal to 1 (it means that this operator is chosen
as the best proposition) and add this equality as an additional constraint to the LP
problem;

d) Solve this more restricted problem;

e) Repeat steps b) to d) for the group of variables that correspond to operators in the
next steps until result vector consists from only 0’s and 1’s.

The number of repeats is limited by the number of steps. Fortunately, most of plan-
ning problems has the property that the number of steps is polynomial limited by the
size of the problem (Baral et al. 2000). It follows that the linear transformation with ad-
ditional heuristic remains polynomial. An example of *pathologic’ planning problem is
Towers of Hanoi (see e.g. A. Beck, M.N. Bleicher, D.W. Crowe, Excursions into Math-
ematics, A.K. Peters, 2000): in this case the number of operators growths exponentially
with the problem size. This approach does not support such group of problems.

3.4. Remarks to the heuristic

The result of the heuristic is a binary solution of the linear program that represents the
planning problem, so this solution is interpreted as a plan that solves planning problem.
It should be noted that the solution is feasible: in first step of the heuristic an additional
equality constraint that correspond to 1 action in first planning step is added (step c¢) of
the heuristic), so from constraints (5) variables for all actions in this step are set to 0,
that corresponds to one action.
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4. Modeling uncertainty in Linear Program

In many real world applications an initial state of the problem given as a set of
predicates is, realistically speaking, an overidealization since model and measurement
inaccuracies, disturbances and imperfect processing procedures result in the uncertainty
in the problem variables.

Modern planners have developed techniques that allow planner to find plans in situ-
ation where there can be many sources of uncertainty and reasons efficiently about these
plans (but they are still exponentially efficient in time) (Blythe 1999). They can handle
uncertainty from three types of cause

- incomplete information about initial state,
- uncertain outcomes of actions,
- non-deterministic exogenous events.

The third cause of uncertainty is very important because external events can very
often play an important role in real domains. Theoretically, it could be done by modeling
effects of exogenous events by effects of actions in the domain. This is, however, very
inefficient way, since their effects are duplicated in every action in the domain. In such a
way each action might have to model many events.

Below it is shown how to implement first two kinds of uncertainty in linear program.

4.1. Case of incomplete information about initial state

Recall the case of 4 blocks Block World problem and assume that the initial state now
can be modeled basing on sensor information (Galuszka 2006). It implies that positions
of blocks B and C are indistinguishable and cannot be precisely described in the initial
state definition. It leads to two possible initial situations (Fig. 3):

(on(A,B), on(D,C), clear(A), clear(D))

(on(A,C), on(D,B), clear(A), clear(D)).

The popular approach of modeling uncertainty environment in STRIPS planning
is to treat the initial situation as a set of possible initial states. The problem is that in
the general case the number of possible initial states can growth exponentially with the
number of uncertain predicates. Such problem is called the problem of planning in the
presence of incompleteness (Weld et al. 1998) and is usually much more difficult to
solve than ’complete’ problem: it belongs to the next level in complexity hierarchy than
corresponding problem with complete information (Baral et al. 2000).

It is also impossible to transform polynomially such problem to linear program,
because the number of variables exponentially depends of the size of planning problem.
To reduce this number of variables of linear program one could apply Kleene’s logic
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sensor sensor
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8] [c] [a] [8] [c][b]

initial 1 or initial 2 goal

Figure 3. Example 2: The problem with incomplete information in the initial state.

system in order to formulate planning system with partly undecided initial state. In this
system the valuation space is the three-point set: {0, 1/2, 1} under the usual arithmetic
ordering and, intuitively, T(a) = 1, T(a) = 0, and T(a) = 1/2 mean that ’a’ is true,
false, and undecided, respectively (Dougherty and Giardina 1988).

Example 2.

Using Kleene’s Three Valued Logic System the truth values of variables on(A, B,0),
on(D,C,0),0n(A,C,0),on(D,B,0) are set to 0.5 what represents the uncertainty whether
block A is on C or B and block D is on C or B.

Now the solution corresponds to truth values of actions:

move-to-table(A,B,0) = 0.5, move-to-table(A,C,0) = 0.5,
(24)
move-to-table(D,B, 1) = 0.5, move-to-table(D,C,1) = 0.5

that solve planning problem also in 2 steps (see Tab. 3 — numbers correspond to condition
and action variables from Tab. 1). The interpretation of this solution is as follow: first
move block A to the table (from B or C) then move block D (from B or C). Note that in
this case U (xop;) = 1.

4.2. Case of uncertain outcomes of actions

The uncertain outcome of an action is modeled in linear program by introducing
weight for each action:
w; € [0,1] (25)

where i = 1,2,...,k, and k is the number of actions O.

Under this notation the value of w; = 0.5 means that the effect of the action i is
unknown. It leads to changes in equalities (1) and (2) that define changes in the state
after applying an action:
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Table 3. Solution of Example 2.

conditions | actions | conditions | actions | conditions
i=0 i=0 i=1 i=1 i=2
x1:0.50 | x17:0.50 | x29:0.00 | x45:0.00 | x57:0.00
x2:0.50 | x18:0.50 | x30:0.00 | x46:0.00 | x58:0.00
x3:0.00 | x19:0.00 | x31:0.00 | x47:0.00 | x59:0.00
x4:0.00 | x20: 0.00 | x32:0.00 | x48:0.00 | x60: 0.00
x5:0.00 | x21:0.00 | x33:0.00 | x49:0.00 | x61:0.00
x6:0.00 | x22:0.00 | x34:0.00 | x50:0.00 | x62:0.00
x7:0.00 | x23:0.00 | x35:0.00 | x51:0.00 | x63:0.00
x8:0.00 | x24:0.00 | x36:0.00 | x52:0.00 | x64: 0.00
x9:0.00 | x25:0.00 | x37:0.00 | x53:0.00 | x65:0.00
x10: 0.00 | x26:0.00 | x38:0.00 | x54:0.00 | x66: 0.00
x11:0.50 | x27:0.00 | x39:0.50 | x55:0.50 | x67:0.00
x12:0.50 | x28:0.00 | x40:0.50 | x56:0.50 | x68: 0.00

x13: 1.00 x41: 1.00 x69: 1.00

x14: 0.00 x42: 0.00 x70: 1.00

x15: 0.00 x43:1.00 x71: 1.00

x16: 1.00 x44:1.00 x72:1.00

clear(A,i+1) = clear(A,i)+wimove-to-table(B,A, i)
(26)
+ wamove-to-table(C,A, i) + wimove-to-table(D, A1)
and similar for blocks: B, C, D, and:

on(A,B,i+1) = on(A,B,i) —wamove-to-table(A,B,1i). 27

Note that inequalities are not changed (remember that they describe if an action
can be applied to the current state of the problem): only the outcomes of actions are
uncertain, not the act of choosing of an action. In this case U(x,,) < 1 if in the plan
actions with w; < 1 are used.

4.3. Handling sensory actions: Example 3

One of the way of dealing with uncertainty in planning is to extend the set of op-
erators with sensory actions (Weld et al. 1998). After executing this sensory action the
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planner knows whether sensed predicate is true or not in the current problem state. It
allows to resolve uncertainty during execution of the plan.
As Example 3 let us recall Example 2 of planning in Block World environment with

4 blocks (called A, B, C, D — see Fig. 3). The goal is to decompose the initial state. Now
it is assumed one STRIPS operator that moves the block x from the other block to the
table, on(x) means that block x is on another block (or on the table), c/ear(x) means that
there is no other block on block x:

move-to-table(x) :

preconditions : on(x),clear(x) (28)

del : on(x)

add : clear(y)
The sensory action

sensing — block(x) :

preconditions : (noprecond.) (29)
add : clear(x)

is an action that allows to sense what block is under top block after moving top block to
the table.

The transformation of problem with sensory action to linear program is now differ-
ent. Assume 4 steps of planning (states indexes are: 0, 1, 2, 3, 4). Then the objective
function is:

Max(clear(A,4) + clear(B,4) 4 clear(C,4) + clear(D,4)). (30)

If the goal is reached then the objective function is equal to 4 (4 conditions are true in the
goal state). There are also some changes in constraints of Linear Programming problem.
They are because a sensory action is performed after a block is moved to the table:

- at most 1 operator can be applied in each planning step:
¥ move-to-table(x,i) = 1 (31)
for even i = 0,2,4, and:
¥ sensing — block(x,i) =1 (32)
for odd i = 1,3 (after moving to table sensing is performed),
- operator can not be applied unless its preconditions are true:
on(x,i) > move-to-table(x, i) (33)

and
clear(x,i) > move-to-table(x,i) (34)

fori=0,2,4.
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Next group of constraints describe changes of the state after applying an operator.
These are equality constraints:

clear(x,i+ 1) = clear(x,i) + sensing — block(x, i) (35)

on(x,i+ 1) = on(x,i) — move-to-table(x,i). (36)

Additional equality constraints are needed to express information about real situation in
planning problem, i.e. what blocks are found after performing sensory action. Without
these constraints the planner will search for the solution taking into account all possible
situation resulted from incomplete information (2" possible states for n hidden blocks),
what is impossible to present by polynomial transformation to LP problem. These con-
straints take the form:

sensing — block(y,i+ 1) = move-to-table(x,i) (37)

where block y is the sensed block after moving to table block x.

Finally constraints for variables are needed. The constraints should be mapped be-
tween values 0 and 1 what corresponds to truth values of the variables and to binary
integer linear programming problem.

Summarizing, the size of LP problem that corresponds to STRIPS problem with
sensing action is:

- the number of variables: 3-n-[+2-n,

- the number of constraints: /- (4-n+ 1+ npiggen ), Where n is the number of blocks,
[ is the number of planning steps and 7,44, is the number of hidden blocks.

For Example 3 (n =4, [ = 4) there are 56 variables of LP problem. Nonzero elements
of matrix of equality constraints (A - x = b) and inequality constraints (A, -x = b,) are
presented in Fig. 4.

5. Transformxation of block world planning to a set of equalities and inequalities

Under assumption that values of variables describing the goal state are known, the
goal state can be represented by equality constraints. It implies that it is possible to
represent the planning problem as a set of equalities and inequalities:

Cx=d
Ax<b (38)
0<x<1

where C is the matrix A,, (20) extended by equalities that defines the goal state variables,
and d is the vector b, (20) extended by values of these variables in the goal state. Matrix
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Figure 5. Nonzero elements of matrix C from (30).

A and vector b are equal to those in (20). Nonzero elements of matrix C for the planning
problem presented in Fig. 1 is shown in Fig. 5.

The goal state of Example 1 can be express by following equalities (values of
variables of 2nd step of planning): clear(A,2) = 1, clear(B,2) = 1, clear(C,2) =1,
clear(D,2) = 1. The rest variables are set to 0.
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In this figure additional equality constraints needed to express the goal state are
placed under the dashed line.

6. Simulations

To analyze computational efficiency of transformation of presented representations
of STRIPS planning the 10 block decomposition problem has been implemented and
solved using MATLAB® software and PC Intel® Core™ i5 CPU, 2,67 GHz, 4GB
RAM. The assumed initial state is shown in Fig. 6. It is assumed 8 planning steps.

~

ENEEE

HEEEE

Figure 6. The initial state for an exemplary problem.

In Fig.7. nonzero elements of matrices of 10 block 8 planning step block world
problem are presented. The matrices of LP program are sparse (i.e. the number of non-
zero elements is about 0,1% or less) and the large scale methods are very efficient in
time (Zhang 1995). In this figure additional equality constraints needed to express the
goal state (for representation by a set of equalities and inequalities) are placed under the
dashed line (see Fig. 7b).

The transformed problem consists of 1620 variables. LP problem has been solved
using MATLAB®’s Large Scale Algorithm with additional heuristic (method I) and bi-
nary integer algorithm (method IV - in this case variable values are limited to 0’s and
1’s)).

For Large Scale Algorithm with additional heuristic the LP program was repeated 8
times with additional constraints (it correspond to the number of planning steps), because
vector with many non-zero and non-one values was obtained as a result. In the Fig. 8
non-zero elements of solution vectors are shown: column 1 is for the first solution of LP
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Figure 7. Nonzero elements of matrices of 10 block 8 planning step block world problem: a) matrix A, b)
matrix Aeg, ¢) matrix C.
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program (many non-zero elements and most of them are also non-one), column 8 is for
the last one (less non-zero elements and all of them are 1’s).

0 1 1 1 1 I 1 I 1

200

400+

600

800+

1000

1200+

1400

1600t

Figure 8. Non-zero elements of solution vectors.

Set of equalities and inequalities has been solved using quadratic programming al-
gorithm (method II):

min + g = (Cx—d)*
Ax<b (39)
0<x<1

where the cost function g should be equal to O to satisfy equality Cx = d.

The modification of the cost function g can also be proposed. The modified cost
function includes only 1 variable with known value in the planning problem. Variables
with known value are in description of the initial and the goal states of the problem, and
one can choose any of these variables. The modified problem (method IIT) now takes the
form:

min < g* = (x* —d])2
C'=d" (40)
Ax<b
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where g* is the modified cost function, x* is variable with known value, d' is 0 or 1
(dependent on whether x* is true or false), C* is C without column for variable x*, d* is
d without row with value of x*.

Simulation result (time of calculating solution for each method) is shown in Tab. 4.

Table 4. Simulation results for 4 different methods (Athlon 2800, 512 MB RAM)

I - linear programming with additional heuristic;
II — quadratic programming;

IIT — quadratic programming for 1 variable;

IV — binary integer programming

method I II I IV
time[s] 4 499 974 594

7. Conclusion

Translation to Linear Programming is a heuristic that allows to reduce computa-
tional complexity of searching for the solution. That is because planning in the pres-
ence of incompleteness is usual at least NP-complete problem, Linear Programming is
polynomial-time complete problem and translation from STRIPS to Linear Program-
ming is also polynomial. The cost of this approach is that algorithm can results in non-
interpretable solutions for some initial states (what is followed by assumption P # NP).
This is because the solution of LP problem is the vector of possibly-continuous values
from O to 1. So additional heuristic to receive the plan from the vector is needed.

The fastest way to solve transformed planning problem is to use classic LP represen-
tation (method I). But in this case the solution can be directly noninterpretable as a plan.
This is because the solution of LP problem is the vector of possibly-continuous values
from O to 1. So additional heuristic to receive the plan from the vector is needed.

Binary integer algorithm (method IV) returns the plan as a result, but the method
is limited to only small sizes of planning problems. This is because the algorithm is
exponentially efficient in time (this property is not a conclusion from the table but it is
the property of the algorithm).

STRIPS problem as a set of equalities and inequalities is an attractive idea because
we receive non-optimization problem as a result. Unfortunately, available numerical
methods for solving this are also optimization ones (methods II and III) and very slow.

Finally, results should be read as a comparison of efficiency of different introduced
representations of Block World planning, taking into account that the transformation is
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polynomial and all methods (except IV) are polynomial time complete. The conclusion
that 10 minutes is needed to solve 10 block toy problem is wrong. So the heuristic is
polynomial and that is why it reduces computational complexity of finding optimal solu-
tion of STRIPS planning problem, but only if this solution of transformed problem can
be interpretable as a plan (the is the cost of transformation followed by the assumption
P # NP).

The advantage of proposed heuristic of planning using transformation to LP is that
the time of finding problem solution is polynomially limited by the size of the problem.
The disadvantage is that transformation can lead to LP problems with large number of
variables, what can be difficult to implement even using modern computers. That is why
additional research should be performed in order to find efficient ways to reduce the
number of LP problem variables.
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