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Hybrid Mesh Adaptive Direct Search
and Genetic Algorithms Techniques for industrial

production systems

PANDIAN VASANT

In this paper, computational and simulation results are presented for the performance of
the fitness function, decision variables and CPU time of the proposed hybridization method of
Mesh Adaptive Direct Search (MADS) and Genetic Algorithm (GA). MADS is a class of direct
search of algorithms for nonlinear optimization. The MADS algorithm is a modification of the
Pattern Search (PS) algorithm. The algorithms differ in how the set of points forming the mesh
is computed. The PS algorithm uses fixed direction vectors, whereas the MADS algorithm uses
random selection of vectors to define the mesh. A key advantage of MADS over PS is that
local exploration of the space of variables is not restricted to a finite number of directions (poll
directions). This is the primary drawback of PS algorithms, and therefore the main motivation in
using MADS to solve the industrial production planning problem is to overcome this restriction.
A thorough investigation on hybrid MADS and GA is performed for the quality of the best
fitness function, decision variables and computational CPU time.

Key words: mesh adaptive direct search, genetic algorithms, fitness function, degree of
possibility, level of satisfaction

1. Introduction

Audet and Dennis [1] presented and analyzed a new mesh adaptive direct search
(MADS) class of algorithms for minimizing a nonsmooth function f : Rn→ R∪{+∞}
under general constraints x ∈Ω ̸=∅⊆ Rn.

A key advantages of mesh adaptive direct search (MADS) over pattern search (PS)
is that local exploration of the space of variables is not restricted to finite number of
directions (call poll directions). This is the primary drawback of Pattern Search (PS)
algorithms, and Audet and Dennis [1] was motivated in defining MADS to overcome this
restriction. MADS algorithms are frame-based methods. Audet and Dennis [1] proposed
a less general choice of frames than the choices allowed by Coope and Price [6]. Audet
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and Dennis [1] MADS frames are easy to implement, and they are specifically aimed at
ensuring an asymptotically dense set of polling directions.

The genetic algorithms (GA), is an approach that mimics biological processes in
evolving optimal or near optimal solutions to problems (Goldberg [11]). In this paper
a practical applications to challenging industrial problems of production planning has
been investigated to exploit the full potential of GA to look for the promising global
optimal solution.

The paper is organized in the following orders. Section 2 provides the methodol-
ogy for MADS and GA approaches. The problem statement and formulation of fuzzy
model are illustrated in Section 3. Section 4 gives detail information on the analysis of
experimental results and findings. The paper ends with conclusions and future research
directions.

2. Methodology

Given an initial iterate x0 ∈Ω, a MADS algorithm attempts to locate a minimizer of
the function f over Ω by evaluating f at some trial points. The algorithm does not require
any derivative information for f . This is useful when there are several local optima. But
it is essential when ▽ f is unavailable, either because it does not exist, or it cannot be
accurately estimated due to noise in f or other reasons.

MADS is an iterative algorithm where at each iteration a finite number of trial points
are generated, and the infeasible trial points are discarded. The objective function values
at the feasible trial points are compared with the current incumbent value fΩ(xk), i.e.,
the best feasible objective function value found so far. Each of these trial points lies on
the current mesh, constructed from a finite set of nD directions D⊂ Rn scaled by a mesh
size parameter ∆m

k ∈ R+.
There are two restrictions on the set D. First, D must be a positive spanning set

(Davis [7]), i.e., nonnegative linear combination of its element must span Rn. Second,
each direction d j ∈ D (for j = 1,2, . . . ,nD) must be the product Gz j of some fixed non-
singular generating matrix G ∈ Rn×n by an integer vector z j ∈ Zn. For the convenience,
the set D is also viewed as a real n×nD matrix.

The mesh is conceptual in the sense that it is never actually constructed. In practice,
one can easily make sure that the strategy for generating trial points is such that they
all belong to the mesh. The objective of the iteration is to find a trial mesh point with
a lower objective function value than the current incumbent value fΩ(xk). Such a trial
point is called an improved mesh point, and the iteration is called a successful iteration.
There are no sufficient decrease requirements on the objective function value.

The evaluation of fΩ at a trial point x is done as follows. First, the constraints defining
Ω are tested to determine if x is feasible or not. Indeed, since some of the constraints
defining Ω might be expensive or inconvenient to test, one would order the constraints
to test the easiest first. If x ∈/ Ω, then fΩ(x) is set to +∞ without evaluating f (x), and
perhaps without evaluation all the constraints defining Ω. In effect, this means we discard
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the infeasible trial points. On the other hand, if x∈Ω, then f (x) is evaluated. This remark
seem obvious, but is saves the computation work.

Each iteration is divided into two steps. The first, called the search step, has the sane
flexibility as in PS. It allows evaluation of fΩ(x) at any finite number of mesh points. Any
strategy can be used in the search step to generate a finite number of trial mesh points.
Restricting the search points to lie on the mesh is a way in which MADS is less general
than the frame methods of Coope and Price [6]. The search is said to be empty when
no trial points are considered. The drawback to the search flexibility is that it cannot be
used in the convergence analysis - except to provide counterexamples as in (Audet [2]).
The detail discussion of search steps is given in (Abramson, Audet and Dennis [3]).

When an improved mesh point is generated, then the iteration may stop, or it may
continue if the user hopes to find a better improved mesh point. In either case, the next
iteration will be initiated with a new incumbent solution xk+1 ∈ Ω with fΩ(xk+1) <
fΩ(xk) and with a mesh size parameter ∆m

k+1 equal to or larger than ∆m
k . Coarsening the

mesh when improvements in fΩ are obtained can be convergence.
Whenever the search step fails to generate an improved mesh point, then the second

step, called the poll, is invoked before termination of the iteration. The difference be-
tween the MADS and the PS algorithms lies exactly in this poll step. For this reason, the
numerical comparison (Audet and Dennis [1]) in the sequel used empty, or very simple,
search steps in order to isolate the value of the MADS poll step.

When the iteration fails in generating an improved mesh point, then the next iteration
is initiated from any point xk+1 ∈ Sk+1 where Sk is the set points where the objective
function f had been evaluated by the start of iteration k with fΩ(xk+1) = fΩ(xk); though
there is usually a single such incumbent solution, and then xk+1 is set to xk. The mesh
size parameter ∆m

k+1 is reduced to increase the mesh resolution, and therefore to allow
the evaluation of f at trial points closer to the incumbent solution. More precisely, given
a fixed rational number τ > 1, and two integers w− ¬ −1 and w+ ­ 0, the mesh size
parameter is updated as follows:

∆m
k+1 = τwk ∆m

k for some wk ∈

{
{0,1, ..., w+} i f an improved mesh point is f ound
{w−,w−+1, ...,−1} otherwise

(1)
For MADS, Audet and Dennis [1] introduced the poll size parameter ∆p

k ∈ R+ for itera-
tion k. This new parameter dictates the magnitudes of the distance from the trial points
generated by the poll step to the current incumbent solution xk. In PS, there is a sin-
gle parameter to represent these quantities: ∆k = ∆p

k = ∆m
k . In MADS, the strategy for

updating ∆p
k must be such that ∆m

k ¬ ∆p
k for all k, and it must satisfy

lim
k∈K

∆m
k = 0 if and only if lim

k∈K
∆p

k = 0 for any infinite subset of indices K. (2)

The set trial points considered during the poll step is called a frame. The frames of Coope
and Price [6] can be more general than MADS frames.
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The MADS frame is constructed using a current incumbent solution xk (called frame
center 0 and the poll and mesh size parameters ∆p

k and ∆m
k to obtain a positive direction

Dk. Unlike GPS, generally the MADS set of direction Dk is not a subset of D. If the
poll step fails to generate an improved mesh point then the frame is called a minimal
frame, and the frame center xk is said to be a minimal frame center. This leads to mesh
refinement. At each iteration, the columns of Dk are called the poll directions.

The algorithm of MADS is very similar to PS, with differences in the poll step, and
in the new poll size parameter.

MADS algorithm

• Initialization: Let x0 ∈Ω, ∆m
0 ¬ ∆p

0 , D, G, τ, w− and w+ satisfy (2).
Set the iteration counter k← 0.

• Search and poll step: Perform the search and possibly the poll steps (or only part
of them) until an improved mesh point xk+1 is found on the mesh Mk (Audet and
Dennis [1]).

Mk = ∪
s∈Sk
{x+∆m

k Dz : z ∈ NnD}

where Sk is the set of points where the objective function f had been evaluated by
the start of iteration k.

- Optional search: Evaluate fΩ on a finite subset of trial points on the mesh
Mk.

- Local poll: Evaluate fΩ on the frame Pk (Audet and Dennis [1]).

Pk = {xk +∆m
k d : d ∈ Dk} ⊂Mk

where Dk is a positive spanning set such that 0 /∈ Dk and for each d ∈ Dk,

∗ d can be written as a nonnegative integer combination of the direction
in D: d = Du for some vector u ∈ NnDk that may depend on the iteration
number k

∗ the distance from the frame center xk to a frame point xk +∆m
k d ∈ Pk is

bounded by a constant times the poll size parameter:

∆m
k ∥d∥¬ ∆p

k max
{∥∥dl

∥∥ : dl ∈ D}

∗ limit (as defined in Coope and Price [6]) of the normalized sets Dk are
positive spanning sets.

• Parameter update: Update ∆m
k+1 according to (1), and ∆p

k+1 according to (2).

• Set k← k+1 and go back to the search and poll step.
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The crucial distinction and advantage of MADS over PS is that the MADS mesh size
parameter ∆m

k may go to zero more rapidly than ∆p
k . Consequently, the direction in Dk

used to define the frame may be selected in away so that asymptotically they are not
confined to a finite set. Note that in PS both ∆m

k and ∆p
k are equal: a single parameter

plays the role of the mesh and poll size parameters, and therefore, the number of positive
spanning sets that can be formed by subsets of D is constant over all iterations.

In PS, the set Dk is a subset of the finite set D. There is more flexibility in MADS.
PS is a valuable algorithm, but the application of non smooth analysis techniques

in (Audet and Dennis [4]) showed its limitation due to the finite choice of directions
in (Audet [2]). MADS removes the PS restriction to finitely many poll directions. In
MADS the poll directions change at each iteration, but they are static in PS.

Genetic algorithms

The crossover operator is an important component of GA. The crossover operation
generates offspring from randomly selected pairs of individuals within the mating pool,
by exchanging segments of the chromosome strings from the parents.

The purpose of the mutation is to ensure that diversity is maintained in the popula-
tion. It gives random movement about the search space thus preventing the GA becoming
trapped in ’blind corners’ or ’local optima’ during the search. Evolver performs order-
based mutation. In this mutation, two tasks are selected at random and their positions are
swapped. The ’mutation rate’ determines the probability that mutation is applied after a
crossover. The number of swaps performed is increased or decreased proportionately to
the increase and decrease in the mutation rate setting.

The performance of a GA depends upon population size, scaling function, selection,
reproduction, elite count, crossover, mutation, migration and stopping criteria. Detailed
experiments have been carried out to study the effect of these parameters. The applica-
tion of the GA to the fuzzy optimization is repeated here for each of the combinations
of the following parameter levels:

Population Size: 100-1000

Mutation operator: Adaptive feasible - this parameter randomly generates directions
that are adaptive to the last successful or unsuccessful generations. A step length is
chosen along each direction so that linear constraints and bounds are satisfied.

Crossover operator: Crossover combines two individual, or parents, to form a new
individual, or child, for the next generation. Arithmetic crossover creates children that
are the weighted arithmetic mean of two parents. Children are feasible with respect to
linear constraints and bounds.

Scaling function: Rank scales the raw scores based on the rank of each individual, rather
tan its score. The rank of the individual is its position on the sorted scores. The rank of
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the fittest individual is 1, the next fittest is 2 and so on. Rank fitness scaling removes the
effect of the spread of the raw scores.

Creation function: It’s specifies the function that creates the initial population. Uniform
function creates a random initial population with a uniform distribution.

Initial scores: The algorithm creates one using the uniform creation function.

Initial range: [0; 1] - Specifies the lower and upper bounds for the entries of the vectors
in the initial population.

Selection: The selection function chooses parents for the next generation based on
their scaled values from the fitness scaling function. Stochastic uniform lays out a line
in which each parent corresponds to a section of the line of length proportional to its
expectation. The algorithm moves along the line in steps of equal size, one step for each
parent. At each step, the algorithm allocates a parent from the sections it lands on. The
first step is a uniform random number less than the step size.

Reproduction: Reproduction parameter determines how the genetic algorithm creates
children at each new generation. Elite count has been provided to specify the number of
individuals that are guaranteed to survive to the next generation. The elite count should
be a positive integer and less than or equal to population size.

Elite count = 8-100.

Migration: Migration is the movement of individuals between subpopulations, which the
algorithm creates if we set population size to be a vector of length greater than 1. Every
so often, the best individuals from one subpopulation replace to the worst individuals
in another subpopulation. We can control how migration occurs by the following three
parameters.

(a) Direction: Migration can take place in one direction or two. If we select the di-
rection to be forward, migration takes place toward the last subpopulation. That is
the nth subpopulation migrates into the (n+1)’th subpopulation. If we select the
direction to be both, then the nth subpopulation migrates into the (n−1)th and the
(n+1)th subpopulation.

(b) Fraction: Fraction controls how many individuals move between subpopulations.
Fraction is the fraction of the smaller of the two subpopulations that moves. If
individual migrate from a subpopulation of 100 individuals into a population of
1000 individuals and the fraction is 0.2, 20 individuals (0.2·100) migrate. Indi-
viduals that migrate from one subpopulation to another are copies. They are not
removed from the source subpopulation.
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(c) Interval: Interval controls how many generations pass between migrations. If we
select the interval to be 500, for example, then the migration between subpopula-
tions takes place every 500 generations.

Stopping criteria: The stopping criteria determine the caused of algorithms to terminate.
The following are the stopping criteria’s that have been used in this research paper.

(i) Generations: Generations specifies the maximum number of iterations the genetic
algorithm performs.

(ii) Time limit - Time limit specifies the maximum time in seconds the genetic algo-
rithm runs before stopping.

(iii) Fitness limit: If the best fitness value is less than or equal to the value of fitness
limit, the algorithm stops.

(iv) Stall generations: If the weighted average change in the fitness function value over
stall generations is less than function tolerance, the algorithm stops.

(v) Stall time limit: If there is no improvement in the best fitness value for an interval
of the time in seconds specified by stall time limit, the algorithm stops.

(vi) Function tolerance: If the cumulative change in the fitness function value over
stall generations is less than function tolerance, the algorithm stops.

Genetic Algorithms is a global stochastic method based on the mechanism of nature
selection and evolutionary genetics and used in some different fields (Gen and Cheng
[9]). For the specific problem such as nonlinear programming, the combination of ge-
netic algorithm and other method such as the MADS method can outperform genetic
algorithms, which can be illustrated by the experimental results (Honggang and Jian-
chao [10]). This idea of hybrid genetic algorithms has been adopted in this research
work.

3. Problem statement

Optimization techniques are primarily used in production planning problems in or-
der to achieve optimal profit, which maximizes certain objective function by satisfying
a number of constraints. The first step in an optimal production planning problems is to
formulate the underlying nonlinear programming (NLP) problem by writing the mathe-
matical functions relating to the objective and constraints.

Given a degree of satisfaction value µ, the fuzzy constrained optimization problem
can be formulated (Jiménez, Cadenas, Sánchez, Gómez-Skarmeta and Verdegay [12];
Vasant and Barsoum [14]) as the non linear constrained optimization problem shown
below in the following section.
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Problem formulation

Maximize
8
∑

i=1
(cixi−dix2

i − eix3
i )

Subject to:

8

∑
i=1

[
al

i j +

(
ah

i j−al
i j

α

)
ln

1
C

(
B
µ
−1
)]

xi−b j ¬ 0, j = 1,2, ...,17

8

∑
i=7

rixi−0.15
6

∑
i=1

rixi ¬ 0

x1−0.6x2 ¬ 0
(3)

x3−0.6x4 ¬ 0
x5−0.6x6 ¬ 0
0¬ xi ¬ ui, i = 1,2, ...,8

In the above non-linear programming problem, the variable vector x represents a set
of variables xi, i = 1,2, . . . ,8. The above optimization problem contains eight continu-
ous variables and 21 inequality constraints (Vasant and Barsoum [16]). A test point xi
satisfying constrains is called feasible, if not infeasible. The set satisfying constrains is
called the feasible domain. The aim of the optimization is to maximize the total produc-
tion profit for the industrial production planning problems. The formulation of the new
non-linear cubic function for this particular problem has been refereed to Vasant [15].
The cubic objective function has 24 coefficients for eight decision variables. This prob-
lem considered one of the most challenging problems in the research area of industrial
production planning.

4. Analysis on experimental results

Parameter settings for MADS algorithm are as follows:
Poll: MADS position basis 2N
Complete poll
Polling order: Random
Mesh: Initial size 1 and Max mesh size Infinite
Expansion factor: 2
Contraction factor: 0.5
Stopping criteria: Mesh tolerance - 1e-006; Max iteration - 100·8;

Max function evaluation - 2000·8; Time limit - infinite;
Constraint tolerance - 1e-006 and Function tolerance - 1e-006.
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The results for the industrial production planning problems were obtained by using
the following genetic algorithms.

Genetic Algorithms

1. Initialization. Generate an initial population. Initialize parameters and define fit-
ness function.

2. Crossover. Perform crossover using arithmetic crossover.

3. Mutation. Perform mutation using adaptive feasible.

4. Selection. Evaluate the fitness of each individual in the population. Choose the N
best chromosomes to form the next generation.

5. Termination criteria. If stopping criteria’s are satisfied, then terminate. Otherwise,
select the next generation and go to Step 2.

6. Output the best solutions.

Notation used in the MADSGA method is as follows:
µ = Degree of possibility
γ = Level of satisfaction
α = Vagueness factor
f = objective function or fitness function
xi = Decision variables
Time in seconds = CPU (s)

In this paper, the results for the hybrid and non-hybrid techniques of various opti-
mization approaches have been investigated thoroughly in the form of 2D, 3D plots and
tables (Chapman [5]; Gilat [8]). The industrial production planning problem which was
illustrated in chapter three was solved successfully by most of the hybrid optimizations
methods. The simulation and computational results are discussed in form of detail expla-
nation. The formulation coded in MATLAB Version 2.2 (R2007b) [13] was run on Intel
Pentium M 1.6 GHz, 512 MB Ram, 40 GB HDD PC. The results are analyzed along
with the optimal profit function (Objective or Fitness function) with level of satisfaction,
decision variables, vagueness factor and computational time (CPU).

Fig. 1 depicts the best fitness function solution for α = 13.813 and γ = 0.001 to
γ = 0.99. The best optimal fitness function value is 197364.2 obtained at γ = 0.99 after
three iteration with 8251 number of function evaluations. CPU time for running MADS
and GA is 39.427 s and 39.4275 s respectively. Total CPU time for running at α= 13.813
and γ = 0.001 to γ = 0.99 is 8m 49.32 s. Table 1 reports feasible optimal solution for
eight decision variables with γ and fitness function values.

The feasible solutions in Tab. 1 for the eight decision variables reflect the real world
situation for the industrial production planning problems. The best optimal solution for
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Figure 1. 1 Fitness value versus γ.

Table 8. Optimal value for Fitness Function

γ x1 x2 x3 x4 x5 x6 x7 x8 f

0.001 255.5 545.2 102.3 341.9 92.4 233.5 66.5 41.8 141916.7
0.1 286.3 644.3 213.6 459.1 125.0 208.4 67.3 65.6 156521.4
0.2 270.8 540.7 285.9 488.6 114.4 192.3 109.4 41.0 163081.0
0.3 249.0 496.2 269.2 522.5 188.9 314.8 99.4 41.6 164043.3
0.4 259.7 669.3 237.4 408.7 185.8 309.6 114.3 30.6 166244.4
0.5 326.3 664.2 185.0 425.8 161.8 269.7 133.8 22.3 167783.4
0.6 352.8 588.7 284.1 473.5 91.4 169.4 94.8 77.0 166901.8
0.7 300.7 598.5 242.5 566.8 187.7 312.9 72.0 78.2 167212.6
0.8 322.8 574.7 284.4 479.2 161.3 268.9 123.0 51.2 175329.0
0.9 368.3 653.2 240.2 402.1 167.3 278.8 157.2 30.8 178822.2
0.99 444.0 740.4 358.9 598.2 149.3 248.8 178.0 81.0 197364.2

the fitness function value at γ = 0.99 is less than fitness function value in the MADS
method alone. This is due to MADS stopped the optimization process earlier than GA
searching process. Further more the CPU time for this hybrid approach is almost double
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than MADS alone. The major draw back of this method is, it is suffering from slow
convergence and it is wandering around optimal solution if high accuracy needed.

From the above explanation, it suspected that further experiment be carried on for
several of α in order to investigate improved optimal solution for the fitness function
value. Fig. 2 depicts the simulation results for α = 1 to α = 41.

Figure 2. 1 Fitness value versus γ.

The best optimal fitness function value is 199813.94 obtained at γ = 0.99 and α = 1.
CPU time for running MADS and GA is 6.1055 s and 6.1059 s respectively for γ = 0.99
and α = 41. Number of iterations and function evaluations is 3 and 6001 respectively.
Total CPU time for α = 1 to α = 41 is 1 h 54 m 48.87 s.

Tab. 2 reports the best optimal fitness function values for α= 1 to α= 41 at γ= 0.99.
From the Tab. 2, it is concluded that this hybrid approach reaches the best optimal fitness
value 199813.94 at α = 1. This is the major significant contribution of MADS and GA
hybrid approach in this case studies. On the other hand, MADS alone reaches optimal
fitness value 198002 at α = 1 and γ = 0.99.

Further experiment carried out for the investigation of simulation results for the fit-
ness function respect to α and γ. Fig. 3 depicts the results. Total CPU time for this
simulation is 1 h 45 m 17.79 s. Optimal fitness function value at α = 41 and γ = 0.99
is 197902.8. CPU time running PS and GA for this result is 83.3417 s and 83.3422 s
respectively.
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Table 9. Optimal value for Fitness Function at γ = 0.99

α f

1 199813.94
5 199171.89
9 197168.54

13 199357.83
17 197303.77
21 195918.66
25 198955.51
29 197928.65
33 198738.09
37 198915.82
41 196138.06

Figure 3. 1 Fitness value versus α and γ.

5. Conclusions

The findings of the computational and simulation results reveal that the significant
contribution of MADS and GA hybrid approach is in finding a reasonable quality solu-



HYBRID MESH ADAPTIVE DIRECT SEARCH AND GENETIC ALGORITHMS TECHNIQUES
FOR INDUSTRIAL PRODUCTION SYSTEMS 311

tion for the feasible decision variables and fitness function value. The incorporation of
GA into MADS exhibit far more superior speedy solution in CPU computational time
compare to HPSGA techniques. On the other hand, its major draw back is on the longer
computational CPU time in running MADS and GA algorithms. This is due to the role
of GA in this optimization process as searching technique for the best initial solution
and MADS played as an optimizer. Nevertheless, there is a very strong possibility of
improving this draw back with other additional hybrid optimizations techniques.
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