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Abstract. Most estimators of the shape parameter of generalized Gaussian distribution (GGD) assume asymptotic case when there is available
infinite number of observations, but in the real case, there is only available a set of limited size. The most popular estimator for the shape
parameter, i.e., the maximum likelihood (ML) method, has a larger variance with a decreasing sample size. A very high value of variance
for a very small sample size makes this estimation method very inaccurate. A new fast approximated method based on the standardized
moment to overcome this limitation is introduced in the article. The relative mean square error (RMSE) was plotted for the range 0.3–3 of
the shape parameter for comparison with other methods. The method does not require any root finding, any long look-up table or multi step
approach, therefore it is suitable for real-time data processing.

Key words: estimation, generalized Gaussian distribution, standardized moment, approximated fast estimator.

1. Introduction

Most of the estimation methods for the shape parameter of
GGD assume that the sample size is large. The estimation
of GGD parameters may be carried out by the use of ML
method [1], the moment method (MM) [2], entropy match-
ing [3]. For all these methods the existence and the uniqueness
of the parameters are based on asymptotic behavior, i.e., the
sample size is sufficiently large. In [4], it was shown that
the computation of GGD parameters on small samples is not
the same as on larger ones. The authors presented a neces-
sary and sufficient condition for the existence of the parame-
ters in a maximum likelihood framework. GGD was observed
to appear in many signal and image processing applications.
A large sample size very often is not available. Therefore, the
relaying method for the estimation of GGD shape parameter
is necessary.

The ML method used for the estimation of the shape
parameter is complex and time consuming. The complexity
can be reduced by the application of the One Moment (OM)
method [5]. Instead of the ML method the Mallat’s method
is often used for estimation, even though the method is not
accurate for the whole range of the shape parameter [6].

In [7], the scale-invariant fourth moment is used as an
accurate initial value to the Newton–Raphson iteration in the
estimation parameters of complex GGD.

The method [6] based on the approximation of the moment
method in four intervals allows fast estimation of GGD shape
parameter for real-time applications and requires storing only
twelve coefficients. The authors presented the method which
approximates the estimation of GGD shape parameter in the
range 0.3–3.

A review of the different approaches to shape parameter
estimation problems can be found in [8]. The authors stat-
ed that the estimators (the Mallat’s generalized Gaussian ra-
tio method (MRM), the kurtosis generalized Gaussian ratio
method (KRM)) were still not satisfactory in the case of short
data. The negentropy matching (NM) method can still accu-
rately estimate the parameters for small sample size, but for
the shape parameter p < 1.

The peaky distributed signals can be observed in many
signal processing applications [9, 10].

In Sec. 2 the estimation methods of GGD shape parame-
ter and an approximation model for a small sample size are
discussed. In Sec. 3 the numerical results are presented.

The methods based on the root finding may not have a real
root for a small sample size created from simulated observa-
tions. In Sec. 3 it can be observed that this situation appeared
for the ML method for N < 60 ∧ p = 0.4, N < 85 ∧ p = 1
and N < 120 ∧ p = 2.

2. Material and methods

The probability density function (PDF) of the continuous ran-
dom variable of GGD [11] takes the form

f(x) =
λ(p, σ) · p

2 · Γ

(
1

p

)e−[λ(p,σ)·|x−µ|]p , (1)

where Γ(z) =

∞∫

0

tz−1e−tdt, z > 0, is the Gamma func-

tion [12], p denotes the shape parameter, µ is the location
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parameter and λ relates to the variance of the distribution
and can be calculated from

λ(p, σ) =
1

σ





Γ

(
3

p

)

Γ

(
1

p

)





1/2

, (2)

where σ denotes the standard deviation. The special case of
GGD can be observed when the shape parameter equals p = 1
and p = 2, which corresponds to Laplacian and Gaussian dis-
tributions respectively. For p → 0, f(x) approaches an im-
pulse function, and for p → ∞, f(x) approaches a uniform
distribution. For µ = 0, the probability density function is
centered around zero.

From the definition of absolute moment

E [|X |m] =

∞∫

−∞

|x|m · f(x)dx,

for GGD the following is obtained [13]

Em =

Γ

(
m + 1

p

)

λm · Γ

(
1

p

) , (3)

where m can be a real number.

The Em estimated value of the moment can be acquired
from the equation

Êm =
1

N
·

N∑

i=1

|xi|
m (4)

and where N denotes the number of observed variables, and
{x1, x2, . . . , xN} is the collection of N i.i.d zero-mean ran-
dom variables.

The presented model [6] for the approximated estima-
tion of GGD shape parameter is derived from two moments
method and is calculated for the selected intervals related to
the shape parameter

p̂ =

(
log(Gp) − a

b

)1/c

, (5)

where

Gp =
Em1

(Em2
)

m1

m2

(6)

and p̂ denotes the estimated value of the shape parameter, Em1

and Em2
are the estimated values of the moments, which can

be found from Eq. (4). The parameters a, b and c are set in-
dependently for each interval and both their values and the
procedure for their selection are discussed in [6].

Du [1] described the estimation of the shape parameter
derived from the maximum likelihood method

Ψ

(
1 +

1

p

)
+ log(p)

p2
+

1

p2
log

(
1

N

N∑

i=1

|xi|
p

)

−

N∑
i=1

|xi|
p log(|xi|)

p
N∑

i=1

|xi|p
= 0,

(7)

where

Ψ(τ) = −γ +

1∫

0

(1 − tτ−1)(1 − t)−1dt (8)

and γ = 0.577 . . . denotes the Euler constant. The root of
Eq. (7) gives the ML estimate p̂.

Equation (3) for two different moment values m1 and m2

and eliminating λ leads to:

g =

Γ

(
m2 + 1

p

)
Γ

(
1

p

)m2

m1
−1

Γ

(
m1 + 1

p

)m2

m1

=
Em2

(Em1
)

m2

m1

, (9)

which is the method for the estimation of the shape parameter
based on two moments. The inverse function to the g func-
tion, Eq. (9), depends on the moment values m2 and m1 and
can be approximated as follows:

• m1 = 0.25 and m2 = 0.5

p̂0 =






55 · g−70 + 0.73, for g < 1.079

5.7 · g−28 + 0.315, for g ≥ 1.079

∧ g < 1.132

2.05 · g−15 + 0.18, for g ≥ 1.132

, (10)

• m1 = 0.5 and m2 = 1

p̂1 =

{
26 · g−18 + 0.67, for g < 1.27

5.5 · g−9 + 0.365, for g ≥ 1.27
, (11)

• m1 = 1 and m2 = 2

p̂2 =

{
29 · g−7 + 0.8, for g < 2

5 · g−3 + 0.37, for g ≥ 2
, (12)

• m1 = 2 and m2 = 3

p̂3 =

{
77 · g−10 + 1.275, for g < 1.6

16.3 · g−5.5 + 0.748, for g ≥ 1.6
, (13)

• m1 = 2 and m2 = 4

p̂4 =

{
12 · g−1.98 + 0.64, for g < 6

6 · g−1.3 + 0.42, for g ≥ 6
, (14)

•
p̂04 = 0.5 · (p̂0 + p̂4). (15)
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Equation (14) for two moments m1 = 2 and m2 = 4 cor-
responds to kurtosis. The inverse function of Eq. (9) for two
moments m1 = 2 and m2 = 4 is depicted in Fig. 1.

Fig. 1. Inversion function of Eq. (9) for two moments m1 = 2 and
m2 = 4 and two components from Eq. (14)

Additionally, in the same figure two components approxi-
mating this function from Eq. (14) are overlaid with a thresh-
old value g = 6. It can be noticed that the inverse function
is better approximated by one component over the threshold
value g = 6 and by another component below this value. It
should be pointed out that the model used for the approxi-
mation of inverse function to the g function (Eq. (9)) in this
article is different than the model introduced in [6] (Eq. (5)).
Equations (10)–(15) were obtained by fitting the inverse func-
tion of Eq. (9) to the model a · g−b + c.

Authors also examined other sets for the moment orders:
m1 = 0.1 and m2 = 0.5; m1 = 0.125 and m2 = 0.25. Nev-
ertheless, Eqs. (10)–(15) became the most usable in the final
estimation, i.e, led to the smallest error. The final estimation
p̂S can be found from the following relation:

p̂S =






p̂4, for p̂1 ≥ 1.86

p̂04, for 1.04 ≤ p̂1 < 1.86

p̂1, for 0.57 ≤ p̂1 < 1.04

p̂0, for p̂1 < 0.57

, (16)

where p̂0, p̂1, p̂04 and p̂4 are defined by Eqs. (10), (11), (15)
and (14) respectively. p̂1 has been chosen as a reference value
in (16), because it has the smallest RMSE and is constant
over the widest interval of the considered p range from the
considered approximations.

3. Calculation

The equations from the article were validated with the GGD
generator [14] with fixed variance to unity and varying shape
parameter in the range p ∈ 〈0.3, 3〉. The values were selected
to cover the range of the most typical values in the signal
processing applications. RMSE was applied for the compari-
son of the estimators output. RMSE was calculated from the
equation

RMSE =
1

M

M∑

i=1

(p̂ − p)2

p2
, (17)

where p̂ is a value estimated by the model and p is a real value
of a shape parameter. M denotes the number of repetitions
and was set to M = 104 for all experiments.

A small sample size may lead to difficulties with the root
finding of the ML method (Eq. (7)), therefore, the stop con-
dition was set to tolX = 1e − 4 and tolY = 1e − 5, where
tolX and tolY are the absolute errors.

The RMSE increase with decreasing sample size for the
ML method is depicted in Fig. 2. The curves are plotted for
two selected fixed values p = 1 and p = 2 in the GGD gen-
erator. Before the estimation with ML, the sample size was
centered twofold: ML med – a median value is subtracted
from a sample; ML mean – a mean value is subtracted from
a sample.

Fig. 2. Comparison of RMSE for the ML method of the estimation
of the shape parameter p of GGD with a varying sample size N and
for the selected fixed values p = 1 and p = 2 in the GGD genera-
tor. ML med – a median value is subtracted from a sample before
estimation. ML mean – a mean value is subtracted from a sample

before estimation

It can be noticed that with a small sample size the ML
method resulted in the very high value of error in terms of
RMSE (Fig. 2). In the first step, the observation set is cen-
tered. It can be done simply by subtracting either the mean
value of the set or the median value of the set. It turns out to
have influence on the final estimation error. Figure 2 shows
that the smaller RMSE is assured by subtracting the medi-
an value. The similar behavior for the approximated method
(Approx, Eq. (5)) is observed, i.e., the subtraction of a mean
value resulted in the higher value of RMSE. In the follow-
ing, when the results for the Approx and ML methods will
be demonstrated, they will be based on the centering using
a median.

First, the location parameter µ has to be determined after
collecting a sample of GGD random variable. The estimation
of the µ parameter can be conducted twofold by: the mean or
median. Then it is made centering by subtracting the estima-
tion of the µ parameter. Figure 3 depicts three curves with
a median centering for the location parameters in the GGD
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generator: µ = −1, µ = 0 and µ = 1 for p̂0 (Eq. (10)). It can
be noticed that these curves overlap.

Fig. 3. Comparison of RMSE for the bp0 (Eq. (10)) component of the
estimation of the shape parameter p of GGD with a varying sample
size N and for the selected fixed value p = 2 for three location
parameters µ = −1, µ = 0 and µ = 1 in the GGD generator and

with a median centering

The similar curves with a mean centering for p̂1 (Eq. (11))
for the location parameters in the GGD generator: µ = −1,
µ = 0 and µ = 1 were plotted in Fig. 4. In this case the
curves also overlap.

Fig. 4. Comparison of RMSE for the bp1 (Eq. (11)) component of the
estimation of the shape parameter p of GGD with a varying sample
size N and for the selected fixed value p = 2 for three location
parameters µ = −1, µ = 0 and µ = 1 in the GGD generator and

with a mean centering

Figure 5 shows the influence of the median and mean
subtraction for two selected components p̂0 (Eq. (10)) and
p̂1 (Eq. (11)) used in the final equation (Eq. (16)). The me-
dian subtraction resulted in the smaller value of RMSE for
both p̂0 (Eq. (10)) and p̂1 (Eq. (11)) comparing to the mean
subtraction.

RMSE for the final equation (p̂S , Eq. (16)) is depicted in
Fig. 6. The curve can be compared to all components of the
equation (Eq. (10)–(15)) for the small sample size N = 31.
A median value is subtracted from a sample before estima-
tion. The method is designed to keep a constant RMSE (at
least not increasing) over the considered range of p.

Fig. 5. Comparison of RMSE for the bp0 (Eq. (10)) and bp1 (Eq. (11))
components of the estimation of the shape parameter p of GGD with
a varying sample size N and for the selected fixed value p = 2 in
the GGD generator. med and mean – a median and mean values

are subtracted from a sample before estimation respectively

Fig. 6. Comparison of RMSE for both all components (Eq. (10)–(15))
and the final equation (bpS , Eq. (16)) of the estimation of the shape
parameter p of GGD with a varying shape value p and a selected

fixed sample size N = 31

A figure for the comparison of RMSE for the p̂S

(Eq. (16)), ML, Approx methods of the estimation of the
shape parameter p of GGD with a varying shape value p

and a selected fixed sample size N = 31 is not presented in
the article due to an excessive error of ML. The smallest N

that would be representative to compare the p̂S (Eq. (16)),
ML, Approx methods was selected N = 71. In Fig. 7, it is
observed that the Approx method plot is not completed. Upon
closer examination the curve discontinuities can be noticed.
Such a case denotes when the Approx estimator [6] output
has at least one complex value. Thus, RMSE was inapplica-
ble and incomparable. For the ML case, it can be noticed
that with increasing values of p in the GGD generator, RMSE
increase rapidly with ringing. A median value is subtracted
from a sample before estimation.

The global convergence method (GCM) [8] requires to
find the root of Zn(p) = 0, which for a small sample size
may not have a real root.
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Fig. 7. Comparison of RMSE for bpS (Eq. (16)), ML, Approx methods
of the estimation of the shape parameter p of GGD with a varying

shape value p and a selected fixed sample size N = 71

The similar plot for N = 121 is depicted in Fig. 8, where
as expected the RMSE for ML has been reduced. In both cas-
es the introduced estimator (Eq. (16)) behaves stable and the
RMSE is the smallest or comparable.

Fig. 8. Comparison of RMSE for bpS (Eq. (16)), ML, Approx methods
of the estimation of the shape parameter p of GGD with a varying

shape value p and a selected fixed sample size N = 121

Fig. 9. Comparison of RMSE for bpS (Eq. (16)), ML, Approx methods
of the estimation of the shape parameter p of GGD with a varying
sample size N and for the selected fixed values p = 0.4 and p = 1

in the GGD generator

From Figs. 9 and 10 it can be read that p̂S is stable with
the small values of N whereas RMSE rapidly grows for ML or
get complex for Approx. For these both simulations, the repe-
tition count in Eq. (17) was increased to M = 105. A median
value is subtracted from a sample before estimation.

Fig. 10. Comparison of RMSE for bpS (Eq. (16)), ML, Approx meth-
ods of the estimation of the shape parameter p of GGD with a varying
sample size N and for the selected fixed values p = 2 and p = 3 in

the GGD generator

In Fig. 11, RMSE for p̂S when a mean (p̂S mean) and
median (p̂S med) values are subtracted from a sample before
estimation is plotted. It can be noted that with the higher
values p of the GGD generator subtracting a mean result-
ed in a smaller value of RMSE. The mean value of these
two values p̂S med mean = 0.5 · (p̂S mean + p̂S med) can
give an estimation that will produce the lowest RMSE in
short interval around p = 2. These curves suggest the com-
bination of them, for instance, p̂S join = [if (p̂S med < 2)
then (p̂S med) else (p̂S med mean)], but the combined curve
p̂S join did not result in better RMSE performance, because
of the decision point p̂S med being biased with an error.

Fig. 11. Comparison of RMSE for the bpS (Eq. (16)) method of the es-
timation of the shape parameter p of GGD with a varying shape value
p and a selected fixed sample size N = 31. bpS med – a median value
is subtracted from a sample before estimation. bpS mean – a mean
value is subtracted from a sample before estimation. bpS med mean –
a mean p value from estimation bpS med and bpS mean. bpS join – a

combination of bpS med and bpS med mean
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As a limit case it has been considered N = 1000 and
N = 2000 and the results are depicted in Figs. 12 and 13.
In this simulation and the following ones, a median value
is subtracted from a sample before estimation. RMSE of the
ML and Approx methods is stable in the range p ∈ 〈0.3, 3〉
whereas p̂S fluctuates.

Fig. 12. Comparison of RMSE for the bpS (Eq. (16)), bpL (Eq. (18)),
ML, Approx methods of the estimation of the shape parameter p of
GGD with a varying shape value p and a selected fixed sample size

N = 1000

Fig. 13. Comparison of RMSE for the bpS (Eq. (16)), bpL (Eq. (18)),
ML, Approx methods of the estimation of the shape parameter p of
GGD with a varying shape value p and a selected fixed sample size

N = 2000

The final estimation p̂L with a correction for the larger
values of N and p can be found from the following relation:

p̂L =






p̂3, for p̂1 ≥ 1.86

p̂2, for 1.04 ≤ p̂1 < 1.86

p̂1, for 0.57 ≤ p̂1 < 1.04

p̂0, for p̂1 < 0.57

, (18)

where p̂0, p̂1, p̂2 and p̂3 are defined by Eqs. (10)–(12) and (13)
respectively.

For the larger values N , the fluctuation of p̂S in the
range p ∈ 〈2, 3〉 can be corrected with the application of
p̂L (Fig. 13).

Fig. 14. Comparison of RMSE for the bpS (Eq. (16)), bpL (Eq. (18)),
ML, Approx methods of the estimation of the shape parameter p of
GGD with a varying sample size N and for the selected fixed values

p = 0.4 in the GGD generator

Fig. 15. Comparison of RMSE for the bpS (Eq. (16)), bpL (Eq. (18)),
ML, Approx methods of the estimation of the shape parameter p of
GGD with a varying sample size N and for the selected fixed values

p = 1 in the GGD generator

Fig. 16. Comparison of RMSE for the bpS (Eq. (16)), bpL (Eq. (18)),
ML, Approx methods of the estimation of the shape parameter p of
GGD with a varying sample size N and for the selected fixed values

p = 2 in the GGD generator
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For N ∈ (450, 2000) and p = 0.4, the p̂S method gives
the comparable results to p̂L (Fig. 14).

Other plots p̂S and p̂L for N ∈ (450, 2000) and p = 1,
p = 2, p = 3 are depicted in Figs. 15, 16 and 17. It is advised
to use p̂L instead of p̂S for the larger values of N and p.

Fig. 17. Comparison of RMSE for the bpS (Eq. (16)), bpL (Eq. (18)),
ML, Approx methods of the estimation of the shape parameter p of
GGD with a varying sample size N and for the selected fixed values

p = 3 in the GGD generator

4. Conclusions

The article focuses on the estimation of the shape parameter
of GGD when a small size is only available. Most estimation
methods for the shape parameter of GGD assume that there
is available a set of an unlimited size. In real situations on-
ly a set of observations limited in size is usually available.
Therefore, the lower the sample size, the higher variance of
the estimated value. This also leads to a situation when the
already known estimation methods do not have a real root.
The method introduced in the article allows to estimate the
shape parameter of GGD in the range p ∈ 〈0.3, 3〉 for a small
sample size. Moreover, the method does not require any root
finding, any long look-up table or multi step approach, thus, it
is simple, fast and relatively efficient. The presented method
keeps relatively small RMSE in the range p ∈ 〈0.3, 3〉 for a
small sample size as it was confirmed by simulations where-
as other methods had an excessive error in the part of the
range, for instance N = 71, the ML method for p > 0.75,
the approximated method for p > 1.6. The simulations also
exhibited slowly increasing RMSE with the decreasing sam-
ple size to N = 31 for a new method, where other methods
had a jump in RMSE for some threshold sample size. It was
observed for the simulations for the shape parameter p = 0.4,
p = 1, p = 2 and p = 3.
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