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Abstract. The main purpose of the study is an assessment of computational efficiency of selected numerical methods for estimation

of vibrational response statistics of a large multi-bearing turbo-generator rotor-shaft system. The effective estimation of the probability

distribution of structural responses is essential for robust design optimization and reliability analysis of such systems. The analyzed scatter

of responses is caused by random residual unbalances as well as random stiffness and damping parameters of the journal bearings. A proper

representation of these uncertain parameters leads to multidimensional stochastic models. Three estimation techniques are compared: Monte

Carlo sampling, Latin hypercube sampling and the sparse polynomial chaos expansion method. Based on the estimated values of the first

four statistical moments the probability density function of the maximal vibration amplitude is evaluated by the maximal entropy principle

method. The method is inherently suited for an accurate representation of the probability density functions with an exponential behavior,

which appears to be characteristic for the investigated rotor-shaft responses. Performing multiple numerical tests for a range of sample sizes

it was found that the sparse polynomial chaos method provides the best balance between the accuracy and computational effectiveness in

estimating the unknown probability distribution of the maximal vibration amplitude.

Key words: stochastic moment estimation, sparse polynomial chaos expansion, maximum entropy principle, rotor, uncertainties, hybrid

mechanical model, random unbalance distribution.

1. Introduction

The analysis of structures with random parameters plays an

important role in the structural design, optimization and reli-

ability assessment. In particular, heavily affected rotating ma-

chines must assure possibly a high level of reliability, durabil-

ity and safety in operation. Care should be taken to eliminate

effects of unavoidable dynamic excitation or to reduce them

to minimum. The random rotor-shaft residual unbalances and

uncertain journal bearing parameters should be classified as

major sources of the observed scatter of rotor-shaft vibration

responses. Therefore, focusing on the random nature of above-

mentioned parameters, the main objective of the present study

is to examine methods, which allow for efficient probability

density estimation of the rotor-shaft responses.

Efficient methods of stochastic moments estimation are

a crucial component of robust design optimization (RDO)

algorithms (a comprehensive survey of RDO formulations

and solution techniques is given in e.g. [1–3]). The goal of

the rotor-shaft RDO is to find the optimal design that is not

sensitive with respect to parameter imperfections even when

the rotor-shaft is subjected to considerable bending or tor-

sional resonant vibrations. An alternative formulation of the

structural design optimization problem that accounts for un-

certainties is reliability-based design optimization (RBDO).

Contrary to the most popular RDO formulations, in RBDO

the design constraints are expressed in terms of failure prob-

abilities corresponding to selected failure criteria. Since in

most of the design cases of practical importance, the value

of failure probability is very sensitive to the shape of prob-

ability density function (PDF), an accurate PDF estimation

of the rotor-shaft responses is essential to perform RBDO. It

must be emphasized that problems concerning the uncertainty

propagation in the analysis of complex systems have already

been addressed by many authors in numerous papers, see ref-

erences [4–9] for a comprehensive overviews, however, these

issues do not seem to have been explored for the rotor-shaft

systems, where the stochastic model typically contains a big

number of random variables.

The investigated methods include sampling techniques,

namely, the classical Monte Carlo and Latin hypercube sam-

pling. The first technique, referred in the text as random sam-

pling (RS), often requires a considerable number of simu-

lation runs to precisely estimate higher stochastic moments

of a multidimensional random function and its PDF. Never-

theless, due to its popularity and the asymptotic convergence

properties RS is used here for comparison and for reference

purposes. The Latin hypercube sampling (LHS), belonging

to the class of descriptive sampling techniques, is known for

better estimation properties than RS, see e.g. [7, 10, 11]. Still

it was interesting to verify the feasibility of this method for

the considered random structural performances and the task

of PDF estimation.

A potential remedy for high computational cost of the

sampling techniques may be given by the polynomial chaos

expansion method (PCE) [12, 13]. In PCE orthogonal poly-

nomials are used as the basis functions, and this property

simplifies the calculation of statistical moments. Ghanem and

Spanos [12] showed that the set of multidimensional Her-
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mite polynomials forms an orthogonal basis for the probabili-

ty space and that the method is convergent in the mean-square

sense. The original Hermite polynomial chaos basis are pro-

posed for modeling stochastic responses with Gaussian ran-

dom variables. In recent years, the PCE method has been

extended to the generalized polynomial chaos, employing the

Askey scheme of orthogonal polynomials [14] to allow for

a direct use of such parametric distributions as uniform, be-

ta, gamma, etc. The method has been further modified to

the so-called multi-element generalized polynomial chaos, see

e.g. [15], where the random space is decomposed into lo-

cal elements and the generalised polynomial chaos method

is subsequently implemented within individual elements. Us-

age of PCE for statistics of the rotor system responses un-

der uncertainties modeled by Gaussian random variables is

considered in [16], where PCE is using at the stage of solv-

ing the equations of motion. In the current document non-

Gaussian random variables are dealt with by means of the

transformation technique [17–19]. Even though, in some cas-

es this technique may be considered as non-optimal solution,

the transformation-based PCE is adopted here due to its sim-

plicity and flexibility. The stochastic model of the rotor-shaft

system is considered as a black box from the applied PCE

method point of view. Unfortunately, the PCE method is not

immune to the curse of dimensionality. The number of re-

quired structural response evaluations substantially increases

with the number of random variables. Since the stochastic

model of the large multi-bearing rotor-shaft system of the

steam turbo-generator considered in this paper contains near-

ly 60 random variables, to alleviate this difficulty, an adaptive

sparse algorithm proposed by Blatman and Sudret [13] was

employed. As it will be demonstrated in the rotor-shaft exam-

ple, this method allows for a substantial reduction of the com-

putational cost of the corresponding complete PCE problem.

In the present study the efficiency and estimation accu-

racy of above mentioned techniques is compared using the

problem of PDF estimation of the rotor-shaft lateral vibration

amplitude. Based on the values of the first four statistical mo-

ments calculated my means of various methods the response

PDF is approximated by maximal entropy principle [20].

The paper consists of five main sections. In Sec. 2 each

of the investigated scatter analysis techniques is shortly in-

troduced. Section 3 describes the maximal entropy principle

method for PDF estimation. In Sec. 4 the employed hybrid

mechanical model of the rotor-shaft system is presented. It is

underlined that thanks to its high computational efficiency

together with sufficient technical accuracy this model is par-

ticularly convenient for stochastic analysis. Finally, in Sec. 5

the effectiveness of the selected methods is compared using

the rotor-shaft vibration analysis problem and in Sec. 6 con-

cluding remarks are contained.

2. Estimation of response statistics

It is not unusual in mechanical and civil engineering that some

quantities which describe a structural system and applied

loads should be modeled as random variables, X1, . . . , Xn.

They are called the basic variables and constitute a random

vectorX whose samples x belong to the Euclidian space with

the probability measure defined by the joint probability densi-

ty function (PDF) fX(x). Assuming a random variable Y , e.g.

a rotor-shaft vibration response, is a scalar-valued function of

the basic variables in the form Y = h(X), in the current

paper there are investigated methods for estimating statisti-

cal moments of Y with the main purpose of using them for

approximation of the response PDF. The first four statistical

moments, which are considered here are:

mean value µY = E(Y ), (1)

variance Var(Y ) = σ2
Y = E

[
(Y − µY )2

]
, (2)

skewness SY =
1

σ3
Y

E
[
(Y − µY )3

]
, (3)

kurtosis KY =
1

σ4
Y

E
[
(Y − µY )4

]
. (4)

In the following a particular emphasis is put on the Poly-

nomial Chaos Expansion method and on comparing its accu-

racy and computational efficiency with sampling techniques.

Below a short description of the abovementioned methods is

presented.

2.1. Sampling methods. Random sampling (Monte Carlo

sampling) as well as descriptive sampling methods employ

samples of basic random variables X to assess the values of

population statistics. The commonly used unbiased estimators

of the first four statistical moments are formulated as follows:

µY ≈ Y =
1

N

N∑

i=1

Y (i) =
1

N

N∑

i=1

h
(
X(i)

)
, (5)

σ2
Y ≈ σ̂2

Y =
1

N − 1

N∑

i=1

(Y (i) − Y )2

=
1

N − 1

N∑

i=1

(
h(X(i)) − Y

)2

,

(6)

SY ≈ ŜY =
N
√
N − 1

N − 2

N∑
i=1

(
h(X(i)) − Y

)3

[
N∑

i=1

(
h(X(i)) − Y

)2
]3/2

, (7)

KY ≈K̂Y =
N(N+1)(N−1)

(N−2)(N−3)

N∑
i=1

(
h(X(i)) − Y

)4

[
N∑

i=1

(
h(X(i)) − Y

)2
]2 . (8)

Realizations x(i), i = 1, . . . , N , of the random vector X are

drawn from the distribution of X . The simulation methods

differ mainly by the way the samples are obtained. One may

distinguish two major sampling techniques: random sampling

(RS) and descriptive sampling [21]. Under some assumptions,

the so-called Latin hypercube sampling (LHS) [7,11,22] can

be classified as a descriptive sampling technique. In the per-

formed study the efficiency of RS as well as LHS are exam-

ined.
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2.2. Polynomial chaos expansion method. The presentation

of the method follows the one given in article [13] of Blat-

man and Sudret. Assuming variable Y = h(X) has a finite

variance, it can be expanded onto the so-called “polynomial

chaos” (PC) basis as follows, see [12, 23]:

Y = h(X) =
∑

α∈Nn

aαψα(X), (9)

where aα are the unknown deterministic coefficients and ψα

are the multivariate polynomials, orthogonal with respect to

the joint PDF fX(x), which reads

E[ψα(X)ψβ(X)] = δα,β, (10)

where δα,β = 1, if α = β and 0 otherwise.

If the random variables Xi, i = 1, . . . , n, are independent,

the probability density function of the random vector X can

be expressed as a following product of respective PDFs:

fX(x) = fX1
(x1)fX2

(x2) · · · fXn
(xn). (11)

In the case of correlated variables, they should be first trans-

formed into the space of independent standard Gaussian vari-

ables, as it is described in, e.g. [18, 24]. Taking advantage of

the form of Eq. (11), the polynomials ψα can be then con-

structed as a product of n univariate orthogonal polynomials

ψα(X) = P (1)
α1

(X1)P
(2)
α2

(X2) · · ·P (n)
αn

(Xn). (12)

Hence, the elements of vector indices α = {α1, α2, . . . , αn}
of the multivariate orthogonal polynomials ψα can be iden-

tified as degrees of univariate polynomials constituting the

above product. Denoting by DXi
the support of Xi, the or-

thogonal polynomials {P (i)
k , k ≥ 0} satisfying

E[P
(i)
k (Xi)P

(i)
l (Xi)]

=

∫

DXi

P
(i)
k (x)P

(i)
l (x)fXi

(x)dx = δk,l, ∀(k, l) ∈ N2, (13)

are computed by classical algorithms, see [25]. For stan-

dard normal variables the polynomials, which are orthogo-

nal with respect to this PDF, are the Hermite polynomials

Pk(x) = Hk(x), k ≥ 0

H0(x) = 1, H1(x) = x, . . .

Hk+1(x) = xHk(x) − kHk−1(x).
(14)

For the sake of computational efficiency the series in Eq. (9)

is truncated after a finite number of terms. Most often, the

polynomials, which degree |α| =
∑n

i=1 αi is higher than a

given degree p, are eliminated from the series

Y = h(X) ≈
∑

|α|≤p

aαψα(X). (15)

The number of aα coefficients that have to be computed is

then equal to

M =

(
n+ p

p

)
. (16)

It is claimed by some authors, see e.g. [13,26], that the PC

approximation with p = 2 is usually sufficiently accurate for

estimating the first two statistical moments of random func-

tions, but to perform the structural reliability analysis one

should use higher degree polynomials, p ≥ 3. On the other

hand, such general statements seem to be only of limited val-

ue, since the usefulness of a particular approximation strongly

depends on the analysed problem. As it will be shown later in

the text, the stochastic model of the turbo-generator rotor-shaft

under study consists of a big number of random variables and

only a low degree PC expansion can be afforded due to high

computational costs. Therefore, one of the main research tasks

is to evaluate if the PC approximation with p = 2 can be used

for higher moment estimation as well as for PDF assessment.

The unknown coefficients in (15) are computed either by

the so-called projection approach or by the regression ap-

proach. The first approach often turns out to be computation-

ally expensive, especially for problems with a large number of

random variables. In [27] it is proved that the less expensive

projection method, which is based on Smolyak quadrature,

is at least 2p times more costly than the regression method,

where p is the PCE order. The minimal number of the random

function evaluations for the regression method is equal to the

number of unknown coefficients in PCE. It is the reason, why

only the regression approach is briefly described below in the

text.

The considered method is based on the concept of linear

regression and consists in fitting an a priori assumed response

surface (here it is the truncated PC expansion) to the actual

functional relationship given by its values in a sample of ex-

perimental points. It is convenient to rewrite Eq. (15) in an

equivalent matrix form

h(X) ≈ Hp(X) =
∑

|α|≤p

aαψα(X) = aTψ(X), (17)

where a is the vector of coefficients {aα, 0 ≤ |α| ≤ p}
and ψ gathers the basis polynomials {ψα, 0 ≤ |α| ≤ p}.

Based on the results of N numerical experiments {xi, yi},

i = 1, . . . , N , where yi = h(xi), the coefficients in Eq. (17)

are computed by minimizing a norm of residuals yi−Hp(xi)
usually given by

S(a) =

N∑

i=1

[
h(xi) − aTψ(xi)

]2
. (18)

The solution vector â is expressed by the well-known formula

â = (ΨT
Ψ)−1

Ψ
Ty, (19)

where y = {y1, . . . , yN} is the vector of computed function

values at the experimental points and the matrix ΨN×M has

the form

Ψ =





ψα1
(x1) · · · ψαM

(x1)
...

. . .
...

ψα1
(xN ) · · · ψαM

(xN )



 . (20)

In order to make this problem well-posed matrix Ψ
T
Ψ must

be well conditioned. It is then necessary that the employed

design of experiments contains a sufficient number of points,

preferably significantly more than M .
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It is easy to verify, see Eq. (16), that the number of co-

efficients in expansion (15) grows rapidly with the number

of variables n and the polynomial degree p. Therefore, in or-

der to reduce the computational burden and to improve the

approximation quality of the method, Blatman and Sudret pro-

posed in [13] an adaptive sparse polynomial chaos expansion

(SPCE). In their approach the iterative algorithm allows to

eliminate these of the expansion coefficients which are not

significant in approximating the function h(X) leading to the

optimal polynomial representation. A version of the sparse

PC expansion algorithm, implemented for the purpose of the

current study is the one, which is described as “based on a

fixed experimental design” in [13]. Reduction of the number

of expansion terms allows here to improve the approximation

quality by increasing the ratio of the number of experimental

points to the number of unknown coefficients.

Applying the assumption of the stochastic independence

of random variables X and the orthogonality of base poly-

nomials ψα, see Eqs. (11)–(13), it is easy to show that the

mean value and variance of h(X) are given by

µY ≈ E[Hp(X)] = µY,p = a0, (21)

Var(Y ) ≈ Var[Hp(X)] = σ2
Y,p =

∑

0<|α|≤p

a2
α, (22)

so they are immediately available after obtaining the expan-

sion coefficients aα. More involved are calculation of skew-

ness and kurtosis coefficients, see (3) and (4),

SY ≈ SY,p =
1

σ3
Y,p

∑

0<|α|,|β|,|γ|≤p

aαaβaγ E

·[ψα(X), ψβ(X), ψγ(X)],

(23)

KY ≈KY,p =
1

σ4
Y,p

∑

0<|α|,|β|,|γ|,|δ|≤p

aαaβaγaδ E

·[ψα(X), ψβ(X), ψγ(X), ψδ(X)].

(24)

For the sake of computational efficiency they are evaluated by

LHS using the PC approximation (17) instead of the actual

model

SY,p =
1

σ3
Y,p

E
[
(Hp(X) − µY,p)

3
]
, (25)

KY,p =
1

σ4
Y,p

E
[
(Hp(X) − µY,p)

4
]
. (26)

3. Probability density function estimation

by maximal energy principle

In order to estimate PDF of random rotor-shaft responses,

when the available information is in the form of moment con-

straints, a method based on maximal entropy principle (MEP)

proposed by Jaynes [28] is applied. It was shown in [20] that

contrary to Pearson system or the saddlepoint approximation,

the MEP method is numerically stable. It is also inherent-

ly suited to accurately represent PDFs with an exponential

behavior. As it will be demonstrated later in the text, such

a distribution shape appears to be characteristic to vibration

responses investigated in this paper.

The PDF of the response Y is approximated by maximiz-

ing the Shannon information entropy subject to the known

values of statistical moments. The problem can be formulated

as follows:

maximize: Q(fY ) = −
a2∫

a1

fY (y) ln(fY (y)) dy, (27)

subject to: fY (y) ≥ 0,

a2∫

a1

fY (y) dy = 1, (28)

a2∫

a1

yjfY (y) dy = µj , j = 1, 2, . . . ,M, (29)

where a1 and a2 are the lower and upper bounds of the re-

sponse and µj , j = 1, . . . ,M, are the known raw moments

of Y . By using the Lagrange multiplier method an analytical

solution of the above problem is obtained as

fY (y) = exp



−λ0 −
M∑

j=1

λjy
j



 , (30)

where λ0, . . . , λM , are the Lagrange multipliers correspond-

ing to the M +1 constraints. To determine the unknown mul-

tipliers the solution (30) is substituted into (28) and (29) to

get

λ0 = ln




a2∫

a1

exp
(
−

M∑

j=1

λjy
j
)
dy



, (31)

µ′
r =

a2∫

a1

yr exp



−
M∑

j=1

λjy
j



 dy

a2∫

a1

exp



−
M∑

j=1

λjy
j



 dy

, j = 1, . . . ,M. (32)

Next, the multipliers λ1, . . . , λM are computed by the least-

squared method minimizing the following sum of squares of

residuals, see [29]:

R =

M∑

r=1

R2
r =

M∑

r=1

(
1 − µ′

r

µr

)2

. (33)

In the current study the differential evolution algorithm

proposed by Storn and Price [30] has been applied to solve

this problem. The method is suitable for global optimization

and proves to be robust and efficient.

4. Description of the hybrid mechanical model

of the rotor-shaft system

In order to obtain sufficiently reliable results of theoretical

calculations for the rotor-shaft system, one-dimensional beam-

type finite element models are usually applied. Such models

are often characterized by relatively large numbers of degrees

of freedom, which makes them computationally troublesome,
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particularly when very many simulation cases have to be con-

sidered and the commonly applied degree of freedom reduc-

tion methods can lead to essential inaccuracies. To avoid the

abovementioned drawback and to maintain the obvious ad-

vantages of the finite element approach, in this paper, similar-

ly as in [31–34], the dynamic analysis of the entire rotating

system is performed by means of the one-dimensional hy-

brid structural model consisting of continuous visco-elastic

macro-elements and discrete oscillators. Using such a model

the rotor-shaft geometry as well as its material properties can

be described in an identical way as in the analogous men-

tioned above finite element model of the same structure. The

hybrid model is employed here for eigenvalue analyses as well

as for numerical simulations of lateral vibrations of the rotor-

shaft. In this model successive cylindrical segments of the

stepped rotor-shaft are represented by flexurally and torsion-

ally deformable cylindrical macro-elements of continuously

distributed inertial-visco-elastic properties. With an accuracy

that is sufficient for practical purposes, in the proposed hy-

brid model of the rotor-shaft system, some heavy rotors or

coupling disks can be substituted by rigid bodies attached to

the macro-element extreme cross-sections. Each journal bear-

ing is represented by a dynamic oscillator of two degrees of

freedom, where apart from the oil-film interaction also the

visco-elastic properties of the bearing housing and founda-

tion are taken into consideration. This bearing model makes

possible to represent with a relatively high accuracy kineto-

static and dynamic anisotropic and anti-symmetric properties

of the oil-film in the form of constant or variable stiffness

and damping coefficients. The complete mathematical formu-

lation and solutions for such hybrid models of the rotor-shaft

systems can be found e.g. in [31–33].

For relatively small magnitude of the rotor-shaft system

unbalance, e.g. due to residual static and dynamic unbalance

of the shaft segments and of the rotor-disks, the coupling

effect between the torsional and bending vibrations is usu-

ally negligible, which has been demonstrated in [31] and in

other publications written by numerous authors. Moreover,

since in majority of fluid-flow rotating machinery operating

in steady-state conditions the fluctuating components of dy-

namic torques transmitted by their rotor-shaft systems are very

small, in the carried out considerations only flexural excita-

tion due to unbalances causing bending vibrations is going to

be taken into account. Thus, simulations of torsional forced

vibrations will not be performed.

In the hybrid model flexural motion of cross-sections

of each visco-elastic macro-element is governed by the par-

tial differential equations derived using the Timoshenko and

Rayleigh rotating beam theory. In these equations the gyro-

scopic forces mutually coupling rotor-shaft bending vibrations

in the vertical and horizontal plane are contained. The anal-

ogous coupling effect caused by the system rotational speed

dependent shaft material damping is also taken into consider-

ation.

Similarly as in [31–33], mutual connections of the suc-

cessive macro-elements creating the stepped shaft as well as

their interactions with the supports and rigid bodies represent-

ing the heavy rotors are described by equations of boundary

conditions. These equations contain geometrical conditions of

conformity for translational and rotational displacements of

extreme macroelement cross-sections. The second group of

boundary conditions are dynamic ones, which in general con-

tain linear, nonlinear and parametric equations of equilibrium

for concentrated external forces, static and dynamic unbalance

forces and moments, inertial, elastic and external damping

forces, support reactions and gyroscopic moments. Shaft in-

teractions with discrete oscillators representing the shaft sup-

ports in journal bearings are also described by means of the

dynamic boundary conditions. Here, similarly as in [32, 33],

such boundary conditions contain anti-symmetrical terms with

cross-coupling oil-film stiffness components, which couple

shaft bending vibrations in two mutually perpendicular planes.

In these equations the stiffness and damping coefficients can

be constant or variable, when non-linear properties of the oil-

film are taken into consideration.

The solution for the forced bending vibration analysis has

been obtained using the analytical – computational approach

demonstrated in detail in [31–33]. Solving the differential

eigenvalue problem for the linearized orthogonal system and

an application of the Fourier solutions in the form of series in

orthogonal eigenfunctions leads to the set of modal equations

in the Lagrange coordinates

M0r̈(t) +D(Ω(t))ṙ(t) +K(Ω(t))r(t)

= F (Ω2(t),Θ(t)),
(34)

where

D(Ω(t)) =D0 +Dg(Ω(t)),

K(Ω(t)) = K0 +Kb +Kd(Ω(t)), Θ(t) =

t∫

0

Ω(τ)dτ.

The symbols M0, K0 denote, respectively, the constant di-

agonal modal mass and stiffness matrices, D0 is the constant

symmetrical damping matrix andDg(Ω(t)) denotes the skew-

symmetrical matrix of gyroscopic effects. Anti-symmetric

elastic properties of the journal bearings are described by the

skew-symmetrical matrix Kb. Anti-symmetric effects due to

Kelvin-Voigt material damping model of the rotating shaft are

expressed by the skew-symmetrical matrix Kd(Ω(t)) and the

symbol F (Ω2(t),Θ(t)) denotes the external excitation vec-

tor due to the unbalance and gravitational forces. The La-

grange coordinate vector r(t) consists of the unknown time

functions ξm(t) in the Fourier solutions, m = 1, 2, . . .. The

number of Eqs. (34) corresponds to the number of bending

eigenmodes taken into consideration in the range of frequen-

cy of interest. These equations are mutually coupled by the

out-of-diagonal terms in matrices D and K regarded as the

response-dependent external excitations expanded in series in

the base of orthogonal analytical eigenfunctions. A fast con-

vergence of the applied Fourier solution enables us to reduce

the appropriate number of the modal equations to solve in

order to obtain a sufficient accuracy of results in the given

range of frequency. Here, it is necessary to solve only 10–30
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coupled modal Eqs. (34), even in cases of complex mechan-

ical systems, contrary to the classical one-dimensional beam

finite element formulation usually leading to large numbers of

motion equations corresponding each to more than one hun-

dred or many hundreds degrees of freedom (if the artificial

and often error-prone model reduction algorithms are not ap-

plied). Thus, the proposed approach is much more convenient

for a stable and efficient numerical simulations. Moreover, due

to the natural, continuous distribution of inertial-visco-elastic

properties of the beam macro-elements the hybrid modeling

assures at least the same or even better representation of real

objects.

In a general case, i.e. for the variable in time shaft average

rotational speed Ω(t) during system start-ups or run-downs, in

order to obtain the system’s dynamic response Eqs. (34) can

be solved by means of a direct integration. However, for the

constant shaft rotational speed Ω and for constant stiffness and

damping coefficients of the bearing supports Eqs. (34) become

a system of linear ordinary differential equations with constant

coefficients and harmonic external excitation due to the resid-

ual unbalances. Then, in order to obtain the system’s steady-

state dynamic response, an analytical solution of Eqs. (34) is

very convenient. For the mentioned above harmonic excitation

the induced steady-state vibrations are also harmonic with the

same synchronous circular frequency Ω. Thus, the analytical

solutions for the successive modal functions ξm(t) contained

in vector r(t) can be assumed in the following form:

r(t) = G+C cos(Ωt) + S sin(Ωt), (35)

where vectors C, S contain respectively the modal cosine-

and sine-components of forced vibration amplitudes and vec-

tor G contains the modal components of the rotor-shaft static

deflection due to the gravitational load. Then, by introduc-

ing (35) into (34) simplified for Ω = const. one obtains the

following systems of linear algebraic equations:

K(Ω)G = Q,

(
K(Ω) − Ω2M0

)
C + ΩD(Ω)S = P (Ω2),

(
K(Ω) − Ω2M0

)
S − ΩD(Ω)C = R(Ω2),

(36)

where vectors P (Ω2),R(Ω2) contain the modal components

of unbalance amplitudes and vector Q contains the modal

components of the rotor-shaft static gravitational load. These

equations are very easy to solve with respect of the unknown

components of vectors C, S and G.

5. Numerical example:

the steam turbo-generator rotor-shaft

5.1. Model description. The methodology of vibration

analysis presented in Sec. 4 is applied here by construct-

ing numerical example of a rotor-shaft system of the typical

200 MW steam turbo-generator consisting of the single high-

(HP), intermediate- (IP) and low-pressure (LP) turbines as

well as of the generator-rotor (GEN). The rotor-shaft system

is supported by seven journal bearings, as shown in Fig. 1.

For the purpose of this study it seems to be sufficient to model

the considered stepped-rotor shaft of the total length 25.9 m

by means of ne = 49 continuous macro-elements, as an initial

approximation of its geometry. All geometrical parameters of

the successive real rotor-shaft segments as well as their mater-

ial constants have been determined using the detailed technical

documentation of this turbo-generator. The average stiffness

and damping coefficients of the oil film in the bearings as

well as the equivalent masses and stiffness and damping co-

efficients of the bearing housings are obtained by means of

measurements and identification performed on the real ob-

ject.

Fig. 1. Hybrid mechanical model of the steam turbo-generator rotor-

shaft system

By comparison of eigenvibration analyzes performed us-

ing Timoshenko’s and Rayleigh’s rotating beam theories for

the nominal rotational speed 3000 rpm, the shear effect tak-

en into consideration in the case of Timoshenko’s beam re-

sults in a little bit smaller natural frequency values than these

determined by means of Rayleigh’s beam model. In the fre-

quency range 0–150 Hz, which is the most important from

the engineering viewpoint, the respective differences slightly

exceed 3%. The eigenfunctions corresponding to these natural

frequencies and determined using both beam theories respec-

tively overlay each other. Therefore, one can conclude that

in this frequency range an application of Rayleigh’s rotating

beam theory for simulations of forced vibrations seems to be

sufficiently accurate.

Since typical steam turbo-generators are the devices op-

erating almost permanently in steady-state, out-of-resonance

working conditions during a majority of their life, their start-

ups and run-downs are rather rare exploitation phases. Thus,

in the considered case simulations of passages through lat-

eral vibration resonance zones are not necessary. Therefore,

the dynamic and stochastic analyses of the steam turbo-

generator rotor-shaft system are going to be carried out only

for the steady-state, out-of-resonance operation with the con-

stant nominal rotational speed 3000 rpm corresponding to the

excitation of bending vibrations by means of residual unbal-

ances with the synchronous frequency equal to 50 Hz. Ac-

cording to the above, computer simulations of forced bending

vibrations of the turbo-generator rotor-shaft system reduce to

solving the algebraic Eqs. (36). Here, for the assumed hybrid

model of this object in the frequency range of a practical inter-

est 0–500 Hz, 22 bending eigenmodes have been considered

in computing forced vibration amplitudes to solve Eqs. (36)

with a sufficiently high computational accuracy of the ob-

tained results.

5.2. PDF estimation. The uncertain parameters of the rotor-

shaft system are represented by 59 random variables. The

stiffness and damping coefficients of 7 journal bearings are
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modeled by normal random variables. It is assumed that their

standard deviations are related to the corresponding mean

(nominal) values by the coefficient of variation equal to 5%.

Therefore, there are 56 random variables that correspond to

the journal bearings, i.e. 7× (4 stiffness coefficients +4 damp-

ing coefficients). The remaining 3 variables account for ran-

dom values of the residual unbalances.

The rotor-shaft system of the considered turbo-generator

consists of the 3 units described in previous subsection, which

are independently manufactured and then mutually connect-

ed during on-site assembly process of the entire device. Each

of them is characterized by a combined cross-sectional struc-

ture consisting of the load carrying shaft core and of the

strip created by the turbine blade rims or generator windings,

respectively, attached along this core by means of a shrink-

fit connection. Thus, the residual unbalance distributions of

the HP-IP and LP turbines as well as of the generator rotor

are in principle not related to the machining process. Taking

this into account, it seems to be reasonable to assume that

the unbalance of each rotor-shaft unit is proportional to the

successive shaft segment diameters with the common propor-

tionality factor for all segments in the entire unit. For the 3

rotor-shaft units, this assumption results in 3 variables that

model the uncertainty of residual unbalances. The 3 propor-

tionality factors are given by realizations of log-normally dis-

tributed random variables. Based on the technical data for the

considered turbo-generator rotor-shaft system, the mean val-

ues of the 3 uncertain factors were estimated as: 5.6 · 10−5

for the HP and IP turbines, 2.0 · 10−5 for the LP turbine and

3.2 · 10−6 for the generator rotor. The coefficient of varia-

tion of these variables was taken equal to 10%. According

to this, each rotor-shaft unit is characterized by the common

phase shift angle for all unbalance amplitudes corresponding

to successive shaft cylindrical segments. The obtained in this

way 3 phase shift angles for each abovementioned rotor-shaft

units are not random, but they are determined from respective

identification measurements performed for the real object and

assumed equal to zero for the HP-IP turbine, 2.79 rad for the

LP turbine and zero for the generator rotor unit.

To get baseline reference values for the first four statistical

moments of maximal rotor-shaft lateral displacement a thor-

ough random sampling with the sample size N=1 000 000
was performed. The obtained estimations, see (5)–(8), are re-

spectively: Y = 0.09721 mm, σ̂Y = 0.00910 mm, ŜY =
0.42673 and K̂Y = 3.42533. With these reference values, it

is possible to examine the accuracy of MEP in order to ver-

ify, whether such an approximation is sufficient for further

comparative studies. In Fig. 2 there is shown that the MEP-

based PDF curve is very close to the empirical histogram.

In addition, the largest relative difference between values of

MEP-based cumulative density function (CDF) and the cor-

responding empirical CDF is only 0.63%. This seem to by a

good justification of using the MEP approximation as a refer-

ence PDF. Below, in Figs. 3–6 there are shown mean percent-

age estimation errors for the moments computed by RS, LHS

and SPCE methods. The mean percentage estimation error is

given as

MEE = E

(∣∣∣∣
mref −m

mref

∣∣∣∣

)
· 100%, (37)

where mref and m are respectively the reference value and

the computed value of the considered statistical moment.

Fig. 2. The maximal lateral displacement histogram obtained with

random sampling (sample size N = 1000 000) and the correspond-

ing MEP-based PDF

Fig. 3. The turbo-generator rotor shaft example. Mean relative per-

centage error of the mean value estimation of the maximal rotor-shaft

vibration amplitude obtained using RS, LHS and sparse PCE

Fig. 4. The turbo-generator rotor shaft example. Mean relative per-

centage error of the standard deviation estimation of the maximal

rotor-shaft vibration amplitude obtained using RS, LHS and sparse

PCE
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Fig. 5. The turbo-generator rotor shaft example. Mean relative per-

centage error of the skewness estimation of the maximal rotor-shaft

vibration amplitude obtained using RS, LHS and sparse PCE

Fig. 6. The turbo-generator rotor shaft example. Mean relative per-

centage error of the standard deviation estimation of the maximal

rotor-shaft vibration amplitude obtained using RS, LHS and sparse

PCE

The error statistics are based on 150 repetitions of a given

method for each value of the sample size N . The numbers

next to the graph points are the standard errors of the mean

error estimates. As it can be seen, the estimation obtained

with Latin hypercube sampling is always superior to the ran-

dom sampling irrespective of the sample size. It is interesting

to analyze the results corresponding to the SPCE method. In

the study the third order expansion was employed. According

to Eq. (16), the full PCE representation for n = 59 variables

consists of 37820 terms. Using the SPCE approach it is pos-

sible to greatly reduce this number by identifying about 350

significant terms (depending on the sample this number varies

from 200 to 500). It was therefore decided to evaluate the

SPCE estimation results for two sample sizes: N = 800 and

N = 1200, which are, respectively, 47 and 31 times lower than

the number of terms in the complete third order PC represen-

tation. SPCE based on the large samples (N = 1200) yields

the smallest mean percentage estimation errors for all con-

sidered statistical moments (only in the case of skewness LH

sampling leads to approximately the same estimation quality

as SPCE). On the other hand, in the case of standard deviation

and skewness the estimation error obtained for N = 800 is

significantly greater than the corresponding errors of the sam-

pling methods with the equal sample size. Hence, it can be

concluded that such relatively small samples (800 numerical

experiments compared to 37820 unknown coefficients) may

lead to substantial errors in PDF estimation.

Accounting for the poor estimation quality of all the con-

sidered methods in the case of a skewness estimation, see

Fig. 5, it was interesting to find out how these errors influ-

ence final shape of the PDF curves. In Figs. 7 and 8 there are

shown min-max estimation corridors corresponding to RS,

LHS and SPCE methods. For each value of the investigated

rotor-shaft response the corresponding sample minimal and

maximal PDF values were registered. They form the upper and

lower bounding lines presented in the figures. However, con-

trary to the reference line, these curves are not actual PDFs.

They establish envelopes containing all the PDF realizations

for considered estimation techniques. As it was supposed, due

to substantial estimation errors of some statistical moments

for N = 800 sample points, see Fig. 7, the scatter around the

reference PDF is quite significant. This may cause important

errors in estimating, in particular, “tail-based statistics” of the

response. On the other hand, for the sample size N = 1200,

Fig. 8, the PDF scatter is considerably reduced. A very narrow

envelope corresponding to the SPCE method tightly encloses

the reference PDF. In addition, a greater sample size leads to a

decrease of the PDF tail approximation error, which is shown

in Fig. 9. The presented box plots illustrate a small variance of

SPCE results with respect to the sampling methods, which de-

spite a little bias of this technique, leads to very good overall

performance in estimating high quantiles. It allows to con-

clude that the probabilistic design constraints defined as, e.g.,

P[Y < Ya] ≥ 0.99, where Ya is an admissible displacement,

can be evaluated with an acceptable accuracy. Therefore, the

SPCE method is well suited for the reliability-based design

optimization as well as for the robust design optimization of

rotor-shaft structures, with the design constraints imposed on

maximal lateral displacements.

Fig. 7. The MEP-based PDF envelopes for various methods of sta-

tistical moments estimation. Sample size N = 800
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Fig. 8. The MEP-based PDF envelopes for various methods of sta-

tistical moments estimation. Sample size N = 1200

Fig. 9. Box plots for MEP-based 0.99 quantile computation for

various methods of statistical moments estimation (sample size

N = 1200). The reference value is established by an extensive

(N = 1000 000) random sampling

The question that remains to be answered concerns the

sample size that would guarantee satisfactory PDF estima-

tion of random rotor-shaft responses. Here, using third order

SPCE and a relatively big number of random variables to

describe bearing parameters and residual unbalances, it was

shown that samples of the size N ≈ 20n provide sufficient

accuracy. This, however, may turn out to be too conservative

assumption when smaller stochastic models are employed.

6. Conclusions

The objective of this study was to examine the feasibility of

sparse polynomial chaos expansion method (SPCE) in esti-

mating probability density function of rotor shaft vibration

responses. The observed scatter of, e.g. the lateral vibration

amplitude, is mainly due to the uncertainty of residual un-

balances as well as random characteristics of stiffness and

damping coefficients of the journal bearings. An accurate es-

timation of the response probability distribution is essential

for the effectiveness of reliability-based design optimization

as well as robust design optimization, which are considered

as important elements of modern design practice.

The first four stochastic moments of the response estimat-

ed by SPCE and two sampling techniques (classical Monte

Carlo method and Latin hypercube sampling) were used as

inputs to the maximal entropy principle method (MEP) in or-

der to approximate the response’s probability density function

(PDF). MEP method turned out to be numerically stable and

well suited to accurately represent PDFs with an exponential

behavior, i.e. a distribution shape characteristic to the inves-

tigated vibration responses.

Accounting for a big number of random variables con-

stituting the stochastic model of the rotor-shaft system, the

complete third order polynomial chaos expansion is computa-

tionally too expensive and provides no practical alternative to

the simulation techniques. On the other hand, the SPCE ver-

sion of this method yields very accurate PDF estimation with

about 1% of this computational effort allowing for the optimal

selection of significant polynomial chaos expansion terms. In

the presented numerical example, which included 59 random

variables, the full PCE method required more than 32500 third

order terms. With the SPCE method this huge number can

be greatly reduced. Such an approach leads to considerably

higher computational accuracy in comparison with methods

based on the second order expansion only. This method can

be recommended for scatter analysis as well as reliability-

based design optimization and robust design optimization of

rotor-shaft systems.

The vibration analysis was carried out by means of the hy-

brid structural model consisting of one-dimensional beam-like

continuous visco-elastic macro-elements and discrete oscilla-

tors. Such a hybrid model proved to be very computationally

efficient and reliable, which is of a major importance in the

context of stochastic analysis.
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