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On a continuity of characteristic exponents
of linear discrete time-varying systems

ADAM CZORNIK, PIOTR MOKRY and MICHAŁ NIEZABITOWSKI

In this paper we present a sufficient condition for continuity of Lyapunov exponents of
discrete time-varying linear system. Basing on this result we show that Lyapunov exponents of
time-invariant systems depend continuously on the time-varying perturbations.
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1. Introduction

Consider the linear discrete time-varying system

x(n+1) = A(n)x(n),n­ 0 (1)

where (A(n))n∈N is a bounded sequence of invertible s-by-s real matrices such that se-
quence (A−1(n))n∈N is bounded. By ∥·∥ we denote the Euclidean norm in Rs and the
induced operator norm. The transition matrix is defined as

A(m) = A(m−1) · . . . ·A(0)

for m>0 and A(0) = I is the identity matrix. For an initial condition x0 the solution of
(1) is denoted by x(n,x0), so

x(n,x0) = A(n)x0.

Let a = (a(n))n∈N be a sequence of real numbers. The numbers (or the symbol ±∞)
defined as

λ(a) = limsup
n→∞

1
n

ln |a(n)|
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is called the characteristic exponent of sequence (a(n))n∈N. For x0 ∈ Rs, x0 ̸= 0 the
Lyapunov exponent λ(x0) of (1) is defined as characteristic exponent of (∥x(n,x0)∥)n∈N
therefore

λA(x0) = limsup
n→∞

1
n

ln∥x(n,x0)∥.

It is well known [2] that the set of all Lyapunov exponents of system (1) contains
at most s elements, say −∞ < λ1(A) < λ2(A) < .. . < λr(A) < ∞,r ¬ s and the set
{λ1(A),λ2(A), . . . ,λr(A)} is called the spectrum of (1). For each λi, i = 1, . . . ,r we con-
sider the following subspace of Rs

Ei = {v ∈ Rs : λ(v)¬ λi}

and we set E0 = {0}. The multiplicity ni of Lyapunov exponent λi is defined as dimEi−
dimEi−1. For a base V = {v1, . . . ,vs} of Rs we define the sum σV of Lyapunov exponents

σV =
s

∑
i=1

λ(vi).

It is known (see [11]) that if v1, . . . ,vs is a basis of Rs then the following Lyapunov
inequality holds:

limsup
n→∞

1
n

ln |detA(n)|¬
s

∑
l=1

λ(vl). (2)

The basis v1, . . . ,vs is called normal if for each i = 1, . . . ,s there exists a basis of Ei
composed of vectors {v1, . . . ,vs}. Formally, we should say that a basis is normal with
respect to family Ei, i = 1, . . . ,s. It can be shown (see [3], remark after Theorem 1.2.5)
that there always exist normal bases v1, . . . ,vs and w1, . . . ,ws (respectively of families Ei
and Fi) which are dual. It can be also shown (see [3], Theorem 1.2.3) that for normal
basis the sum σV of Lyapunov exponents is minimal and then, according to Lyapunov
inequality (see [11]), equal to

limsup
n→∞

1
n

ln |detA(n)|.

For a basis v1, . . . ,vs of Rs matrix V (n),n ∈ N whose columns are x(n,v1), . . . ,x(n,vs)
is called fundamental matrix of (1). For a fundamental matrix the kernel G(n,m) =
V (n)V −1(m),n,m ∈ N is called Green’s matrix of (1). If the base is normal, then the
fundamental and Green’s matrices are called normal.

Consider the values
λ′

1(A)¬ λ′
2(A)¬ . . .¬ λ′

s(A) (3)

of the Lyapunov exponents of (1), counted with their multiplicities. Together with (1)
we consider the following disturbed system:

y(n+1) = (A(n)+∆(n))y(n), (4)
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where (∆(n))n∈N is bounded sequence of s-by-s real matrices. Denote by λ′
1(A+∆) ¬

λ′
2(A+∆) ¬ . . . ¬ λ′

s(A+∆) the Lyapunov exponents of (4) counted with their multi-
plicities.

Under the influence of the perturbation (∆(n))n∈N, the characteristic exponents of
(1) vary, in general, discontinuously. It is possible, that ∥∆(n)∥ →

n→∞
0 and the spectra of

systems (1) and (4) are different (see Example with calculations presented in [9, Section
V]). In this paper we will propose certain conditions that guarantee the continuity of the
spectrum with respect to the coefficients of (1).

This problem for continuous-time case is known as the problem of stability of cha-
racteristic exponents and it is completely solved. Necessary and sufficient conditions for
the stability of Lyapunov exponents were published by Bylov and Isobov (joint papers
[5] and [6]) and Milionschikov [14].

2. Main results

We start with the following definition.

Definition 2 The Lyapunov exponents of system (1) are called stable if for any ε > 0
there exists δ > 0 such that inequality

sup
n∈N

∥∆(n)∥< δ (5)

implies the inequality ∣∣λ′
i (A)−λ′

i (A+∆)
∣∣< ε , i = 1, . . . ,s.

Taking into consideration the definition shown above, we can interpret it as a defi-
nition of continuity of Lyapunov exponents as functions of coefficients with the matrix
norm as a metric. Indeed, if we take L : D → Cn, where D is a family of matrices se-
quences (A(n))n∈N , we can say, that L is a continuous if, and only if, for all A ∈ D and
ε > 0 there exists δ > 0, such that for all Ā ∈ D we have

∥A− Ā∥¬ δ ⇒ ∥L(A)−L(Ā)∥< ε,

where for Lyapunov exponents we use metric

d(λ,µ) = min
σ

max
1¬ j¬n

|λ j −µσ( j)|, λ = (λ1, . . . ,λn), µ = (µ1, . . . ,µn).

To formulate our main results for a Green’s matrix of (1) denote by xi(m,n) the
i-th column of it and by µi characteristic exponent of the sequence (∥xi(m,n)∥)m∈N,
i = 1, . . . ,s. The next theorem [10] constitutes discrete-time version of Malkin’s (see
[13]) sufficient condition for continuity of Lyapunov exponents.
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Theorem 3 Suppose that for certain Green’s G(m,n) matrix of (1) and any γ > 0 there
exists d > 0 such that

∥xi(m,n)∥¬ d exp [(µi + γ)(m−n)] (6)
for m,n ∈ N,m­ n, i = 1, . . . ,s

∥xi(m,n)∥¬ d exp [(µi − γ)(m−n)] (7)
for m,n ∈ N,n­ m, i = 1, . . . ,s.

Then the Lyapunov exponents of system (1) are stable.

Proof The proof of the theorem consists of the following three parts:

1. the shift of the characteristic exponents to the right is small,

2. there exists limit limn→∞
1
n ln |detA(n)|= ∑s

i=1 µi,

3. the shift of the characteristic exponents to the left is small.

1. Let n0 ∈N. According to the variation of constant formula [1] any solution y(n,y0)
of (4) satisfying y(n0,y0) = y0 satisfies the equation

y(n,y0) =

{
G(n,n0)y0 +∑n

l=n0+1 G(n, l)∆(l −1)y(l −1,y0) for n­ n0

G(n,n0)y0 −∑n0
l=n+1 G(n, l)∆(l −1)y(l −1,y0) for n < n0.

(8)

For system (4) consider a normal basis v1, . . . ,vs and consider s solutions yi(n,vi),
i = 1, . . . ,s of (4) satisfying y(n0,vi) = vi, i = 1, . . . ,s. Assume that the numeration of
the basis is such that

λA(vi)¬ λA(vi+1), i = 1, . . . ,s−1.

From (8) we have

yi(n,vi) =

{
xi(n,vi)+∑n

l=n0+1 G(n, l)∆(l −1)yi(l −1,vi) for n­ n0

xi(n,vi)−∑n0
l=n+1 G(n, l)∆(l −1)yi(l −1,vi) for n < n0.

(9)

Take any ε > 0 such that
ε < (λA(vs)−λA(vi))/2 (10)

for all i = 1, . . . ,s such that λA(vs) ̸= λA(vi). For such ε there exists positive constant c
such that

∥xi(n,vi)∥¬ cexp [(λA(vi)+ ε)n]

for all i = 1, . . . ,s and n ∈ N. We will show that

∥yi(n,vi)∥¬ 2cexp [(λA(vi)+ ε)n] (11)
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for all i = 1, . . . ,s and n ∈N. For n = 0 the inequality (11) is true. Consider first the case
of i such that λA(vs) = λA(vi). Suppose that (11) holds for n = 0, . . . , p−1. Let estimate
∥yi(p,vi)∥. According to the first inequality in (9) with n0 = 0 we have

∥yi(p,vi)∥¬ ∥xi(p,vi)∥+
p

∑
l=1

∥G(p, l)∥ ∥∆(l −1)∥ ∥yi(l −1,vi)∥.

For γ = ε/2 let find d such that (6) and (7) hold. Then

∥yi(p,vi)∥¬ cexp [(λA(vi)+ ε)p]+

+2cdδ
p

∑
l=1

exp [(λA(vi)+
ε
2
)(p− l)]exp [(λA(vi)+ ε)(l −1)]¬

¬ cexp [(λA(vi)+ ε)p]+
2cdδe−λA(vi)

e
ε
2 −1

exp [(λA(vi)+ ε)p].

Taking

δ <
e

ε
2 −1

2cde−λA(vi)

we get that (11) holds for n = p. Consider now the case of i such that λA(vs) > λA(vi).
Let estimate ∥yi(p,vi)∥. According to second equality in (9) with n0 = ∞ we have

∥yi(p,vi)∥¬ ∥xi(p,vi)∥+
∞

∑
l=p+1

∥G(p, l)∥ ∥∆(l −1)∥ ∥yi(l −1,vi)∥.

By (6) and (10) we have

∥yi(p,vi)∥¬ cexp [(λA(vi)+ ε)p]+

+2xdδ
∞

∑
l=p+1

exp [(λA(vs)−
ε
2
)(p− l)]exp [(λA(vi)+ ε)(l −1)].

As in previous case we obtain that (11) is true for n = p and sufficiently small δ. It is
also clear, from the estimates for

n

∑
l=1

G(n, l)∆(l −1)yi(l −1,vi),

that for sufficiently small δ vectors yi(0,vi), i = 1, . . . ,s differ little from the vectors vi,
i = 1, . . . ,s and therefore they are linearly independent. Moreover, from the estimates
(11) we obtain

λA+∆(vi)¬ λA(vi)+ ε.
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If basis v1, . . . ,vs is not normal for (4), then, by passing to normal basis, the exponents
can only diminish; therefore, we have

λ′
i(A+∆)¬ λ′

i(A)+ ε (12)

for i = 1, . . . ,s.

2. Using Hadamard’s inequality and (6) we have

|detG(0,n)|¬ ds
s

∏
i=1

exp [(µi − γ)(0−n)] = ds exp [−n
s

∑
i=1

µi]exp [nγs]

and therefore

liminf
n→∞

1
n

ln |detA(n)| = − limsup
n→∞

1
n
(− ln |detA(n)|) =

− limsup
n→∞

1
n
(ln |detA−1(n)|) = − limsup

n→∞

1
n
(ln |detG(0,n)|)­

­ γs+
s

∑
i=1

µi (13)

Using the Lyapunov inequality
s

∑
i=1

µi ­ limsup
n→∞

1
n
(ln |detA(n)|),

combining the above result with (13) and taking into account, that γ is arbitrarily small,
we obtain

limsup
n→∞

1
n

ln |detA(n)|=
s

∑
i=1

µi =
s

∑
i=1

λ′
i(A). (14)

3. Applying the Lyapunov inequality (2) to the disturbed system (4) we have
s

∑
i=1

λ′
i(A+∆)­ limsup

n→∞

1
n

n

∑
i=1

ln |det(A(n)+∆(n))|­

limsup
n→∞

1
n

n

∑
i=1

ln |detA(n)(I +A−1(n)∆(n))|=

s

∑
i=1

λ′
i(A)+ limsup

n→∞

1
n

n

∑
i=1

ln |det(I +A−1(n)∆(n))|, (15)

where I is the identity matrix of size s-by-s. Fix ε > 0. Since the sequence (A−1(n))n∈N
is bounded, then there exists δ1 > 0 such that for all matrices X such that ∥X∥ < δ1 the
following inequality is true

| ln |det(I +A−1(n)X)| |¬ ε
s



ON A CONTINUITY OF CHARACTERISTIC EXPONENTS
OF LINEAR DISCRETE TIME-VARYING SYSTEMS 23

for all n ∈N. For the perturbation satisfying (5) with δ1, we have from (15) the following
inequality

s

∑
i=1

λ′
i(A+∆)­

s

∑
i=1

λ′
i(A)−

ε
s
. (16)

Moreover, according to (12), we can find δ2 > 0 such that λ′
i(A+∆) ¬ λ′

i(A)+
ε
s for

i = 1, . . . ,s and
sup
n∈N

∥∆(n)∥< δ2.

Consider now perturbations (∆(n))n∈N with δ = min(δ1,δ2). Introduce γi > 0 such that

λ′
i(A+∆) = λ′

i(A)+
ε
s
− γi, i = 1, . . . ,s. (17)

By substituting this expression to (16) we obtain(
1+

1
s

)
ε­

s

∑
i=1

γi ­ γi.

From this bound and (17) we have

λ′
i(A+∆)­ λ′

i(A)− ε,

which ends the proof.

Using this result we will show that the Lyapunov exponents of time-invariant system
are stable.

Theorem 4 Lyapunov exponents of time-invariant system

x(n+1) = Ax(n) (18)

with invertible matrix A are stable.

Proof Using the theorem, shown with proof in [12, page 239], we can represent the
matrix A as exponent of a matrix B

A = eB.

In [12] the matrix B is called a logarithm of A. The transition matrix of the system (18)
can be presented in the form:

A(m,n) = Am−n = eB(m−n).

Let us introduce a matrix S that transforms B to the Jordan canonical form,

C = S−1BS = diag[Jρ1(λ1), . . . ,Jρk(λk)],
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where λ1, . . . ,λk are the eigenvalues of the matrix B (not necessarily distinct), Jv(λ) is
the Jordan block of order v, and ∑k

i=0 ρi = s. Hence,

eB(m−n) = SeC(m−n)S−1. (19)

Moreover,
eC(m−n) = diag

[
eJρ1 (λ1)(m−n), . . . ,eJρk (λk)(m−n)

]
, (20)

where

eJv(λ)(m−n) = eλ(m−n)



1 · · · 0

m−n
...

...
. . .

...
(m−n)v−1

(v−1)! · · · m−n 1


.

Each element of the matrix expC(m−n) satisfies the estimates (6) and (7). Indeed, it has
the following general form:

1
l!
(m−n)leλ(m−n), l = 0,1, . . . ,s−1 . (21)

The inequalities (6) and (7) for this function have the form

| 1
k!(m−n)keλ(m−n)|¬ ae(Reλ+γ)(m−n), m­ n
| 1

k!(m−n)keλ(m−n)|¬ ae(Reλ−γ)(m−n), n­ m.
(22)

Dividing by the exponent, we obtain

| 1
k!(m−n)k|¬ aeγ(m−n), m­ n
| 1

k!(m−n)k|¬ aeγ(n−m), n­ m.

Both inequalities are reduced to a single one, and there exists a constant a depending on
γ and independenting of n that realizes the inequality 1

k! ¬ aexp(γθ),θ > 0, namely

a = max
θ∈R+

1
k!

θk exp(−γθ).

Let us return now to the matrix (19):

eB(m−n) =V (m)S−1 =

= {v(1)1 (m), . . . ,v(1)ρ1 (m),v(2)1 (m), . . . ,v(2)ρ2 (m), . . . ,v(k)1 (m), . . . ,v(k)ρk (m)}S−1.
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The columns of the matrix V (t) are solutions of system (1). They are divided into k
groups. The first one is the result of multiplication of the matrix S by the first ρ1 columns
of the matrix eC(m−n), etc., and the last one is the result of multiplication of S by the last
ρk columns of the matrix eC(m−n). The solutions of the m-th group have the characteristic
exponent

Reλ j, j = 1,2, . . . ,k.

Multiplying the matrix V (t) by S−1 from the right, we have

eB(m−n) = {x1(m,n),x2(m,n), . . . ,xs(m,n)},

where each vector xi(m,n) is a linear combination of the solutions vi(m), . . . ,vs(m).
Therefore, the components of any solution xi(m,n) represent linear combinations of se-
quences of the form (21) with coefficients depending on the constant matrices S and S−1.
For each of these functions, the estimates (22) are satisfied and the inequalities can only
be strengthened if in the right-hand side Reλ is replaced with the maximal exponent of
the linear combination, i.e., with the exponent of the solution xi(m,n). The constant a
changes its value because of the multiplication by the constant matrices S and S−1. Esti-
mating the vectors xi(m,n), i = 1, . . . ,s, component-wise, we verify that inequalities (6)
and (7) hold.

Corollary 5 Lyapunov exponents of time-invariant system (18) are stable.

Proof According to the Theorem VI.1.2 in [4, page 154] eigenvalues of the matrix
are continuous as functions of coefficients. It is also known, that eigenvalues of matrix
B = cA+dI, where c,d ∈ R,c ̸= 0, are equal to µ = cλ+d, where λ are eigenvalues of
matrix A.

Consider now matrix X = A+ηI, where |η| /∈ σ(A) (where σ(A) is a spectrum of
matrix A). In this case matrix X does not have eigenvalue equals 0, so it is nonsingular.

Using Theorem (4) above dependences we can write that for all ε > 0 there exists
δ1 > 0, that if only |δ|< δ1 and |δ| /∈ σ(A) then

|λ′
i(A+δI)−λ′

i(A)|<
ε
2

(23)

for all i ∈ {1, . . . ,s}.
Consider now δ1 lesser than the minimal, nonzero module of matrix A eigenvalue.
We will show now, that for all ε > 0 there exists δ2, 0 < δ2 < δ1, that for η < δ2

sup
n∈N

∥∆(n)−ηI∥< δ2 ⇒ |λ′
i(A+∆)−λ′

i(A+ηI)|< ε
2

(24)

for all i ∈ {1, . . . ,s}.
Observe, that assumption shown above can be replaced by

sup
n∈N

∥∆(n)∥< δ2

2
,η =

δ2

2
,δ2 < δ1 .
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With this assumption the matrix A is nonsingular. Moreover supn∈N ∥∆(n)−ηI∥¬ δ2
2 +

η = δ2, so, according to Theorem 4 dependence (24) occurs.
With defined η,δ1,δ2 we have:

|λ′
i(A+∆)−λ′

i(A)|= |λ′
i(A+∆)−λ′

i(A+ηI)+λ′
i(A+ηI)−λ′

i(A)|¬

¬ |λ′
i(A+∆)−λ′

i(A+ηI)|+ ε
2
= |λ′

i(A+ηI +∆−ηI)−λ′
i(A+ηI)|+ ε

2
¬

¬ ε
2
+

ε
2
= ε

for all i ∈ {1, . . . ,s}.

3. Conclusion

In this paper we have presented the sufficient condition for continuity (called here as
a stability) of Lyapunov exponents of discrete time-varying linear system. Basing on this
condition it has been also prooved that Lyapunov exponents of time-invariant systems
depend continuously on the time-varying convergent to zero perturbations. The results
maybe used to analyse stability problem for the systems with uncertainties ( [7], [15]).

References

[1] R.P. AGARWAL: Difference equations and inequalities. Theory, methods, and ap-
plications, Marcel Dekker, New York, 2000.

[2] L. BARREIRA and Y.B. PESIN: Lyapunov exponents and smooth ergodic theory.
University Lectures Series, 23, AMS Bookstore, 2001.

[3] L. BARREIRA and C. VALLS: Stability theory and Lyapunov regularity. J. of Dif-
ferential Equations, 232(2), (2007), 675-701.

[4] R. BHATIA: Matrix analysis. Springer-Verlag New York, Inc., 1997.

[5] B.F. BYLOV and N.A. ISOBOV: Necessary and sufficient conditions for stability
of characteristic exponents of a diagonal system. Diff. Uravn., 5(10), (1969), 1785-
1793.

[6] B.F. BYLOV and N. A. ISOBOV: Necessary and sufficient conditions for stability
of characteristic exponents of a linear system. Diff. Uravn., 5(10), (1969,) 1794-
1803.

[7] A. CZORNIK and A. NAWRAT: On the bounds on the solutions of the algebraic
Lyapunov and Riccati equations. Archives of Control Sciences, 10(3/4), (2000),
197-244.



ON A CONTINUITY OF CHARACTERISTIC EXPONENTS
OF LINEAR DISCRETE TIME-VARYING SYSTEMS 27

[8] A. CZORNIK, P. MOKRY and A. NAWRAT: On the exponential exponents of dis-
crete linear systems. Linear Algebra and its Applications, 433(4), (2010), 867-875.

[9] A. CZORNIK, P. MOKRY and A. NAWRAT: On the sigma exponent of discrete
linear systems. IEEE Trans. on Automatic Control, 55(6), (2010), 1511-1515.

[10] A. CZORNIK, A. NAWRAT and M. NIEZABITOWSKI: On the stability of Lyapunov
exponents of discrete linear systems. To be submitted.

[11] V.B. DEMIDOVICH: Stability criterion for difference equation, Diff. Uravn., 5(7),
(1969), 1247-1255, 1969, (in Russian).

[12] F.R. GANTMACHER: The theory of matrices. 1 3rd ed. Harlow, England, Addison-
Wesley, 1999.

[13] I.G. MALKIN: Theory of stability of motion. Nauka, Moscow, 1966, (in Russian)

[14] V.M. MILIONSCHIKOV: Structurally stable properties of linear systems of differ-
ential equations. Diff. Uravn., 5(10), (1969), 1775-1784.
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