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Positivity of a class of fractional descriptor continuous-time

nonlinear systems
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Abstract. The positivity of a class of fractional descriptor continuous-time nonlinear systems is addressed by the use of the Weierstrass-

Kronecker decomposition of the pencil of linear part of nonlinear system. Sufficient conditions for the positivity are established and illustrated

by an example of fractional continuous-time descriptor nonlinear systems.
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1. Introduction

In positive systems inputs, state variables and outputs take on-

ly non-negative values. Examples of positive systems are in-

dustrial processes involving chemical reactors, heat exchang-

ers and distillation columns, storage systems, compartmental

systems, water and atmospheric pollution models. A variety

of models having positive linear behavior can be found in en-

gineering, management science, economics, social sciences,

biology and medicine. An overview of state of art in positive

systems theory is given in [1–3].

Descriptor (singular) linear systems have been considered

in many papers and books [4–13]. The eigenvalues and in-

variants assignment by state and output feedbacks have been

investigated in [8, 9, 12, 14]. The positive linear systems with

different fractional orders have been addressed in [15–17].

Selected problems in theory of fractional linear systems has

been given in monograph [16].

Descriptor standard positive linear systems by the use of

Drazin inverse has been addressed in [4–6, 17, 18]. The check-

ing of the positivity of descriptor linear systems is addressed

in [5, 11, 15]. The stability of positive descriptor systems

has been investigated in [14, 19] and the stability of fraction-

al linear systems with delays of the retarded type has been

investigated in [20] and of linear systems consisting of n sub-

systems with different fractional orders in [21]. The practi-

cal stability of positive fractional discrete-time systems has

been analyzed in [22]. The descriptor standard and positive

discrete-time nonlinear systems have been considered in [23]

and the stability of a class of positive nonlinear systems in

[24].

In this paper sufficient conditions for the positivity of the

fractional descriptor continuous-time nonlinear systems will

be presented.

The paper is organized as follows. In Sec. 2 sufficient

conditions for the positivity of the fractional descriptor non-

linear systems are established by the use of the Weierstrass-

Kronecker decomposition of the pencil of linear part of non-

linear system. An illustrating example of positive fractional

descriptor nonlinear system is presented in Sec. 3. Conclud-

ing remarks are given in Sec. 4.

The following notation will be used: ℜ – the set of real

numbers, ℜn×m – the set of n × m real matrices, Z+ – the

set of nonnegative integers, ℜn×m
+ – the set of n × m ma-

trices with nonnegative entries and ℜn
+ = ℜn×1

+ , Mn – the

set of n×n Metzler matrices (real matrices with nonnegative

off-diagonal entries), In – the n × n identity matrix.

2. Positivity of fractional descriptor

nonlinear systems

The following Caputo definition of the fractional derivative is

used [16]

0D
α
t f(t) =

dαf(t)

dtα
=

1

Γ(1 − α)

t
∫

0

ḟ(τ)

(t − τ)α
dτ ,

0 < α < 1,

(1)

where α ∈ ℜ is the order of the derivative ḟ(τ) =
df(τ)

dτ
and

Γ(x) =

∞
∫

0

e−ttx−1dt is the gamma function.

Consider the fractional descriptor nonlinear system

E
dαx(t)

dtα
= Ax(t) + f(x(t)), (2)

where x(t) ∈ ℜn is the state vector, f(x(t)) ∈ ℜn is the con-

tinuous vector function of x(t) and E, A ∈ ℜn×n. For prop-

erties of linear approximations of the system (2) see e.g. [25].

It is assumed that det E = 0 and the

det[Eλ − A] 6= 0 for some λ ∈ C

(the field of complex numbers).
(3)

It is well-known [13, 23] that if (3) holds then there exists

a pair of nonsingular matrices P, Q ∈ ℜn×n such that
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P [Eλ − A]Q =

[

In1
0

0 N

]

λ −

[

A1 0

0 In2

]

(n1 + n2 = n),

(4)

where n1 is equal to the degree of the polynomial det[Eλ −

A], A1 ∈ ℜn1×n1 , N ∈ ℜn2×n2 is a nilpotent matrix with the

index µ (i.e. Nµ = 0 and Nµ−1 6= 0).
It is assumed that the matrix Q is a monomial matrix (in

each row and each column only one entry is positive and the

remaining entries are zero).

Premultiplying (2) by the matrix P ∈ ℜn×n, introducing

the new state vector

x(t) = Q−1x(t) =

[

x1(t)

x2(t)

]

,

x1(t) =













x11(t)

x12(t)
...

x1n1
(t)













,

x2(t) =













x21(t)

x22(t)
...

x2n2
(t)













(5)

and using (4) we obtain

dαx1(t)

dtα
= A1x1 + f1(x(t)), (6a)

N
dαx2(t)

dtα
= x2 + f2(x(t)), (6b)

where

Pf(x(t)) = Pf [Qx(t)] =

[

f1(x(t))

f2(x(t))

]

,

f1(x(t)) ∈ ℜn1 , f2(x(t)) ∈ ℜn2 .

(6c)

From (5) it follows that x(t) ∈ ℜn
+, t ≥ 0 for x(t) ∈ ℜn

+,

t ≥ 0 if and only if the matrix Q ∈ ℜn×n
+ is monomial and

Q−1 ∈ ℜn×n
+ .

If f1(x(t)) is given then the solution of Eq. (6a) has the

form [16]

x1(t) = Φ0(t)x10 +

t
∫

0

Φ(t − τ)f1(x(τ))dτ , (7a)

where

Φ0(t) =

∞
∑

k=0

Ak
1tkα

Γ(kα + 1)
, (7b)

Φ(t) =
∞
∑

k=0

Ak
1t(k+1)α−1

Γ[(k + 1)α]
. (7c)

Note that if A1 ∈ Mn1
than φ0(t) ∈ ℜn1×n1

+ for t ≥ 0. Using

Picard method in similar way as in [24] it can be shown that

x1(t) ∈ ℜn1

+ , t ≥ 0 if f1(x(t)) ∈ ℜn1

+ , x(t) ∈ ℜn
+, t ≥ 0 and

x10 ∈ ℜn1

+ .

To simplify the notation it is assumed that the matrix N

in (6b) has the form

N =

















0 1 0 ... 0

0 0 1 ... 0
...

...
...

. . .
...

0 0 0 ... 1

0 0 0 ... 0

















∈ ℜn2×n2 (8)

and

f2(x(t)) =













f21(x(t))

f22(x(t))
...

f2n2
(x(t))













∈ ℜn2

+ for x(t) ∈ ℜn
+,

t ≥ 0,

f2n2
(x(t)) – arbitrary

f2n2−1(x(t)) = f2n2−1(x1(t), x2n2
(t))

...

f22(x(t)) = f21(x1(t), x2n2
(t), ..., x23(t)).

(9)

From (6b), (8) and (9) we have

















0 1 0 ... 0

0 0 1 ... 0
...

...
...

. . .
...

0 0 0 ... 1

0 0 0 ... 0

















dα

dtα













x21(t)

x22(t)
...

x2n2
(t)













=













x21(t)

x22(t)
...

x2n2
(t)













−















f21(x1(t), x2n2
(t), ..., x22(t))

f22(x1(t), x2n2
(t), ..., x23(t))

...

f2n2
(x(t))















(10)

and

x2n2−1(t) =
dαx2n2

(t)

dtα

+ f2n2−1(x1(t), x2n2
(t))

x2n2−2(t) =
dαx2n2−1(t)

dtα

+ f2n2−2(x1(t), x2n2
(t), x2n2−1(t))

...

x21(t) =
dαx22(t)

dtα

+ f21(x1(t), x2n2
(t), ..., x22(t))

(11)

Note that x2n2
(t) and f2n2

(x(t)) are arbitrary.

Therefore, the following theorem has been proved.

Theorem 1. The fractional descriptor nonlinear system (2) is

positive if the following conditions are satisfied
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1) the matrix Q ∈ ℜn×n
+ is monomial, A1 ∈ Mn1

and

f1(x(t)) ∈ ℜn1

+ for x(t) ∈ ℜn
+,

2) the vector function f2(x(t)) satisfies the condition (9).

The considerations can be easily extended to the case

when the matrix N in (6b) has the form

N = block diag[N1, ..., Nq], q ≥ 1 (12)

and Nk for k = 1, ..., q has the form (8).

3. Example

Consider the fractional descriptor nonlinear system (2) with

E =











0 2 1 0

1 1 0 0

1 1 1 0

0 0 2 0











,

A =











0 2 0 0.5

2 1 2 0

2 1 0 0.5

0 0 4 1











,

f(x(t))=

















x1(t)x2(t) + 2x2
3(t)

x2
1(t) + 4x2

2(t)

x1(t)x2(t) + 2x2
3(t)

2x1(t)x2(t) + 2x2
1(t) + 8x2

2(t) + 4x2
3(t)

















.

(13)

We shall show that this system is positive one.

The pencil of the system is regular since

det[Eλ − A] =

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 2λ − 2 λ −0.5

λ − 2 λ − 1 −2 0

λ − 2 λ − 1 λ −0.5

0 0 2λ − 4 −1

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 8(λ − 1)(λ − 2).

(14)

In this case the matrices P and Q have the form

P =











1 0.5 −0.5 −0.25

−0.5 0.25 0.75 −0.125

0 −1 1 0.5

0 0.5 −0.5 0.25











,

Q =











0 1 0 0

0.5 0 0 0

0 0 0 0.5

0 0 1 0











(15)

and

[Eλ − A] = P [Eλ − A]Q

=











1 0.5 −0.5 −0.25

−0.5 0.25 0.75 −0.125

0 −1 1 0.5

0 0.5 −0.5 0.25











·











0 2λ − 2 λ −0.5

λ − 2 λ − 1 −2 0

λ − 2 λ − 1 λ −0.5

0 0 2λ − 4 −1











·











0 1 0 0

0.5 0 0 0

0 0 0 0.5

0 0 1 0











=











1 0 0 0

0 1 0 0

0 0 0 1

0 0 0 0











·λ −











1 0 0 0

0 2 0 0

0 0 1 0

0 0 0 1











, n1 = n2 = 2,

(16)

[

f1(x(t))

f2(x(t))

]

=











1 0.5 −0.5 −0.25

−0.5 0.25 0.75 −0.125

0 −1 1 0.5

0 0.5 −0.5 0.25











·















x1(t)x2(t) + 2x2
3(t)

x2
1(t) + 4x2

2(t)

x1(t)x2(t) + 2x2
3(t)

2x1(t)x2(t) + 2x2
1(t) + 8x2

2(t) + 4x2
3(t)















=













0

0

x11(t)x12(t) + x2
22(t)

x2
11(t) + x2

12(t)













.

(17)

Using the new state vector

x(t) =











x1(t)

x2(t)

x3(t)

x4(t)











= Q−1x(t)

=











0 2 0 0

1 0 0 0

0 0 0 1

0 0 2 0





















x1(t)

x2(t)

x3(t)

x4(t)











=











2x2(t)

x1(t)

x4(t)

2x3(t)











(18)

and (6) we obtain

dα

dtα

[

x11(t)

x12(t)

]

=

[

1 0

0 2

] [

x11(t)

x12(t)

]

(19)
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[

0 1

0 0

]

dα

dtα

[

x21(t)

x22(t)

]

=





x21(t)

x22(t)



 −





x11(t)x12(t) + x2
22(t)

x2
11(t) + x2

12(t)



.

(20)

Taking into account that in this case f1(x(τ)) = 0 from (7a)

and (7b) we obtain




x11(t)

x12(t)



 =
∞
∑

k=0

tkα

Γ(kα + 1)

·





1kα 0

0 2kα









x11(0)

x12(0)



,

(21)

where




x11(0)

x12(0)



 =





0 2

1 0









x1(0)

x2(0)



 =





2x2(0)

x1(0)



 (22)

for given initial conditions

x(0) = [x1(0), x2(0), x3(0), x4(0)]T

and T denotes the transpose.

From (21) and (22) it follows that




x11(t)

x12(t)



 ∈ ℜ2
+ for t ≥ 0

and





x11(0)

x12(0)



 ∈ ℜ2
+.

From (20) and (13) we have

x22(t) = x2
11(t) + x2

12(t),

x21(t) =
dα

dtα
x22(t) + x11(t)x12(t) + x2

22(t)

=
1

Γ(1 − α)

t
∫

0

ẋ22(τ)

(t − τ)α
dτ+x11(t)x12(t) + x2

22(t).

(23)

From (23) it follows that also x22(t) ∈ ℜ+ and x21(t) ∈ ℜ+

for t ≥ 0.

Therefore, from (18) we have x(t) = Qx(t) ∈ ℜ4
+ for

t ≥ 0, x(0) ∈ ℜ4
+ and the fractional descriptor nonlinear

system (2) with (13) is positive one.

Note that the system satisfies the conditions of Theorem 1.

4. Concluding remarks

The positivity of a class of fractional descriptor continuous-

time nonlinear systems has been addressed. Sufficient condi-

tions for the positivity of the class of fractional descriptor non-

linear systems has been established. The conditions has been

illustrated on an example of fractional descriptor nonlinear

systems. An open problem is an extension of the consider-

ations to the fractional descriptor continuous-time nonlinear

systems described by the equation

E
dαx(t)

dtα
= Ax(t) + f(x(t)) + g(x(t))u(t),

where

x(t) ∈ ℜn, u(t) ∈ ℜn,

t ≥ 0, E, A ∈ ℜn×n,

det[Eλ − A] 6= 0, f(x(t)) ∈ ℜn,

g(x(t)) ∈ ℜn, t ≥ 0.
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