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The selected problems of controllability of discrete-time switched

linear systems with constrained switching rule
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Abstract. In this paper the controllability problem for discrete-time linear switched systems is considered. The main goal is to find a control

signal that steers any initial state to a given final state independently of the switching signal. In the paper, it is assumed that there are some

constraints posed on the switching signal. Moreover, we present a necessary and sufficient conditions of some kinds of controllability. Three

types of controllability, namely: from zero initial state to any final state, from any initial state to zero final state and from any initial state

to any final state are considered. Finally, three illustrative examples are shown.
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1. Introduction

Hybrid systems are the kind of the dynamical systems that

connect simultaneously several kinds of dynamical behaviours

in different parts of the system (e.g. discrete-time, continuous-

time, jump phenomena and others). These systems are one of

the most popular in the last decade (see e.g. [1–8]). Exam-

ples of such systems include constrained robotic systems [9],

sampled-data systems [10], discrete event systems [11], intel-

ligent vehicles/ highway systems [12] and many other types

of systems [5, 6].

Switched systems are hybrid systems that consist of sever-

al subsystems. The switchings between these subsystems are

dependent on the switching policy. A special class of switch-

ed systems are linear systems. They provide a framework that

connects the linear systems and the complex and/or uncertain

systems. Moreover, the study of switched linear systems pro-

vides additional insights into some long-standing and sophis-

ticated problems, such as intelligent control, adaptive control

and robust analysis.

Theoretical examination of switched linear systems is

difficult due to their complex dynamics. Switching makes

these systems much more complicated than standard-time in-

variant or even time-varying systems. Many intricated be-

haviours/dynamics and fundamentally new properties, which

standard systems do not have, have been demonstrated on

switched linear systems. From the control system design point

of view, switching brings an additional degree of freedom in

control system design. Switching rules, in addition to con-

trol laws, may be utilized to manipulate switched systems to

achieve a better performance of a system. This can be seen as

an added advantage for control design to attain certain control

purposes like stabilizability or controllability.

The controllability problem is one of the most important

concept in mathematical control theory [13–17]. In general,

the controllability means, that it is possible to control dynam-

ical system from an arbitrary initial state to an arbitrary final

state using the set of admissible controls.

Systematic study of such a problem was started in the

1960’s, when the theory of controllability based on the state

space description for both time-invariant and time-varying lin-

ear control systems. The concept of controllability was first

presented by Kalman and referred to linear dynamical sys-

tems. Because the most of practical dynamical systems are

nonlinear, that is why, in recent years various controllability

problems for different types of nonlinear or semilinear dy-

namical systems have been considered in many publications

and monographs. Simultaneously there are more and more

tools used to investigate controllability problems, for exam-

ple, fixed point theorems and measures of noncompactness for

function spaces [18]. The study of controllability for linear

systems has spanned a great number of research directions

(e.g. fractional and/or positive [19–23]). Testing degrees of

controllability, and their numerical analysis aspects, are still a

subject of intensive research. In the literature there are many

different definitions of controllability, e.g. complete control-

lability [24], approximate controllability [25], exact control-

lability [26], trajectory-controllability [27]. Research of the

controllability problems for different types of dynamical sys-

tems requires the application of numerous mathematical con-

cepts and methods taken directly from differential geometry,

functional analysis, topology, matrix analysis and theory of

ordinary and partial differential equations and theory of dif-

ference equations [28].

In general case, for controllability analysis of switched

linear control systems, a much more difficult situation aris-

es since both the control input and the switching rule are

designed variables to be determined. Thus, the interaction

between them is very important from controllability point of

view. For switched linear discrete-time control system, in gen-
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eral case the controllable set is not a subspace but a countable

union of subspaces. In continuous-time case, the controllable

set is an uncountable union of subspaces.

This paper is devoted to controllability of discrete-time

linear switched systems (see [5] for definition and motivation).

Such a system can be seen as a collection of discrete station-

ary linear systems between which is followed by the switch-

ing signal. The phenomenon over which we have control (i.e.

change of regulator parameters, gear ratio) or uncontrolled

events (failures, changing of the operating point) may be mod-

elled by the switching rule. In the literature (e.g. [29–35]) the

controllability of hybrid systems is related to the first case and

then, the controllability problem is formulated as a problem

of finding control and switching signal which steers an ini-

tial condition to a given final state. In this case the switching

signal plays a role of additional control. Our paper is devoted

to the second case. Hence, we are looking for a control, that

regardless of the switching signal, steers an initial condition

to a given final state. This situation is similar to a problem

of controllability of jump linear systems ( [36,37]) but in our

framework we do not have a probabilistic model of the switch-

ing signal. Moreover, a new contribution of the paper is that

we take into account the situation that usually occurs in en-

gineering practice, i.e. in which certain switching sequences

are not possible.

2. Notation and definitions

In this section we consider a class of linear switched systems

described by difference state equation [33–35]:

x(k + 1) = A(r(k))x(k) + B(r(k))u(k) (1)

for k ≥ 0, where x(k) ∈ R
n denotes the state vector;

r(k) ∈ {1, 2, ..., s} =: S is the switching signal; u(k) ∈ R
m

is the control input, k = 0, 1, ....
Moreover, for r(k) = i, Ai := A(i) and Bi := B(i) are

constant matrices of appropriate dimensions. Let us denote by

x(k, x0, i0, u) the solution of (1) at time k, under the control

u with initial condition x0 at time k = 0 and switching signal

satisfying r(0) = i0. The control

u = (u(0), u(1), ...)

is supposed to be such that

u(k) = fk (r(0), r(1), ..., r(k)) .

It means that the control u(k) at time k depends only on the

variables r(0), r(1), ..., r(k). Such control will be called an

admissible control.

Now, let us introduce the following notation:

F (k, k) = In×n,

F (k, l, ik−1, ..., il) = A(ik−1)A(ik−2)...A(il), (2)

Fr(k, l) = A (r(k − 1))A (r(k − 2)) ...A (r(l))

for k > l ≥ 0 and ik−1, ik−2, ..., il ∈ S.

Let us recall, that n×n dimensional matrix Fr(k, l) is the

so-called state transition matrix. Using the above-established

notation we can express the solution of difference Eq. (1) in

the following form

x(k, x0, i0, u) = Fr(k, 0)x0

+
k−1
∑

t=0

Fr(k, t + 1)B (r(t)) u(t) (3)

or equivalently

x(k, x0, i0, u) = F (k, 0, r(k − 1), ..., r(0))x0

+

k−1
∑

t=0

F (k, t + 1, r(k − 1), ..., r(t + 1))B (r(t)) u(t) (4)

for k ≥ 1.

In addition, we use the following notation

S
(N)
i0

= {(i0, i1, ..., iN−1) : i0, i1, ..., iN−1 ∈ S} . (5)

In further considerations, it will be convenient to have the

elements of S
(N)
i0

ordered as a sequence. To do it, let us order

the elements of S
(N)
i0

in lexicographical order, i.e. they are

ordered in the following way

(i0, 1, 1, ..., 1, 1) , (i0, 1, 1, ..., 1, 2) , ..., (i0, 1, 1, ..., 1, s) ,

(i0, 1, 1, ..., 2, 1) , (i0, 1, 1, ..., 2, 2) , ..., (i0, 1, 1, ..., 2, s) , ...

(i0, s, s, ..., s, 1) , (i0, s, s, ..., s, 2) , ..., (i0, s, s, ..., s, s) .

In many engineering problems some switches are impossible,

i.e. we have certain set Λ of pairs (i, j) ∈ S × S such that it

is impossible that

r(k) = i, r(k + 1) = j for a k = 0, 1, ....

Withdraw from S
(N)
i0

all the elements (i0, i1, ..., iN−1) such

that

(il, il+1) ∈ Λ for certain l = 0, 1, ..., N − 1.

and denote by S
(N)

i0
the set obtained in this way. In this nota-

tion S
(N)

i0
is a sequence of all possible switching paths of the

length N . By s
(N)
i0

we will denote the number of elements of

S
(N)

i0
.

Now, let us fix a number N > 0 and a sequence

(i0, i1, ..., iN−1)

of elements of S. Consider a matrix column blocks, which

are numbered successively by sequences:

i0, S
(2)

i0
, ..., S

(N)

i0

and the block

(i0, i1, ..., ik)

for k = 0, 1, .., N − 1 is given by

F (N, k + 1, iN−1, ..., ik+1)Bik

and the others are equal to 0. Denote the matrix obtained in

this way by

C(i0, i1, ..., iN−1)

and by G(i0) – the matrix consisting of all

C(i0, i1, ..., iN−1)
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(as row blocks numbered by S
(N)

i0
) for

(i0, i1, ..., iN−1) ∈ S
(N)

i0
.

Moreover, by

H(i0) ∈ Rns
(N)
i0

×m

let us denote a matrix row blocks, of which are numbered by

the sequence S
(N)

i0
. The block with number

(i0, i1, ..., iN−1)

is given by

F (N, 0, iN−1, iN−2, ..., i0).

In order to illustrate the introduced notation, let us discuss

the following example. For S = {1, 2, 3}, N = 3, i0 = 1 and

Λ = {(1, 2), (3, 2)}

we have

G(i0) = G(1) =











C(1, 1, 1)

C(1, 1, 3)

C(1, 3, 1)

C(1, 3, 3)











=

(1) (1, 1) (1, 3)

=











A2(1)B(1) A(1)B(1) 0

A(3)A(1)B(1) A(3)B(1) 0

A(1)A(3)B(1) 0 A(1)B(3)

A2(3)B(1) 0 A(3)B(3)

(1, 1, 1) (1, 1, 3) (1, 3, 1) (1, 3, 3)

B(1) 0 0 0

0 B(3) 0 0

0 0 B(1) 0

0 0 0 B(3)











and

H(i0) = H(1) =











A3(1)

A(3)A2(1)

A(1)A(3)A(1)

A2(3)A(1)











.

Moreover, let us denote by

f
(k)
1 , f

(k)
2 , ..., f (k)

n
∈ R

nk

the vectors defined by

f
(k)
l

=













el

el

...

el



































k times el, l = 1, 2, ..., n

where {e1, e2, ..., en} is the standard basis of R
n.

In the next part of the paper, we shall use the following

definition:

Definition 1. The system (1) is i0− controllable at time N if,

for all x0, x1 ∈ R
n there exists an admissible control u such

that

x(N, x0, i0, u) = x1. (6)

Analogously, we say that system (1) is i0 – controllable at

time N to zero (from zero) if, for all x0 ∈ R
n (x1 ∈ R

n)

there exists a control u such that

x(N, x0, i0, u) = 0 (x(N, 0, i0, u) = x1). (7)

If the system (1) is i0 – controllable at time N (i0 – con-

trollable at time N to zero, i0 – controllable at time N from

zero) for all i0 ∈ S then we say that (1) is controllable at

time N (controllable at time N to zero, controllable at time

N from zero).

Let us observe that the controllability of each time-varying

system corresponding to switching paths of the length N is

only the necessary, but not the sufficient condition for con-

trollability at time N of the system (1).

3. Main results

In this section, using notation given in Sec. 2, we prove main

results of the paper.

Theorem 1 contains the necessary and sufficient condi-

tions for i0 – controllability at time N as well as i0 – con-

trollability at time N from zero and to zero.

Theorem 1. The system (1) is i0 – controllable at time N
from zero if and only if

rankG(i0) = rank

[

G(i0)
... f

�
s
(N)
i0

�
l

]

(8)

for all l = 1, 2, ..., n.

The system (1) is i0 – controllable at time N to zero if

and only if

ImH(i0) ⊂ ImG(i0) (9)

and it is i0 – controllable at time N if and only if

rankG(i0) = rank

[

G(i0)
...f

�
s
(N)
i0

�
l

]

(10)

for all l = 1, 2, ..., n, and

ImH(i0) ⊂ ImG(i0). (11)

Before beginning the formal proof let us briefly discuss

the main idea. Since the set S
(N)

i0
of all possible switching

paths is finite, therefore, the question about i0 – controllabili-

ty can be reformulated, similarly as for classical time-varying

systems, as a question about existence of a solution of a finite

set of linear algebraic equations. However, now we must take

into account the constraint that control u(k) at time k may

depend only on the variables

r(0), r(1), ..., r(k)

and should be independent of variables

r(k + 1), r(k + 2), ..., r(N).
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The proper definition of matrices G(i0) and H(i0) plays an

essential role in the proof of the above-mentioned constraints.

Proof. Suppose that switched the system (1) is i0 – control-

lable at time N from zero. Then for any y ∈ R
n there exists

an admissible control sequence

u(0), u(1), ..., u(N − 1)

such that

u(k) = gk (i0, r(1), r(2), ..., r(k))

for k = 0, 1, ..., N − 1 and

x(N, 0, i0, u) = y, (12)

where gk is a function from S
(k)

i0
to R

m for k = 0, 1, ..., N−1.

It means that for any

(i0, i1, ..., iN−1) ∈ S
(N)

i0

the following equality

N−1
∑

t=0

F (N, t + 1, iN−1, ..., it+1)B(it)gt(i0, ..., itt) = y

holds.

This implies that the system of algebraic equations

G(i0)v = z,

where

z =













t

t
...

t



































s
(N)
i0

times

has a solution for each t ∈ R
n. Since vectors

f

�
s
(N)
i0

�
l

for l = 1, 2, ..., n form a basis in the space


































t

t
...

t













∈ Rns
(N)
i0 : t ∈ Rn























,

the Kronecker-Capelli theorem (see e.g. [38]) implies that

equality (8) is valid.

Assume now that the equality (8) holds. Using once again

the Kronecker-Capelli theorem we obtain, that the set of al-

gebraic equations

G(i0)v = z,

where

z =













y

y
...

y



































s
(N)
i0

times

has a solution for any y ∈ R
n.

This clearly forces that for any y ∈ R
n and each

(i0, i1, ..., iN−1) ∈ S
(N)

i0

there exists a sequence

gk(i0, i1, ..., ik),

for k = 0, 1, ..., N − 1 such that

N−1
∑

t=0

F (N, t + 1, iN−1, iN−2, ..., it+1)B(it)gt(i0, ..., it) = y.

For the control defined as

u(k) = gk(i0, r(1), r(2), ..., r(k))

we obtain

x(N, 0, i0, u) = y

which implies that the system (1) is i0 – controllable at time

N from zero.

Now, let us assume that the system (1) is i0 – control-

lable at time N to zero. Then for any y ∈ R
n there exists an

admissible control sequence

u(0), u(1), ..., u(N − 1)

such that

u(k) = gk (i0, r(1), r(2), ..., r(k))

and

x(N, y, i0, u) = 0, (13)

where gk is a function from S
(k)

i0
to R

m for k = 0, 1, ..., N−1.

From the Eq. (13), we get

N−1
∑

t=0

F (N, t + 1, iN−1, ..., it+1)B(it)gt(i0, i1, ..., it)

= −F (N, 0, iN−1, iN−2, ..., i0)y.

and therefore,

−H(i0)y ∈ ImG(i0)

which implies that inclusion (9) holds. Now, let us suppose

that the inclusion (9) is valid. It means that for any x0 ∈ R
n

there exists v such that

−HΛ(i0)x0 = GΛ(i0)v

which implies that for any

(i0, i1..., iN−1) ∈ S
(N)

i0

there exists a sequence

gk(i0, i1, ..., ik)

for k = 0, 1, ..., N − 1 such that

N−1
∑

t=0

F (N, t + 1, iN−1, ..., it+1)B(it)gt(i0, i1, ..., it)

= −F (N, 0, iN−1, iN−2, ..., i0)x0.

Defining now the control

u(k) = gk (i0, r(1), r(2), ..., r(k))
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we have

x(N, x0, i0, u) = 0

and the switched system (1) is i0 – controllable at time N
to zero. By analogy with the above-mentioned idea we can

prove the part concerning i0 – controllability at time N .

4. Examples

Considering the linear discrete time-varying system it is well

known [13] that the controllability from zero implies the con-

trollability to zero and the inverse implication is not true. The

next example shows that for the linear switched system the

controllability from zero generally does not imply the con-

trollability to zero.

Example 1. Consider the switched system (1) with S =
{1, 2}, N = 2, Λ = ∅ and any i0.

A(1) =

[

4 8

12 4

]

, A(2) =

[

−4 8

4 −4

]

,

B(1) =

[

0

8

]

, B(2) =

[

0

4

]

.

We check controllability at time 2. According to the notation

we have

S
(2)
1 = {(1, 1), (1, 2)} ,

S
(2)
2 = {(2, 1), (2, 2)} ,

=
s

(2)

1 =
=
s

(2)

2 = 2,

G(1) =

[

C(1, 1)

C(1, 2)

]

=

[

A(1)B(1) B(1) 0

A(2)B(1) 0 B(2)

]

=











64 0 0

32 8 0

64 0 0

−32 0 4











,

G(2) =

[

C(2, 1)

C(2, 2)

]

=

[

A(1)B(2) B(1) 0

A(2)B(2) 0 B(2)

]

=











32 0 0

16 8 0

32 0 0

−16 0 4











and

f
(2)
1 =











1

0

1

0











, f
(2)
2 =











0

1

0

1











.

Because

rankG(1) = rank

[

G(1)
... f

(2)
1

]

= 3

and

rankG(2) = rank

[

G(2)
... f

(2)
2

]

= 3

then the condition (8) is satisfied. The control that steers the

zero initial condition to final state
[

x
(0)
1

x
(0)
2

]

at time N = 2 is given by

u(0) =







1
64x

(0)
1 if r(0) = 1

1
32x

(0)
1 if r(0) = 2

,

u (1) =































− 1
16x

(0)
1 + 1

8x
(0)
2 if r(0) = 1, r(1) = 1

1
8x

(0)
1 + 1

4x
(0)
2 if r(0) = 1, r(1) = 2

1
8x

(0)
1 + 1

4x
(0)
2 if r(0) = 2, r(1) = 2

− 1
16x

(0)
1 + 1

8x
(0)
2 if r(0) = 2, r(1) = 1

.

From the other hand the system is not controllable to zero at

time 2. In fact we have

H(1) =

[

A2(1)

A(2)A(1)

]

=











112 64

96 112

80 0

−32 16











,

H(2) =

[

A2(2)

A(1)A(2)

]

=











48 −64

−32 48

16 0

−32 80











and










22

26

10

−2











∈ ImH(1),











2

−2

−2

−6











∈ ImH(2),

but










22

26

10

−2











/∈ ImG(1),











2

−2

−2

−6











/∈ ImG(2).

According to the Theorem 1 the system (1) is not controllable

to zero at time 2.

The second example relates to a human arm, which model

has been described by switched system. The kinematic scheme

is shown in Fig. 1. We decided to model the human arm by

a switched linear system, because after scrutinizing human

limb motion and taking into account results in [40–42] it is

evident that muscles are changing their shape in the process of

contraction, which influences the moments of inertia during

limb motion.
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Fig. 1. The model of two-link human arm

As a result, we can assume that the matrix of inertia

and the distance from the center of gravity of each joint,

are changed. However, changes of these parameters are de-

pendent on the configuration of the arm. On the other hand,

the muscles impact is omitted. In this case, the motion equa-

tion is presented in the following nonlinear differential equa-

tion [40, 43–46]:

d

dt

[

q

q̇

]

=

[

q̇

M−1(q)[u−C(q, q̇)q̇−G(q)−Wq̇]

]

, (14)

where

M(q) =

[

m1l
2
c1 + m2l

2
1 + I1 m2l1lc2 cos(q1 − q2)

m2l1lc2 cos(q1 − q2) m2l
2
c2 + I2

]

,

C(q, q̇) =

=

[

0 m2l1lc2 sin(q1 − q2)q̇2

−m2l1lc2 sin(q1 − q2)q̇1 0

]

,

G(q) =

[

−(m1lc1 + m2l1)g sin q1

−m2lc2g sin q2

]

,

W =

[

w11 w12

w21 w22

]

and M(q) ∈ R
2×2 – is a positive definite symmetric inertia

matrix; C(q, q̇) ∈ R
2×2 – is a vector centripetal and Coriolis

forces; G(q) ∈ R
2 – is gravity forces vector; W ∈ R

2×2 –

is the joint friction matrix; u = [u1 u2]
T ∈ R

2 – is the joint

torque; q = [q1 q2]
T ∈ R

2 – is the angular displacement; mi

– is the mass; li – is the link length; lci – is the distance from

the joint to the center of mass; Ii – is the moment of inertia

relative to a normal z-axis to the i-th link of frame attached

at the center of mass of the i-th link; i – is the number of

human link, i = 1, 2.

We assume that the state vector is expressed by
[

q

q̇

]

.

In order to obtain an equivalent set of first-order state equa-

tions, we may use in the second-order differential state equa-

tions (14) the following state variables

x1 = q1, x2 = q2, x3 = ẋ1 = q̇1, x4 = ẋ2 = q̇2,

x =
[

q1, q2, q̇1, q̇2

]T

.

As a result, we can write the two-link human arm system into

a state space form, as vector first-order nonlinear differential

equations:

ẋ = F (x) + G(x)u. (15)

In (15), the vector functions F (x), G(x) are given by

F (x) = [F1(x), F2(x), F3(x), F4(x)]T ,

where

F1(x) = x3, F2(x) = x4,

F3(x) =
m2

2l
2
1l

2
c2 sin(x1 − x2) cos(x1 − x2)

DM

x2
3+

−
m3

2l
3
1l

3
c2 sin(x1 − x2) cos2(x1 − x2)

(m1l2c1 + m2l21 + I1)
x2

4+

−

(

m2l1lc2 sin(x1 − x2)

m1l2c1 + m2l21 + I1

)

x2
4+

+

(

m2l1lc2 cos(x1 − x2)w21

DM

)

x3+

−

(

m2
2l

2
1l

2
c2 cos2(x1 − x2)w11

DM (m1l2c1 + m2l21 + I1)
+

w11

m1l2c1 + m2l21 + I1

)

x3+

−

(

m2
2l

2
1l

2
c2 cos2(x1 − x2)w12

DM (m1l2c1 + m2l21 + I1)

)

x4+

+

(

m2l1lc2 cos(x1 − x2)w22

DM

−
w12

m1l2c1 + m2l21 + I1

)

x4+

+

(

m2
2l

2
1l

2
c2 cos2(x1 − x2)(m1lc1 + m2l1)g sin(x1)

DM (m1l2c1 + m2l21 + I1)

)

+

+

(

(m1lc1 + m2l1)g sin(x1)

m1l2c1 + m2l21 + I1

)

+

−
m2

2l1l
2
c2g sin(x2) cos(x1 − x2)

DM

,
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F4(x) =
m2

2l
2
1l

2
c2 sin(x1 − x2) cos(x1 − x2)

DM

x2
4+

+
m2l1lc2 sin(x1 − x2)(m1l

2
c1 + m2l

2
1 + I1)

DM

x2
3+

+
m2l1lc2 cos(x1 − x2)w11

DM

x3+

−
(m1l

2
c1 + m2l

2
1 + I1)w21

DM

x3+

+
m2l1lc2 cos(x1 − x2)w12

DM

x4+

−
(m1l

2
c1 + m2l

2
1 + I1)w22

DM

x4+

+
1

DM

(

(m1l
2
c1 + m2l

2
1 + I1)m2lc2g sin(x2)

)

+

+
1

DM

(m2l1lc2(m1lc1 + m2l1)g sin(x1) cos(x1 − x2))

and

G(x)=

















0 0

0 0

DM+m
2
2l

2
1l

2
c2 cos(x1−x2)

DM (m1l2
c1+m2l21+I1)

−m2l1lc2 cos(x1−x2)
DM

−m2l1lc2 cos(x1−x2)
DM

m1l
2
c1+m2l

2
1+I1

DM

















,

note that

DM = m2l
2
c2(m1l

2
c1 + m2l

2
1 + I1 − m2l

2
1 cos2(x1 − x2))

+ (m1l
2
c1 + m2l

2
1)I2 + I1I2.

is the determinant of matrix M .

Using series expansion linearization method, the nonlinear

model was linearized at three operating points. The operating

points are expressed as [xi, ui]T ∈ R
6 for i = 1, 2, 3, where:

x(1) = [−0.523 rad, 0 rad, 0 rad/s, 0 rad/s]
T

,

u(1) = [0 Nm, 0 Nm]T ,

x(2) = [0 rad, 0.523 rad, 0 rad/s, 0 rad/s]T ,

u(2) = [0 Nm, 0 Nm]T

and

x(3) = [0.523 rad, 0.523 rad, 0 rad/s, 0 rad/s]
T

,

u(3) = [0 Nm, 0 Nm]T .

All operating points were chosen arbitrarily. The parameters

of two-link human arm, that were used during linearization,

are shown in Table 1 [41] (the length l2 is omitted, it does

not appear in the final mathematical model of the two-link

human arm).

Table 1

The parameters of human arm’s model

m [kg] l [m]

Link 1 1.4 0.3

Link 2 1.1 −

lc1 [m] lc2 [m] I1 [kgm2] I2 [kgm2]

Subsystem I 0.11 0.16 0.027 0.045

Subsystem II 0.1 0.14 0.018 0.04

Subsystem III 0.11 0.14 0.02 0.04

After linearization, the linear model was discretized using

a zero-order hold discretization method with a sample time

of Ts equal to 0.1 seconds.

At this point, we can consider the human arm as switched

linear discrete-time system with state-dependent switching. In

this case, the function r(k) in (1) depends on x(k) in the fol-

lowing way: the state space R
n is divided into a collection of

disjoint regions

Ω1, Ω2, Ω3

with
i=3
⋃

i=1

Ωi = R
n

and then

x(k + 1) = A(i)x(k) + B(i)u(k) for x ∈ Ωi (16)

for i = 1, 2, 3.

Then, the switched discrete linear system (16) can be ex-

pressed in the following form:

x(k+1)=











A(1)x(k)+B(1)u(k) if x1 < 0, x2 ≥ 0

A(2)x(k)+B(2)u(k) if x1 = 0, x2 ≥ 0

A(3)x(k)+B(3)u(k) if x1 > 0, x2 > 0
(17)

It should be noted that some switching are not allowed,

namely: it is impossible to take r(k) = 1 and r(k + 1) = 3
and reversely r(k + 1) = 3 and r(k) = 1, therefore Λ =
{(1, 3), (3, 1)}.

Example 2. Let us consider the system (17) where we have:

S = {1, 2, 3}, N = 3, i0 = 1 and the appropriate matrices:

A(1) =











0.893 −0.0290 0.09567 −0.0015

−0.023 0.9782 −0.00169 0.0981

−2.088 −0.5653 0.8789 −0.0389

−0.449 −0.4281 −0.0411 0.9544











,

B(1) =











0.03439 −0.01166

−0.01172 0.04997

0.6751 −0.235

−0.2374 0.9933











,
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A (2) =











0.8123 0.0184 0.09304 0.00037

0.1112 0.8948 0.00223 0.09429

−3.618 0.3509 0.8005 0.01341

2.113 −2.045 0.08081 0.8526











,

B(2) =











0.04324 −0.02754

−0.0274 0.09487

0.8335 −0.5271

−0.5216 1.841











,

A (3) =











0.8084 0.04949 0.09294 0.00151

0.1362 0.8657 0.00334 0.09359

−3.673 0.9324 0.7972 0.04588

2.565 −2.586 0.112 0.8294











,

B(3) =











0.04658 −0.03311

−0.03311 0.0898

0.8931 −0.6238

−0.624 1.73











.

Let us check i0 – controllability at time N from zero for

i0 = 1 and N = 3. We have

S
(3)

1 = {(1, 1, 1), (1, 1, 2), (1, 2, 1), (1, 2, 2), (1, 2, 3)}

G(i0) = G(1) =

















C(1, 1, 1)

C(1, 1, 2)

C(1, 2, 1)

C(1, 2, 2)

C(1, 2, 3)

















(1) (1, 1) (1, 2) (1, 1, 1)

=

















A2(1)B(1) A(1)B(1) 0 B(1)

A(2)A(1)B(1) A(2)B(1) 0 0

A(1)A(2)B(1) 0 A(1)B(2) 0

A2(2)B(1) 0 A(2)B(2) 0

A(3)A(2)B(1) 0 A(3)B(2) 0

(1, 1, 2) (1, 2, 1) (1, 2, 2) (1, 2, 3)

0 0 0 0

B(2) 0 0 0

0 B(1) 0 0

0 0 B(2) 0

0 0 0 B(3)

















Matrix G(i0) is 20 × 16 – dimensional matrix. Moreover,

using condition (8), we calculate that

rankG(1) = 16 6= rank[G(1)
...f

(5)
1 ] = 17.

Therefore, the system is not i0 – controllable at time N equal

to 3 and i0 = 1.

Example 3. Now, we focus on the case when N = 6 and

i0 = 1. Let us order the elements of S
(6)

i0
, i0 = 1, 2, 3 in

lexicographical order by the following way:

S
(6)

1 = {(1, 1, 1, 1, 1, 1), (1, 1, 1, 1, 1, 2), (1, 1, 1, 1, 2, 1),

(1, 1, 1, 1, 2, 2), (1, 1, 1, 1, 2, 3), (1, 1, 1, 2, 1, 1)

...

(1, 2, 3, 2, 1, 1), (1, 2, 3, 2, 1, 2), (1, 2, 3, 2, 2, 1)

...

(1, 2, 3, 3, 2, 3), (1, 2, 3, 3, 3, 2), (1, 2, 3, 3, 3, 3)},

S
(6)

2 = {(2, 1, 1, 1, 1, 1), (2, 1, 1, 1, 1, 2), (2, 1, 1, 1, 2, 1),

(2, 1, 1, 1, 2, 2), (2, 1, 1, 1, 2, 3), (2, 1, 1, 2, 1, 1)

...

(2, 2, 3, 2, 1, 1), (2, 2, 3, 2, 1, 2), (2, 2, 3, 2, 2, 1)

...

(2, 3, 3, 3, 2, 3), (2, 3, 3, 3, 3, 2), (2, 3, 3, 3, 3, 3)}

and

S
(6)

3 = {(3, 2, 1, 1, 1, 1), (3, 2, 1, 1, 1, 2), (3, 2, 1, 1, 2, 1),

(3, 2, 1, 1, 2, 2), (3, 2, 1, 1, 2, 3), (3, 2, 1, 2, 1, 1)

...

(3, 2, 3, 3, 2, 1), (3, 2, 3, 3, 2, 2), (3, 2, 3, 3, 2, 3)

...

(3, 3, 3, 3, 2, 3), (3, 3, 3, 3, 3, 2), (3, 3, 3, 3, 3, 3)}.

The numbers s
(6)
1 and s

(6)
3 are equal to 70. The number s

(6)
2 is

equal to 108. Finally, after the tedious and longer calculations,

we may conclude, that the system (17) is i0 – controllable for

time N equal to 6 and all i0 = 1, 2, 3.

5. Conclusions

In the paper we presented the necessary and sufficient condi-

tions for controllability (controllability to zero and controlla-

bility from zero) for linear discrete-time switched linear sys-

tems. These conditions are given in terms of relations con-

sisting of ranks and images of matrices constructed on the

base of the system coefficients. The proposed controllabili-

ty concept is appropriate to the situation when the switching

signal models unpredictable events, for example systems fail-

ures. Additionally, a new contribution of the paper is that

we took into account the situation in which certain switch-

ing sequences are not possible. This situation often occurs in

engineering practice.
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