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Abstract. From Albert Einstein’s study (1905) it is known that suspension introduced to a fluid modifies its viscosity. We propose to describe

the influence of obstacles on the Stokesian flow as a such modification. Hence, we treat the fluid flow through small obstacles as a flow with

suspension. The flow is developing past the plane bottom under the gravity force. The spatial distribution of suspension concentration is

treated as given, and is regarded as an approximation of different obstacles which modify the fluid flow and change its viscosity. The different

densities of suspension are considered, beginning of small suspension concentration until 40%. The influence of suspension concentration

on fluid viscosity is analyzed, and Brinkman’s formula as fitting best to experimental data is applied.
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1. Introduction

1.1. Aims of the paper. Below we study Stokes’ flow in

a wide channel, when the significance of the channel banks

can be neglected and the two-dimensional problem can be

considered only. The viscosity of fluid is modified by the

presence of suspension, whose concentration distribution is

selected according to a given distribution of obstacles.

Suspension of even rarely dispersed particles has a higher

viscosity than pure liquid, and in the case of spherical and

rarely dispersed particles the viscosity of suspension is given

by the Einsteinian formula. Mathematical formulae are known

also for other shapes of the particles, for example ellipsoidal

ones. To describe the viscosity for higher concentrations of

the suspension Brinkman’s relation is needed, but the steady

flow of such a system is still described by Stokes’ equation.

First, we look at flows, in which the water viscosity

changes in a continuous manner with the depth of the fluid,

as a result of existence of a suspension with the concentration

varying in a given manner.

Also, two layer flow is analyzed. Both layers, denoted as A

and B, are described by Stokes’ equation, and the fluid A flows

past the fluid B. The upper surface of the layer A is free and

suffers only the air pressure. In both layers the suspension

density is changing in different but in a priori given manners.

Finally, in a limiting case the layer A does not contain any

suspension, while the lower, layer B contains a suspension

and imitates the influence of bottom obstacles.

1.2. Motivation of the paper. A suspension is a heteroge-

neous mixture containing solid particles that are sufficiently

large for sedimentation. Usually they must be larger than 1 mi-

crometer. The internal phase (solid) is dispersed throughout

the external phase (fluid) through mechanical agitation, with

the use of certain excipients or suspending agents. Unlike

colloids, suspensions will eventually settle. An example of

a suspension would be sand in water. The suspended parti-

cles are visible under a microscope and may settle over time

if left undisturbed. The influence of the temperature is here

essential, cf. [1, 2].

The problem because of its important applicability reach-

es up the Antiquity, cf. The canals of the Nile will dry up,

and the streams of Egypt will stink with rotting reeds and

rushes, (Isaiah 19:6). The history of construction Nile – Red

Sea canal, a forerunner of the modern Suez Canal by the Per-

sians in times of Darius the Great, and its reconstruction by

Ptolemy II Philadelphus is marked by persistent accumula-

tions of Nile silt, and the maintenance and repair of the canal

became increasingly cumbersome over each passing century,

[William Matthew Flinders Petrie, A History of Egypt. Vol-

ume 3: From the XIXth to the XXXth Dynasties, Adamant

Media Corporation].

The Nı̂mes aqueduct, with the famous Pont du Gard was

steadily under the threat posed by vegetation penetrating the

stone lid of the channel. As well as obstructing the flow of

the water, dangling roots introduced algae and bacteria that

decomposed in a process called biolithogenesis.

In particular, in the lakes, streams, rivers and open chan-

nels grow different types of plants, e.g. Canadian waterweed

(Elodea canadensis) and hydrilla (Esthwaite waterweed) Hy-

drilla verticillata. They grow rapidly in favourable conditions

and can choke shallow ponds, canals, and the margins of some

slow-flowing rivers, so, even the greatest water reservoirs are

endangered. Silty sediments and water rich in nutrients favor

the growth of the waterweed in nutrient-rich lakes. However,

the plants will grow in a wide range of conditions, from very
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shallow to deep water, and in many sediment types. It can

even continue to grow unrooted, as floating fragments.

Depending on the kind and obstacles, the effective vis-

cosity of the bottom fluid may be modified, beginning of the

density of suspension and finishing at the density of the par-

ticles creating an aggregate modelled by a porous medium.

Such a system permits to study characteristic traits of the

flows in beds of rivers (canals, pipes, lakes) with obstacles at

the bottom (such as stones, plants or other structures), cf. [3–

10].

The study of these processes requires cooperation of dif-

ferent branches of science, biology, chemistry, geophysics, and

mathematics, and the results obtained in different branches

can be readily exploited. One must not wonder that Albert

Einstein and his son Hans Albert contributed significantly to

the problem. For example, the change of fluid viscosity re-

sulted from the presence of a suspension can be calculated

after the formula found by Albert Einstein, [11–13], and their

followers [14, 15], also [16–18].

1.3. Flowing waters in nature and their variability. It is

truism that flowing waters met in the nature differ from those

observed in hydraulic laboratory conditions, and are far more

complicated aggregates. They carry stones, woods, leaves,

sands and others suspensions.

A river is a natural watercourse, usually freshwater, flow-

ing towards another river, a lake, a sea or an ocean. In some

cases a river could flow into the ground and dry up complete-

ly at the end of its course, without reaching another body

of water. Rivers also provide an easy means of disposing of

waste-water and often other wastes. The coarse sediments,

gravel, and sand, generated and moved by rivers are exten-

sively used in construction.

The general pattern is that the first order streams con-

tain particulate matter (decaying leaves from the surrounding

forests), which is processed there by shredders like Plecoptera

larvae. The leftovers of the shredders are utilized by collectors,

such as Hydropsychidae, and further downstream algae that

create the primary production become the main food source

of the organisms.

The inorganic substrate of lotic systems is composed of

the geologic material present in the catchment that is eroded,

transported, sorted, and deposited by the current. Bacteria are

present in large numbers in lotic waters. Emerging pathogens

(bacteria, viruses, protozoa and cyanobacteria) influences the

water quality.

Free-living forms are associated with decomposing organ-

ic material, biofilm on the surfaces of rocks and vegetation, in

between particles that compose the substrate. Algae, consist-

ing of phytoplankton and periphyton, are the most significant

sources of primary production in most streams and rivers. Pe-

riphyton are typically filamentous and tufted algae that can at-

tach themselves to objects to avoid being washed away by fast

current. In places where flow rates are negligible or absent,

periphyton may form a gelatinous, unanchored floating mat.

Plants exhibit limited adaptations to fast flow and are most

successful in reduced currents. Plants, such as mosses and

liverworts attach themselves to solid objects. This typically

occurs in colder headwaters where the mostly rocky substrate

offers attachment sites. Some plants are free floating at the

water’s surface in dense mats like duckweed or water hy-

acinth. Others are rooted and may be classified as submerged

or emergent. Rooted plants usually occur in areas of slack-

ened current where fine-grained soils are found. These rooted

plants are flexible, with elongated leaves that offer minimal

resistance to current, [19–24]. However, in mass the plants

may create an obstacle to the current, and the river flow re-

sponds to their appearing. Hence studying the flows of rivers

through plant obstacles is one of the subjects of hydrology,

and in broader plane, of geophysics.

1.4. Contaminant suspension in water bodies. The conta-

mination of water bodies (e.g. lakes, rivers, oceans, aquifers

and groundwater) by raw sewages and industrial waste, as well

by storm waters washed off of parking lots, roads and high-

ways leads to appearing of a suspension in the water body.

Also releasing of chemical or radionuclide contaminants in-

to soil (even located away from a surface water body) may

contaminate the aquifer below, defined as a toxin plume.

Analysis of groundwater contamination may focus on the

soil characteristics and site geology, hydrogeology, hydrology,

and the nature of the contaminants. An additional example is

the leaching out of nitrogen compounds from fertilized agri-

cultural lands and nutrient runoff in storm water from “sheet

flow” over anagricultural fields or a forests, [25, 26]. In the

most recent national report on water quality in the United

States, 45% of assessed stream miles, 47% of assessed lake

acres, and 32% of assessed bays and estuarine square miles

were classified as polluted. In 2007, 1/4th the length of Chi-

na’s seven main rivers were so poisoned the water harmed the

skin, [27].

1.5. Flow of the fluid with the free upper surface – fluid

with the variable viscosity. Aquatic plants can only grow in

water or in soil that is permanently saturated with water. They

are therefore a common component of wetlands. To aquatic

plants belong: amphiphytes, plants that are adapted to live

either submerged or on land; and elodeids, stem plants that

complete their entire life cycle submerged, or with only their

flowers above the waterline, cf. [28].

In streams and rivers grow different types of plants. Fre-

quently, they grow rapidly in favorable conditions and can

choke shallow ponds, canals, and the margins of some slow-

flowing rivers. In particular, they hinder the regulation as well

as run-off and storage level control of water courses, flood

control and lice-hazards abatement, as well as the effect of

facilities situated in or aside the watercourse on its hydraulic

regime. They are also important occasionally as an obstacle to

flow to lake navigation. Formally, one can consider the exis-

tence of such obstacles either as a change of the fluid viscosity

or the skeleton of the porous medium.

Here, we study the first possibility only. The laminar flow

past the porous bottom will be the subject of the next paper.

We consider flow of the fluid on an inclined plane under in-
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fluence of the gravity. We discuss only central part of the fluid

stream and neglect the influence of the stream banks, so the

problem can be regarded as two-dimensional.

1.6. Large deflections of the underwater obstacles. An un-

derstanding of the behaviour of flexible obstacles, for example

the vegetation in rivers is important for solving a broad range

of problems in environmental hydraulics, flood control and

water management, cf. recent study by Keramaris Evange-

los, [29].

In assessing the vertical velocity distributions in flows

through and above vegetation, the primary question is to quan-

tify the deflection of vegetation elements. In the majority of

studies, a relatively high stiffness of vegetation elements has

been assumed and calculation of the deflection was based on

the small deflection analysis of a cantilever beam. Observa-

tions of water vegetation suggest, however, that the assumed

high stiffness in many cases is too unrealistic. For this reason,

Elżbieta Kubrak, Janusz Kubrak and Paweł M. Rowiński re-

jected this assumption and proposed a method of calculation

suitable for larger deflections of water plants, [30, 31].

1.7. Flow in the canal with obstacles at the bottom. The

problem of flow past a half-space with obstacles (alive or of

non-living matter) at the bottom of the water reservoir can be

solved approximately in one of two ways.

1. If the obstacles are small and rare, the fluid flooding the

obstacles at the bottom can be replaced by a layer of different

viscous fluid, with viscosity changed according to Einsteinian

theory of emulsion (or its developments).

2. If the obstacles at bottom are dense, they can be re-

garded as a porous medium, and the flow of fluid filling this

medium can be treated by different averaging methods, in par-

ticular, by the homogenization theory, [32–54]. The theory of

functions of a complex variable can be applied also. Namely,

if the obstacles are cylinders arranged in some order, the po-

tential theory of flow can be used, as it was indicated yet by

Baron Rayleigh [55]. Rayleigh’s case deals with the cylin-

drical obstacles arranged in rectangular order at the bottom

of canal with the flowing fluid. The theory is currently de-

veloped in the series of papers by Vladimir Mityushev and

Sergei Rogosin, and their school, cf. [56–58].

1.8. Brinkman’s legacy. Two works of the huge multithe-

matic legacy of Henri Coenraad Brinkman are important for

the physics of fluid. The first one which is quoted and used in

this paper discusses the influence of suspension density on the

fluid viscosity for higher concentrations, above the Einstenian

limit, cf. [59]. Brinkman’s relation valid up to 40% concen-

tration is referred to in Sec. 2. The second work proposes a

correction to Darcy’s equation, [60]. Such a corrected equa-

tion is known also under Brinkman’s name, and is used, for

example, to describe flow of a viscous fluid past the porous

medium.

Anna Trykozko et al. proposed The Double Constraint

method, with the aim is to find conductivities that satisfy

Darcy’s law, the continuity equation, as well as both the flux

and the head boundary conditions, [61].

Wojciech Sobieski and Anna Trykozko, [62], investigated

Forchheimer’s equation – a nonlinear extension of the linear

Darcy’s law, which applies to a broader range of velocities

for flows through porous media. They examined sensitivity

of the Forchheimer model to permeability and a coefficient

at nonlinear term, using both experimental and computational

data for the validation.

2. Viscosity of suspensions: Brinkman’s relation

Let a solute-particle has a volume ω0 and a spherical shape

of radius R. Then ω0 = (4/3)πR3. If such a particle were

added to a pure solvent of volume V , the viscosity of such a

suspension would be given by Einstein’s formula, cf. [11,13],

η = η0

(
1 +

5

2

ω0

V + ω0

)
, (1)

where η0 denotes the pure solvent viscosity. Now, let us as-

sume that we have N solute particles, each with the volume

ω0. Thus the concentration by volume is

cv =
N

V
ω0.

If one can treat the contributions of the individual particles

forming a suspension as independent, the Einstein formula for

the effective viscosity of the suspension reads

η = η0

(
1 +

5

2
cv

)
. (2)

The formula (2) was derived in the, so called, non-interaction

approximation, it is under the assumption that the rigid spher-

ical particles of the suspension are non-interacting, and the

formula corresponds to summation of the viscosity contribu-

tions of individual particles. This means that (2) is valid only

for small concentrations.

Brinkman derived an expression for the viscosity of sus-

pensions of finite concentration

η =
η0

(1 − cv)5/2
. (3)

This equation agrees quite well with experimental re-

sults, [59]. Recently, Peng et al., cf. [65] applied Brinkman’s

formula to describe the viscosity of nanorefrigerants.

Brinkman’s formula was used with success in [66, 67].

Behrouz Abedian and Mark Kachanov, [68,69], discussed

the problem of effective viscosity of a Newtonian fluid with

rigid spherical particles. They found that the simple non-

interaction approximation when formulated correctly yields

an effective viscosity ratio for the suspension in the form

η

η0
=

1

1 − 2.5cv
(4)

that remains accurate at much higher volume fractions of

particles cv than the usual first-order approximation η/η0 =
1 + 2.5cv resulting from Eq. (2).

Abedian and Kachanov insisted that Ford’s model is bet-

ter than Einstein’s one when a high particle volume fraction
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is considered. Those authors indicated also that the formu-

la (2) does not satisfy the bounds predicted by Hashin and

Shtrikman, [70], for composites, at any cv, no matter how

small.

Paradoxically, it is Einstein’s formula which was used as

the first approximation in Brinkman’s study, and in deriving

his relation (3).

The descriptions of Brinkman’s and Abedian-Kachanov’s

are compared in Fig. 1.

Fig. 1. The experimental viscosity (Eiler, dots) as the function of

the concentration by volume cv , compared with different theoretic

formulae. The superiority of approximation the data by Brinkman’s

relation (dashed) in comparison with Ford’s one (solid line) is vis-

ible. The tangent at cv = 0 is common for all three curves and is

given by Einstein’s formula. The viscosity η0 of pure solvent is the

unit of viscosity on η axis. For the water η0 = 0.01 g/(cm s)

In this figure we see that Brinkman’s relation fits well

to Eilers’ experimental data, while supported in Abedian and

Kachanov’s paper Ford’s relation departs quickly from the

experimental curve.

Examples of the volume concentrations. The volume inside

a sphere inscribed in a cube can be approximated as 52.4%

of the volume of the cube, since π/6 ≈ 0.5236. For exam-

ple, a sphere with diameter 1 cm has 52.4% the volume of

a cube with edge length 1 cm, or about 0.524 cm3. In this

case cv = 0.52. A sphere with diameter 0.914 cm has 40%

the volume of the 1 cm3 cube, while a sphere with diame-

ter 0.133 cm has about 1% the volume of such cube. This

corresponds to cv = 0.4 or cv = 0.01, respectively.

3. Navier-Stokes equation for the steady flow

Let us take into account an incompressible viscous fluid of

the density ρ and the viscosity η, cf. [13]. Let us consider the

steady flow of this fluid in the presence of the gravity field.

The velocity field ruling in the fluid is given by the vector v.

The stress tensor in the fluid is

σij = −pδij + η

(
∂vi

∂xj
+

∂vj

∂xi

)
(5)

while the incompressibility condition ∇ · v = 0 in index no-

tation reads
∂vi

∂xi
= 0. (6)

The equation of steady motion of an incompressible fluid

(Stokes equation) under the pressure gradient ∇p and the

gravitation force ρg reads

ρvk
∂vi

∂xk
= −

∂p

∂xi
+

∂

∂xj

{
η

(
∂vi

∂xj
+

∂vj

∂xi

)}
+ ρgi. (7)

Here, we admit possibility of dependence of the viscosity η
on the position x = (x1, x2, x3).

3.1. Two-dimensional cases. We can consider, as simpler,

special cases, in which the field functions such as the ve-

locity or the pressure do not depend on one of three spacial

variables.

Two-dimensional Stokes’ equation is a nexus which links

Hele-Shaw’s flow with our considerations below. In our case,

in contrast to Hele-Shaw’s flow, the upper surface of fluid is

free; hence the boundary conditions are not symmetric in our

case.

Two-dimensional Hele-Shaw flow. We take into account a

flow between two flat parallel plates, separated by a small gap,

and we neglect the influence of the gravity force.

Let x1, x2 be the directions parallel to the flat plates, and

x3 the perpendicular direction, with 2d being the gap between

the plates (at x3 = ±d). When the flow between such plates is

developed, its velocity profile in the x3 direction is parabolic,

with the symmetry plane at x3 = 0, cf. [13]. This relation

and the uniformity of the pressure in the narrow direction x3

permits to average the velocity with regard to x3 and thus to

consider an effective velocity field in only the two dimensions

x1 and x2. When substituting this equation into the continuity

equation and again averaging over x3, the equation of Hele-

Shaw’s flow is obtained, [71], cf. also [72, 73].

Asymptotic analysis of the flow passing over a small ob-

stacle in the Hele-Shaw cell is recently performed by Gennady

Mishuris, Sergei Rogosin and Michał Wróbel, [74].

Two-dimensional flow: one velocity component only. We

change the description of coordinates, and substitute

x1 = x, x2 = y and x3 = z.

We consider a two-dimensional flow in the plane x, y. The

fields in this case do not depend on z, but the field of body

force does exist. We change the notation for the components

of the body force also, writing

ρg = (gx,−gy, 0)

or

ρg1 = gx, ρg2 = −gy and g3 = 0.

688 Bull. Pol. Ac.: Tech. 63(3) 2015



Laminar flow past the bottom with obstacles – a suspension approximation

If the velocity has only one component, say v1, it is when

v = (v1, 0, 0) (8)

with

v1 = v1(x2, x3) (9)

but not depending on x1, then left hand side of Eq. (7) van-

ishes and Stokes’ equation becomes

−
∂p

∂xi
+

∂

∂xj

{
η

(
∂vi

∂xj
+

∂vj

∂xi

)}
+ ρgi = 0. (10)

If additionally, η = η(x2, x3) only, then

−
∂p

∂x1
+

∂

∂x2

(
η

∂v1

∂x2

)
+

∂

∂x3

(
η

∂v1

∂x3

)
+ ρg1 = 0,

−
∂p

∂x2
+ ρg2 = 0,

−
∂p

∂x3
+ ρg3 = 0.

(11)

The first equation of this system, for η = constant, is typical

equation describing Hagen-Poiseuille’s flow by capillaries.

Notice that under the assumptions given by Eqs. (8)

and (6), the incompressibility condition (6) is identically sat-

isfied.

4. Flow of the fluid with the free upper surface

4.1. Fluid with the variable viscosity. In streams and rivers

grow different types of plants, e.g. Canadian waterweed. Fre-

quently, they grow rapidly in favorable conditions and can

choke shallow ponds, canals, and the margins of some slow-

flowing rivers. In particular, they hinder the regulation as

well as run-off and storage level control of water courses,

flood control and lice-hazards abatement, as well as the ef-

fect of facilities situated in or aside the watercourse on its

hydraulic regime. They are also important occasionally as

an obstacle to flow to lake navigation. Formally, one can

consider the existence of such obstacles either as a change

of the fluid viscosity or the skeleton of the porous me-

dium.

This problem is important not only by its applications, but

it possesses crucial scientific significance due to the simplic-

ity of its mathematical description as well its experimental

realisation. We consider flow of the fluid on an inclined plane

under influence of the gravity. We discuss only central part of

the fluid stream and neglect the influence of the stream banks,

so the problem is two-dimensional.

Let a layer of an incompressible viscous fluid of thickness

h be bounded above by a free surface and below by a fixed

plane inclined at an angle α to the horizontal, see Fig. 2. Let

the density ρ of the fluid be constant, while its viscosity η be

dependent on the position according to a given law. Let us

determine the steady flow due to gravity.

Fig. 2. Flow on a plane

We take the fixed plane as the xz-plane, with the x-axis

in the direction of flow and y pointed upward in direction per-

pendicular to the bottom. Let the viscosity be function of y
only and we seek a solution depending only on y. The Navier-

Stokes Eqs. (11) with v1 = v(y) in a gravitational field reduce

in our case to two equations

∂

∂y

(
η
∂v

∂y

)
+ gx = 0,

∂p

∂y
+ gy = 0.

(12)

Here, see Fig. 1,

gx = ρg sinα and gy = ρg cosα (13)

and g = |g| denotes the gravitational acceleration.

According to Eqs. (5), (8) and (9), the shear component

in this flow is

σxy = η
∂v

∂y
. (14)

From the first equation of the system (12) we get

η
∂v

∂y
= −gxy + C (15)

and after the second integration

v(y) − v0 =

y∫

0

1

η(ỹ)
(−gxỹ + C) dỹ. (16)

The constants v0 and C must be found from the boundary

conditions. Integration of the second equation of the system

(12) gives p(y) − p0 = −gyy or

p(y) = −gyy + p0. (17)

The constant p0 must be found from the boundary condition.

At the free surface (y = h) we must have p = pA, where pA

denotes the atmospheric pressure. Hence p0 = pA + gyh and

p = (h − y)gy + pA. (18)

This relation is independent of the eventual spatial variations

of the fluid viscosity η.

At the free surface also σxy = 0, and according to Eq. (14)

this boundary condition reads

σxy(h) =

{
η
∂v

∂y

}

y=h

= 0 (19)

or after Eq. (15)

C = gxh.
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At the bottom, for y = 0 we must have v = 0. Hence

v0 = 0.

Therefore

v(y) = gx

y∫

0

h − ỹ

η(ỹ)
dỹ. (20)

This is the solution of the problem satisfying the boundary

conditions.

4.2. Constant viscosity. For η = constant the solution (20)

reads

v(y) =
1

η
gx

(
h −

1

2
y

)
y (21)

with the maximum value of v at y = h.

What concerns the shear stress, after Eqs. (14) and (21),

σxy = gx(h − y) (22)

with the maximum value at y = 0.

An example of velocities.Let gx = 1 g/cm3 · 981 · 5 ·
10−5 cm/s2 ≈ 0.05 g/cm2·s2; the value of gradient 5 ·10−5 is

taken approximately from the slope of Pont du Gard, which

descends 2.5 cm in 456 m. According to Eq. (21), for the

water with η = 0.01 g/cm s and at for h = 1 cm the flu-

id velocity at the free surface is v = 2.5 cm/s only, and for

h = 10 cm, it is just v = 250 cm/s.

5. Fluid with Brinkman’s viscosity

For the model derived in the previous Section we express the

viscosity by the suspension concentration. To this end we sub-

stitute Brinkman’s formula (3) to the integral (20) and obtain

v(y) =
gx

η0

y∫

0

(1 − cv)5/2(h − ỹ)dỹ. (23)

This relation will be exploited in subsequent calculations.

From here, we suppress the index v at the concentration cv

and write simply

c ≡ cv. (24)

5.1. Linear variation of suspension concentration. For the

linear dependence of suspension concentration, such that at

the bottom, it is at y = 0, the density of the suspension is

c = c0 and just beneath the free surface, it is at y = h, it

vanishes, c = 0, what is described by the formula

c = c0

(
1 −

y

h

)
(25)

and corresponding viscosity is

η(y) =
η0

(
1 − c0 + c0

y

h

)5/2
. (26)

We have the following distribution of the fluid velocity along

the y-axis

v(y) =
gx

η0

y∫

0

(
1 − c0 + c0

ỹ

h

)5/2

(h − ỹ)dỹ

≡
gx

η0
(I0 · h − I1).

(27)

The dimension of the factor [gx/η0] = cm−1s−1 and the di-

mension of the integral is cm2; this gives the dimension of

the velocity cm/s. Above

I0 =
1

(c0/h) · 7
2

{
(c0

y

h
+ b)7/2 − b7/2

}
,

I1 =
1

(c0/h)2 · 9
2

{
(c0

y

h
+ b)9/2 − b9/2

}

−
b

(c0/h)2 · 7
2

{
(c0

y

h
+ b)7/2 − b7/2

}

with b ≡ 1 − c0.

The velocity distribution v(y) found from the relation (27)

is shown in Fig. 3. Such is the velocity behaviour for linear

distribution of the suspension concentration c with the depth,

and for different bottom suspension concentration c0.

Fig. 3. The velocity v along the y-axis for the linear distribution of

suspension concentration c with the depth, cf. Eq. (27). Numbers in

the legend indicate corresponding values of the suspension concen-

tration c0 at the bottom, cf. Eq. (25). Obviously, with the growth

of suspension density in the lower part of the fluid stream, for the

same value of y, the fluid viscosity increases and the fluid velocity

diminishes. As the unit of velocity the quantity (gx/η0) · h2 was

accepted. For gx = 0.05 g/cm2
·s2, η0 = 0.01 g/cm s and h = 1 cm

(see Example at the end of Sec. 5) this unit is equal 5 cm/s
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5.2. Trapezoidal and triangular distribution of suspen-

sion. Now we investigate a situation in which the suspension

concentration along the y-axis varies after a given broken

line form, what means that it is given by piece-wise formu-

lae. We divide the stream of fluid in two layers, the bottom

0 ≤ y < h/2 and the upper one h/2 ≤ y < h, and we

consider two cases.

In the first case, which we call the trapezoidal one, the sus-

pension concentration c in the layer 0 ≤ y < h/2 is constant

and in the upper layer h/2 ≤ y < h it diminishes linearly to

zero at y = h, see Fig. 4a.

a)

b)

Fig. 4. Two types of the distributions of suspension concentration

c considered in Subsec. 5.2. At the top (a) – the bottom concen-

tration (for y < 1/2) is constant. At the bottom (b) – the bottom

concentration growth linearly until y = 1/2

In the second case, the triangular one, the suspension con-

centration c in the layer 0 ≤ y < h/2 growth linearly with y,

reaches its maximum at y = h/2 and subsequently, as in the

first case, in the upper layer it diminishes linearly to zero at

y = h, see Fig. 4b.

In the second case the suspension concentration reaches its

greatest value not at the bottom but in the interior of the bulk

of the fluid, near y = h/2. One may imagine that such behav-

iour approximates a flood flow past a wetland with bulrush or

cattail, when some emergent plants become submerged ones.

Plants of genus Typha, such as broadleaf or common cat-

tail T. latifolia or narrowleaf cattail T. angustifolia belong

to “obligate wetland” species, meaning that they are always

found in or near water. They generally grow in areas where the

water depth does not exceed 2.6 feet (0.8 meters). However,

it has also been reported growing in floating mats in slightly

deeper water. One can expect that during a flood their upper

parts with the flowering heads can give greater resistance to

the flowing water than the lower parts.

In calculations we accept the suspension concentration

value c = 0.4 as maximum, because this a maximal value

for which Brinkman’s relation (3) holds true.

After the relation (23) we have

v(y) =
gx

η0

y∫

0

Y (ỹ)(h − ỹ)dỹ, (28)

where

Y (y) = (1 − c)5/2.

The concentration of suspension increases linearly from c0 to

c1 in the lower part of the water, between the bottom (y = 0)

and certain height h1 < h, and next linearly decreases be-

tween h1 and h, from c1 to zero, it is

c =
c1 − c0

h1
y + c0 for 0 ≤ y < h1,

c =
c1

h − h1
(h − y) for h1 < y ≤ h.

(29)

We write respectively

Y = b − ay with b = 1 − c0

and a =
cv1

− c0

h1
for 0 ≤ y < h1,

Y = b + ay with b = 1 −
c1

h − h1
h

and a =
c1

h − h1
for h1 < y ≤ h.

(30)

Further, we have the integrals:

– for 0 ≤ y < h1

h1∫

0

Y 5/2dy =
1

a · 7
2

(
Y 7/2 − b7/2

)

h1∫

0

Y 5/2ydy =
1

a · 9
2

(
Y 9/2 − b9/2

)

+
B

a2 · 7
2

(
Y 7/2 − b7/2

)
,

(31)
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– for h1 < y ≤ h

h1∫

0

Y 5/2dy =
1

a · 7
2

{
Y 7/2 − (b + ah1)

7/2
}

h1∫

0

Y 5/2ydy =
1

a · 9
2

{
Y 9/2 − (b + ah1)

9/2
}

+
b

a2 · 7
2

{
Y 7/2 − (b + ah1)

7/2
}

.

(32)

The velocity distribution in the direction y for two sus-

pension distributions given in Fig. 4 is presented in Fig. 5.

The more dense suspension at the lower part (y < 1/2) of the

fluid, the less is the velocity in the upper part (y > 1/2) of

the fluid. Despite of the discontinuity of density gradients at

y = 1/2 the velocity distribution is smooth together with the

derivatives. It is conform with Eq. (23) as

∂v

∂y
=

gx

η0
(1 − c)5/2(h − y)

and the concentration c is a continuous function of y.

Fig. 5. The velocity distribution in the direction y for two suspension

distributions given in Fig. 4. We accept h = 1, gx = 1 and η0 = 1.

The solid line corresponds to the distribution at left (a) in Fig. 4, it

is to the value c0 = 0.4, while the dashed line corresponds to the

distribution at right (b) in Fig. 4, where c0 = 0. The velocity unit is

the same as in Fig. 3

6. Fluid with two components

of different viscosity

Consider flow of the fluid composed of two different immis-

cible parts: upper part for h1 < y < h has the viscosity ηA

and the lower part for 0 ≤ y < h1 has the viscosity ηB . The

densities of the both parts are the same, cf. Fig. 6.

Fig. 6. Flow of the stream composed of two parts, A and B

We apply solutions (14) and (15) to both parts of the fluid.

Namely, we have for the part A

σ(A)
xy = ηA

∂v

∂y
,

ηA
∂v

∂y
= −gxy + CA

(33)

and for the part B

σ(B)
xy = ηB

∂v

∂y
,

ηB
∂v

∂y
= −gxy + CB.

(34)

On the interface at y = h1 we have equalities of the stresses

σ(A)
xy = σ(B)

xy (35)

and the velocities

v(A) = v(B) (36)

and at the bottom

v(B) = 0. (37)

Finally, we find for 0 ≤ y < h1 (part B)

v =
1

ηB
gxy

(
h −

1

2
y

)
(38)

and for h1 < y < h (part A)

v = v
(A)
0 +

1

ηA
gx

{
h(y − h1) −

1

2

(
y2 − h2

1

)}
(39)

with

v
(A)
0 =

1

ηB
gxh1

(
h −

1

2
h1

)
.

Examples of the dependence of velocity v upon the coordinate

y are given in Fig. 7.
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Fig. 7. Velocity v versus coordinate y for three cases: the whole

stream has the viscosity ηA (dotted curve) and two component flow,

with ηB at the bottom to ηA at the free surface. Example is given

for: ηA = 1, ηB = 2, (dashed curve) and ηB = 4, (solid curve)

with gx = 1, h = 1, h1 = 1/4. As the viscosity is not a continuous

function of y at y = 1/4, the velocity derivative ∂v/∂y is not con-

tinuous in this point. The velocity unit is the same as in Fig. 3, but

instead of η0 the viscosity ηA is taken

7. Applicability of the results

The above results are obtained under the assumption of lam-

inar flow. It is important to determine the ranges of parame-

ters of the problem in which such flow can be developed. The

Reynolds number is defined as the ratio of the inertial forces

to the viscous forces.

Re ≡
inertial forces

viscous forces
=

ρu2ℓ2

ηuℓ
(40)

or

Re =
ρuℓ

η
. (41)

Here ρ is the density of the fluid, u – its characteristic ve-

locity, ℓ – its characteristic spacial dimension, and η – the

(dynamical) viscosity. The number Re provides a convenient

characteristics of the flow. For instance, the number Re is

used to characterize different flow regimes, such as laminar

or turbulent flow.

7.1. Transition and turbulent flow. For flow in a pipe of

diameter D, experimental observations show that for fully de-

veloped flow, laminar flow occurs when Re < 2100 and tur-

bulent flow occurs when Re > 4000. In the interval between

2300 and 4000, laminar and turbulent flows are possible and

are called transition flows, depending on other factors, such

as pipe roughness and flow uniformity, [75].

7.2. Reynold’s number for open flow. The critical Reynolds

number depends on geometry of the canal. For flow of liquid

with a free surface the following Reynolds number should be

taken, [75],

Re = 4 ·
ρuℓ

η
. (42)

The characteristic velocity u is in our case the mean velocity

v of flow and the characteristic length ℓ it is – the depth h.

For the constant viscosity, after (21) we have

v =
1

η
gx

1

h

h∫

0

(
hy −

1

2
y2

)
dy

or

v =
1

η
gx

1

3
h2. (43)

Hence

Re =
4

3
· ρgx

h3

η2
. (44)

Reynolds number Re calculated after the last formula versus

the stream depth h for three different viscosities is shown in

Fig. 8. Critical value of Reynolds number Re = 2100 is de-

noted by the horizontal dotted line. We see that the accessible

stream depths for which the laminar flow can be developed

are less than 6 cm. Such value of the channel depth is ob-

served in experimental practice where vegetated stream beds

are investigated, cf. Fig. 4 in [76].

Fig. 8. Reynolds number Re versus the stream depth h for three cas-

es of viscosity: η = 0.01, η = 0.02 and η = 0.03. Critical value of

Reynolds number Re = 2100 is given by the horizontal dotted line.

The figure is prepared for the example given at the end of Sec. 4, it

is for: ρ = 1 g/cm3, gx = 0.05 g/(cm2 s2)

8. Final remarks

We have studied Stokesian flow under the gravity force of

the fluid containing suspensions with the various prescribed

distributions of the concentration. In particular, we have ana-

lyzed the two-layer fluid flow on the plane, when the suspen-

sion modifies only the viscosity of the bottom layer of fluid.

The suspension can model either the influence of the bottom

plants or other obstacles. The influence of the contaminating

suspension on the flow can also be modelled in this manner.
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Above, we studied a case of stationary laminar flow with

the different given distributions of suspension concentration.

The laminarity idealization is suitable for the flow character-

istics satisfying the constraint imposed by Reynolds’ number

Re = 2100. Such a limitation is widely observed in exper-

imental hydrological practice, in which the influence of the

stream bed vegetation is investigated.

As the Einsteinian theory of suspensions was built on the

basis of macroscopic theory of liquids by Stokes, we believe

that our results can be useful, at least, to the qualitative de-

scription of the influence of the various obstacles on the flow

in different wide channels.
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