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Fusion Kalman filtration for distributed multisensor
systems

ZDZISŁAW DUDA

In the paper, fusion state hierarchical filtration for a multisensor system is considered. An
optimal global Kalman filter is realized by a central node in the information form. The state
estimate depends on local information that should be sent by local nodes. Two information
structures are considered in the paper.

In the first case local estimates are based on the local measurement information. It leads
to distributed Kalman filter fusion that is well known in a literature. In the second case local
node has additionally global information of the system with one step delay. A synthesis of local
filters is presented. An advantage of this structure is discussed.
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1. Introduction

Multisensor systems find applications in many areas such as aerospace, robotics, im-
age processing, military surveillance, medical diagnosis. The advantage of using these
systems over a systems with a single sensor results from e.g. improved reliability, robust-
ness, extended coverage, improved resolution e.t.c. In these systems a state estimation
problem is one of the critical concerns.

Theoretically, state estimate can be determined by using Kalman filter in a central-
ized structure. Conventional Kalman filtration requires that all process measurements are
sent to a central station which determines an estimate of the state system. The central-
ized architecture produces an optimal estimate in a minimum mean square error (MMSE)
sense, but it may imply low survivability and requires high processing and communica-
tion loads.

In order to integrate data from distributed sensors estimation fusion algorithms and
appropriate architectures are proposed.

Fusion approaches have been researched for years and some results are known. In [5,
7, 12, 13] a centralized optimal state estimate is calculated from estimates determined by
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local nodes. The global estimate is equivalent to the optimal centralized one. In [2, 3, 4]
are presented fusion algorithms guaranteed local optimality, only.

In [11] are presented different methodologies to obtain non-centralized state esti-
mation algorithms and their implementations. A comprehensive review of the data state
fusion state domain is given in [9].

In [1] was suggested a Kalman fusion filtering with feedback. Proposed hierarchical
estimation equations can be implemented in a hierarchical structure where the central
node calculates a global state prediction which is sent to local nodes. When a new local
measurement is made, each node computes a local state estimate and communicates to
the fusion center where a fusion is proposed. In [13] a performance analysis of those
equations is given.

In this paper it is presented a hierarchical system with an information structure that
leads to the equations suggested in [1]. Those equations are educed by directly derivation
of Kalman filter. It is shown that for proposed architecture Kalman fusion is optimal and
is equivalent to the corresponding centralized Kalman filtering formula. An advantage
of this system is discussed.

2. Preleminaries

It is well known [10] that a minimum mean square error (MMSE) estimate x̂ of a ran-
dom signal x given information i⃗ is a conditional expectation x̂ = E(x|⃗i). For dynamical
systems a state estimate x̂n|k at time n given measurement information i⃗k = [iT0 , i

T
1 , ..., i

T
k ]

T

at time k has the form
x̂n|k = E(xn |⃗ik). (1)

Thus, for k = n we have

x̂n|n = E(xn |⃗in) = E(xn |⃗in−1, in) (2)

where i⃗n = [⃗iTn−1, i
T
n ]

T .
If the random vector [xT

n ,⃗ i
T
n−1, i

T
n ]

T is gaussian, then

x̂n|n = E(xn |⃗in) = E(xn |⃗in−1, in) = E(xn |⃗in−1)+E(xn |̃in|n−1)−Exn (3)

where
ĩn|n−1 = in−E(in |⃗in−1). (4)

If the random vector [xT
n , ĩ

T
n|n−1]

T is gaussian then

E(xn |̃in|n−1) = Exn +Pxn ĩn|n−1
P−1

ĩn|n−1 ĩn|n−1
(̃in|n−1−Eĩn|n−1) (5)

where Pαβ denotes a covariance matrix of the random vectors α and β.
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Under above assumptions, the eqn. (3) can be written in the form

x̂n|n = x̂n|n−1 +Kn[in−E(in |⃗in−1)] (6)

where
x̂n|n−1 = E(xn |⃗in−1) (7)

and
Kn = Pxn ĩn|n−1

P−1
ĩn|n−1 ĩn|n−1

. (8)

The equations (6)-(8) are used for determination of a state estimate x̂n|n given available
information i⃗n.

Let us consider a system described by a state equation

xn+1 = Anxn +wn (9)

and measurement equation
yn =Cnxn + rn, (10)

where xn, yn are the state and the measurement, respectively; An, Cn are the system
and observation models, wn, rn are the state and measurement noises, respectively. It
is assumed that x0 ∼ N(x̄0,X0), wn ∼ N(w̄n,Wn), rn ∼ N(0,Rn) and xn ∈ Rk, wn ∈ Rk,
yn ∈ Rp, rn ∈ Rp; An ∈ Rk×k, Cn ∈ Rp×k. Additionally, wn, rm are gaussian white noise
processes independent of each other and of the gaussian initial state x0.

It is well known [10] that an optimal state estimate x̂n+1|n+1 =E(xn+1|y0,y1, ...,yn+1)
results from the eqn. (6)-(8) and has the form

x̂n+1|n+1 = x̂n+1|n +Kn+1ỹn+1|n = x̂n+1|n +Kn+1(yn+1− ŷn+1|n) =

= x̂n+1|n +Kn+1(yn+1−Cn+1x̂n+1|n) (11)

where

x̂n+1|n = E(xn+1 |⃗yn) = Anx̂n|n + w̄n. (12)

The matrix gain Kn+1 is described as

Kn+1 = Pn+1|nCT
n+1(Cn+1Pn+1|nCT

n+1 +Rn+1)
−1 (13)

where

Pn+1|n = Ex̃n+1|nx̃T
n+1|n = E(xn+1− x̂n+1|n)(xn+1− x̂n+1|n)

T = AnPn|nAT
n +Wn (14)

and
Pn|n = Ex̃n|nx̃T

n|n = E(xn− x̂n|n)(xn− x̂n|n)
T = (1−KnCn)Pn|n−1. (15)

An initial condition x̂0|0 results from (11)

x̂0|0 = x̂0|−1 +K0(y0−C0x̂0|−1) = x̄0 +K0(y0−C0x̄0). (16)
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The covariance matrix P0|−1 can be determined as

P0|−1 = Ex̃0|−1x̃T
0|−1 = E(x0− x̄0)(x0− x̄0)

T = X0. (17)

Classical covariance filter presented above can be described in an information form
[6] as

P−1
n+1|n+1x̂n+1|n+1 = P−1

n+1|nx̂n+1|n +CT
n+1(Rn+1)

−1yn+1

x̂n+1|n = Anx̂n|n + w̄n (18)

P−1
n+1|n+1 = P−1

n+1|n +CT
n+1(Rn+1)

−1Cn+1.

Information filter has some computational advantages in multisensor systems where the
matrix CT

n (Rn)
−1Cn is usually of high dimension and nondiagonal.

A multisensor system is defined by the state model (9) and measurement equations

y j
n =C j

nxn + r j
n, j = 1, ...,M (19)

where y j
n is the measurement from the ith sensor.

It is assumed that r j
n ∼N(0,R j

n) , y j
n ∈ Rp j

, r j
n ∈ Rp j

; C j
n ∈ Rp j×k. Additionally, wn, r j

m
are gaussian white noise processes independent of each other and of the gaussian initial
state x0.

The classical covariance Kalman filter for the multisensor system defined
as x̂n+1|n+1 = E(xn+1|y0,y1, ...,yn+1) is described by the eqn. (11)-(15) where
yn = [y1T

n , ...,yMT
n ]T , Cn = [C1T

n , ...,CMT
n ]T , rn = [r1T

n , ...,rMT
n ]T , Rn = ErnrT

n =
blockdiag{R1

n, ...,R
M
n }.

Consequently its information form (18) may be written as

P−1
n+1|n+1x̂n+1|n+1 = P−1

n+1|nx̂n+1|n +
M

∑
j=1

C jT
n+1(R

j
n+1)

−1y j
n+1

x̂n+1|n = Anx̂n|n + w̄n (20)

P−1
n+1|n+1 = P−1

n+1|n +
M

∑
j=1

C jT
n+1(R

j
n+1)

−1C j
n+1.

The global estimate performed by the central processor depends on information state
vectors C jT

n+1(R
j
n+1)

−1y j
n+1 and information matrices C jT

n+1(R
j
n+1)

−1C j
n+1, j = 1, ...,M,

that can be performed and transmitted by local nodes to the central node. It may increase
processing speed.

Sometimes it is better to perform Kalman filtration by every local node upon its own
available information and then transmit local state estimates to the fusion center, where
a fusion is carried out. It will be discussed in the sequel.
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3. Problem statement

Let us consider the multisensor system described by the state equation (9) with mea-
surement equations (19).

The optimal Kalman filter realized by the central node is described by the infor-
mation form (20). It is seen that the state estimate x̂n|n depends on local information
C jT

n (R j
n)−1y j

n and C jT
n (R j

n)−1C j
n. This information should be sent by local nodes to the

central node.
Let us assume that local nodes perform local state estimates of the system (9) basing

on available local information.
Two information structures are considered in the paper.
In the first case local estimates x̂ j

n|n, j = 1, ...,M, are based on the information

i⃗ j
n = [y jT

0 , ...,y jT
n ]T . It leads to distributed Kalman filter fusion without feedback.

In the second case local estimates x̂ j
n|n, j = 1, ...,M, are based on the information

i⃗ j
n = [yT

0 , ...,y
T
n−1,y

j
n]T . It leads to distributed Kalman filter fusion with feedback. Let us

notice that local node has global measurement information of the system with one step
delay.

Firstly, local estimation for assumed information structures are considered. Next,
the possibility of fusion algorithms using the local estimates will be presented. In the
feedback case an advantage of this structure will be discussed.

4. Kalman filtering without feedback

Let us consider local estimation problem for the multisensor system described by the
state equation (9) and measurement equations (19) assuming that information available
for the jth node at time n is defined as i⃗ j

n = [y jT
0 , ...,y jT

n ]T .
Denote by

y⃗ j
n+1 = [y jT

0 , ...,y jT
n ,y jT

n+1]
T = [⃗y jT

n ,y jT
n+1]

T , ỹ j
n+1|n = y j

n+1 − E(y j
n+1 |⃗y

j
n) and i⃗ j

n = y⃗ jT
n ,

i j
n+1 = y jT

n+1.
The local filtration problem for the jth mode is to find

x̂ j
n+1|n+1 = E(xn+1 |⃗i j

n+1) = E(xn+1 |⃗y j
n+1). (21)

For the system described by the eqn. (9) and (19) the random vectors
[xT

n+1, y⃗
jT
n ,y jT

n+1]
T , [y jT

n+1, y⃗
jT
n ]T and [xT

n+1, ỹ
jT
n+1|n]

T are gaussian.
Thus the covariance Kalman filter results directly from the section 2 and is described

by the eqn. (11)-(15) with superscript " j" for all variables except of the state model
parameters. Thus

x̂ j
n+1|n+1 = x̂ j

n+1|n +K j
n+1(y

j
n+1−C j

n+1x̂ j
n+1|n) (22)
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x̂ j
n+1|n = E(xn+1 |⃗y j

n) = Anx̂ j
n|n + w̄n (23)

K j
n+1 = P j

n+1|nC jT
n+1(C

j
n+1P j

n+1|nC jT
n+1 +R j

n+1)
−1 (24)

P j
n+1|n = AnP j

n|nAT
n +Wn (25)

P j
n+1|n+1 = E(xn+1− x̂ j

n+1|n+1)(xn+1− x̂ j
n+1|n+1)

T = (1−K j
n+1C j

n+1)P
j

n+1|n. (26)

An information local Kalman filter results from the eqn. (18) and is described as

(P j
n+1|n+1)

−1x̂ j
n+1|n+1 = (P j

n+1|n)
−1x̂ j

n+1|n +C jT
n+1(R

j
n+1)

−1y j
n+1

x̂ j
n+1|n = AnP j

n|nx̂ j
n|n + w̄n (27)

(P j
n+1|n+1)

−1 = (P j
n+1|n)

−1 +C jT
n+1(R

j
n+1)

−1C j
n+1.

From (27) we have

C j
n+1(R

j
n+1)

−1y j
n+1 = (P j

n+1|n+1)
−1x̂ j

n+1|n+1− (P j
n+1|n)

−1x̂ j
n+1|n (28)

and
C jT

n+1(R
j
n+1)

−1C j
n+1 = (P j

n+1|n+1)
−1− (P j

n+1|n)
−1. (29)

Global optimal state estimate results from (20). Using (28) and (29) in (20) gives

P−1
n+1|n+1x̂n+1|n+1 = P−1

n+1|nx̂n+1|n +
M

∑
j=1

(P j
n+1|n+1)

−1x̂ j
n+1|n+1− (P j

n+1|n)
−1x̂ j

n+1|n

x̂n+1|n = AnPn|nx̂n|n + w̄n (30)

P−1
n+1|n+1 = P−1

n+1|n +
M

∑
j=1

(P j
n+1|n+1)

−1− (P j
n+1|n)

−1.

Equations (30) describe fusion Kalman filter that generates optimal global state estimate
according to (20). Local node needs its own local measurement to generate local state
estimate. Communication from central node to the local nodes is no need. That is why
this algorithm is known as the fusion algorithm without feedback.

5. Kalman filtering with feedback

Let us assume that the local estimate of the state xn+1 is based on the local infor-
mation i⃗ j

n+1, f = [yT
0 , ...,y

T
n ,y

jT
n+1]

T . Because of nonconventional information structure an
algorithm of Kalman filtration will be presented in more details.

Denote by y⃗ j
n+1, f = [yT

0 , ...,y
T
n ,y

jT
n+1]

T = [⃗yT
n ,y

jT
n+1]

T , ỹ j
n+1|n, f = y j

n+1 − E(y j
n+1 |⃗yn).

The local filtration problem for the jth mode is to find

x̂ j
n+1|n+1, f = E(xn+1 |⃗i j

n+1, f ) = E(xn+1 |⃗y j
n+1, f ). (31)
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For the system described by the eqn. (9) and (19) the random vectors [xT
n+1, y⃗

T
n ,y

jT
n+1]

T ,
[y jT

n+1, y⃗
T
n ]

T and [xT
n+1, ỹ

jT
n+1|n, f ]

T are gaussian. Thus the estimate

x̂ j
n+1|n+1, f = E(xn+1 |⃗y j

n+1, f ) (32)

results from the eqn. (6)-(7) and has the form

x̂ j
n+1|n+1, f = x̂n+1|n +K j

n+1, f ỹ
j
n+1|n, f = x̂n+1|n +K j

n+1, f (y
j
n+1− ŷ j

n+1|n, f ) (33)

where ŷ j
n+1|n, f = E(y j

n+1 |⃗yn), ỹ j
n+1|n, f = y j

n+1− ŷ j
n+1|n, f = y j

n+1−C j
n+1x̂n+1|n and

x̂n+1|n = E(xn+1 |⃗yn) = Anx̂n|n + w̄n. (34)

The matrix gain K j
n+1, f can be found from (8) as

K j
n+1, f = Pxn+1ỹ j

n+1|n, f
P−1

ỹ j
n+1|n, f ỹ j

n+1|n, f
. (35)

In (35)
ỹ j

n+1|n, f = y j
n+1−E(y j

n+1 |⃗yn) =C j
n+1x̃n+1|n. (36)

It can be shown that the covariance matrices Pỹ j
n+1|n, f ỹ j

n+1|n, f
and Pxn+1ỹ j

n+1|n, f
have the form

Pỹ j
n+1|n, f ỹ j

n+1|n, f
=C j

n+1Pn+1|nC jT
n+1 +R j

n+1
(37)

Pxn+1ỹ j
n+1|n, f

= Pn+1|nC jT
n+1.

Thus the matrix gain K j
n+1, f results from (35) and (37) as

K j
n+1, f = Pn+1|nC jT

n+1(C
j
n+1Pn+1|nC jT

n+1 +R j
n+1)

−1. (38)

The covariance matrix Pn+1|n is described by (14). Finally, the local Kalman filter is
described by the eqn. (33)-(34) and (13).

Now, let us determine a local covariance matrix P j
n|n, f defined as

P j
n|n, f = E(xn− x̂ j

n|n, f )(xn− x̂ j
n|n, f )

T . (39)

Using (33) we have

xn+1− x̂ j
n+1|n+1, f = xn+1− x̂n+1|n−K j

n+1, f ỹ
j
n+1|n, f = x̃n+1|n−K j

n+1, f ỹ
j
n+1|n, f (40)

and

P j
n+1|n+1, f = Ex̃ j

n+1|n+1, f x̃
jT
n+1|n+1, f = Ex̃n+1|nx̃T

n+1|n−Ex̃n+1|nỹ jT
n+1|n, f K

jT
n+1, f −
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−EK j
n+1, f ỹ

j
n+1|n, f x̃

T
n+1|n +EK j

n+1, f ỹ
j
n+1|n, f ỹ

jT
n+1|n, f K

jT
n+1, f . (41)

Using (36), (35) and (37) gives

P j
n+1|n+1, f = (1−K j

n+1, fC
j
n+1)Pn+1|n. (42)

Let us notice that (33) can be written in the form

x̂ j
n+1|n+1, f = x̂n+1|n +K j

n+1, f (y
j
n+1−C j

n+1x̂n+1|n)
(43)

= (1−K j
n+1, fC

j
n+1)x̂n+1|n +K j

n+1, f y
j
n+1.

Now we transform (1−K j
n+1, fC

j
n+1) and K j

n+1, f to an appropriate form. We have

1−K j
n+1, fC

j
n+1 =

P j
n+1|n+1, f (42)︷ ︸︸ ︷

1−K j
n+1, fC

j
n+1Pn+1|n P−1

n+1|n = P j
n+1|n+1, f P

−1
n+1|n. (44)

Denote by
O j

n+1 =C j
n+1Pn+1|nC jT

n+1 +R j
n+1. (45)

Multiplying the both sides of the eqn. (38) by O j
n+1 gives

K j
n+1, f (

O j
n+1(45)︷ ︸︸ ︷

C j
n+1Pn+1|nC jT

n+1 +R j
n+1) = Pn+1|nC jT

n+1. (46)

Thus
K j

n+1, f R
j
n+1 = (1−K j

n+1, fC
j
n+1)Pn+1|nC jT

n+1 (47)

and

K j
n+1, f = (

P j
n+1|n+1, f P−1

n+1|n(44)︷ ︸︸ ︷
1−K j

n+1, fC
j
n+1)Pn+1|nC jT

n+1(R
j
n+1)

−1 = P j
n+1|n+1, fC

jT
n+1(R

j
n+1)

−1. (48)

Inserting (44) and (48) to (43) gives

x̂ j
n+1|n+1, f = P j

n+1|n+1, f P
−1
n+1|nx̂n+1|n +P j

n+1|n+1, fC
jT
n+1(R

j
n+1)

−1y j
n+1. (49)

From (49) it results that

(P j
n+1|n+1, f )

−1x̂ j
n+1|n+1, f = P−1

n+1|nx̂n+1|n +C jT
n+1(R

j
n+1)

−1y j
n+1. (50)

Now we determine a recursive form of the covariance matrix (P j
n+1|n+1, f )

−1.
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The covariance matrix P j
n+1|n+1, f given by (42) can be written by

P j
n+1|n+1, f = Pn+1|n−K j

n+1, f O
j
n+1, f

K jT
n+1, f (38)︷ ︸︸ ︷

(O j
n+1)

−1C j
n+1Pn+1|n =

(51)
= Pn+1|n−K j

n+1, f O
j
n+1K jT

n+1, f

The eqn. (51) has the form

P j
n+1|n+1, f = Pn+1|n−K j

n+1, f (

O j
n+1(45)︷ ︸︸ ︷

C j
n+1Pn+1|nC jT

n+1 +R j
n+1)K

jT
n+1, f =

(52)
= Pn+1|n−K j

n+1, fC
j
n+1Pn+1|nC jT

n+1K jT
n+1, f −K j

n+1, f R
j
n+1K jT

n+1, f .

But from (44) we have

K j
n+1, fC

j
n+1 = 1−P j

n+1|n+1, f P
−1
n+1|n. (53)

Inserting (53) to (52) yields

P j
n+1|n+1, f = P j

n+1|n+1, f P
−1
n+1|nP j

n+1|n+1, f +K j
n+1, f R

j
n+1K jT

n+1, f =

= P j
n+1|n+1, f P

−1
n+1|nP j

n+1|n+1, f +

K j
n+1, f (48)︷ ︸︸ ︷

P j
n+1|n+1, fC

jT
n+1(R

j
n+1)

−1 R j
n+1

K jT
n+1, f︷ ︸︸ ︷

(R j
n+1)

−1C j
n+1P j

n+1|n+1, f =

= P j
n+1|n+1, f P

−1
n+1|nP j

n+1|n+1, f +P j
n+1|n+1, fC

jT
n+1(R

j
n+1)

−1C j
n+1P j

n+1|n+1, f . (54)

Multiplying two-times the both sides of the eqn. (54) by (P j
n+1|n+1, f )

−1 gives

1 = P−1
n+1|nP j

n+1|n+1, f +C jT
n+1(R

j
n+1)

−1C j
n+1P j

n+1|n+1, f (55)

(P j
n+1|n+1, f )

−1 = P−1
n+1|n +C jT

n+1(R
j
n+1)

−1C j
n+1. (56)

Let us notice that from (50) and (56) we have

C jT
n+1(R

j
n+1)

−1y j
n+1 = (P j

n+1|n+1, f )
−1x̂ j

n+1|n+1, f −P−1
n+1|nx̂n+1|n (57)

and
C jT

n+1(R
j
n+1)

−1C j
n+1 = (P j

n+1|n+1, f )
−1−P−1

n+1|n. (58)

Global optimal state estimate results from (20). Using (57) and (58) in (20) gives

P−1
n+1|n+1x̂n+1|n+1 =

M

∑
j=1

(P j
n+1|n+1, f )

−1x̂ j
n+1|n+1, f − (M−1)P−1

n+1|nx̂n+1|n
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x̂n+1|n = Anx̂n|n + w̄n

P−1
n+1|n+1 =

M

∑
j=1

(P j
n+1|n+1, f )

−1− (M−1)P−1
n+1|n. (59)

Equations (59) describe fusion Kalman filter that generates optimal global state estimate
according to (20). Local node needs its own local measurement and global information
from the central node with one step delay. to generate local state estimate. Thus com-
munication from central node to the local nodes is need. That is why this algorithm is
known as the fusion algorithm with feedback. The fusion equations (59) are suggested
in [1], only.

6. The quality of the feedback fusion structure

Let us compare the centralized Kalman filtering (20) with fusion algorithms without
feedback (30) and with feedback (59). The algorithms are exactly equivalent. Thus the
feedback does not improve the performance at the central node (fusion center).

Does the feedback reduce local state filtering error?
Let us compare local covariance matrices described by the eqn. (27) and (56). Sub-

tracting the both sides gives

(P j
n+1|n+1, f )

−1− (P j
n+1|n+1)

−1 = P−1
n+1|n− (P j

n+1|n)
−1 (60)

where Pn+1|n and (P j
n+1|n) are described by the eqn. (14) and (25). We apply the matrix

inversion lemma ( [8]) to find P−1
n+1|n− (P j

n+1|n)
−1, which yields

P−1
n+1|n− (P j

n+1|n)
−1 =

(61)
=W−1

n An{[(P j
n|n)
−1 +AT

n W−1
n An]

−1− (P−1
n|n +AT

n W−1
n An)

−1}AT
n W−1

n

Subtracting the both sides of the eqn. (20) and (27) and using (62) gives

P−1
n+1|n+1− (P j

n+1|n+1)
−1 = P−1

n+1|n− (P j
n+1|n)

−1 +
M

∑
i̸= j

CiT
n+1(R

i
n+1)

−1Ci
n+1 =

=W−1
n An{[(P j

n|n)
−1 +AT

n W−1
n An]

−1− (P−1
n|n +AT

n W−1
n An)

−1}AT
n W−1

n + (62)

+
M

∑
i̸= j

CiT
n+1(R

i
n+1)

−1Ci
n+1.

For P0|0 = P j
0|0 = X0 we have

P−1
1|1 − (P j

1|1)
−1 =

M

∑
i ̸= j

CiT
n+1(R

i
n+1)

−1Ci
n+1 ­ 0 (63)
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and consequently

(P j
1|1)
−1 ¬ P−1

1|1

(P j
1|1)
−1 +AT

1 W−1
1 A1 ¬ P−1

1|1 +AT
1 W−1

1 A1

[(P j
1|1)
−1 +AT

1 W−1
1 A1]

−1 ­ (P−1
1|1 +AT

1 W−1
1 A1)

−1

W−1
1 A1[(P

j
1|1)
−1 +AT

1 W−1
1 A1]

−1AT
1 W−1

1 ­W−1
1 A1(P−1

1|1 +AT
1 W−1

1 A1)
−1AT

1 W−1
1

W−1
1 A1[(P

j
1|1)
−1 +AT

1 W−1
1 A1]

−1AT
1 W−1

1 +
M

∑
i ̸= j

CiT
2 (Ri

2)
−1Ci

2 ­

­W−1
1 A1(P−1

1|1 +AT
1 W−1

1 A1)
−1AT

1 W−1
1

W−1
1 A1{[(P j

1|1)
−1 +AT

1 W−1
1 A1]

−1− (P−1
1|1 +AT

1 W−1
1 A1)

−1}AT
1 W−1

1 +

+
M

∑
i ̸= j

CiT
2 (Ri

2)
−1Ci

2 ­ 0 (64)

P−1
2|2 − (P j

2|2)
−1 ­ 0 ⇒ (P j

2|2)
−1 ¬ P−1

2|2 .

Working recursively we obtain
(P j

n|n)
−1 ¬ P−1

n|n . (65)

From the above expression we have

(P j
n|n)
−1 +AT

n W−1
n An ¬ P−1

n|n +AT
n W−1

n An (66)

[(P j
n|n)
−1 +AT

n W−1
n An]

−1 ­ (P−1
n|n +AT

n W−1
n An)

−1 (67)

W−1
n An[(P

j
n|n)
−1 +AT

n W−1
n An]

−1AT
n W−1

n ­W−1
n An(P−1

n|n +AT
n W−1

n An)
−1AT

n W−1
n (68)

W−1
n An{[(P j

n|n)
−1 +AT

n W−1
n An]

−1− (P−1
n|n +AT

n W−1
n An)

−1}AT
n W−1

n ­ 0. (69)

Using (62) gives

P−1
n+1|n− (P j

n+1|n)
−1 ­ 0 (70)

and according to the eqn. (60)

(P j
n+1|n+1, f )

−1 ­ (P j
n+1|n+1)

−1. (71)

Thus the feedback may reduce the local state filtering errors.

7. Conclusion

Two hierarchical fusion filtration algorithms are presented in the paper. They are
based on two information structures. In the first structure local filters use local measure-
ment, only, while in the second one, local nodes have global measurement information
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with one step delay. The first algorithm is called "without feedback", while the second
one is called "with feedback". It is shown that the both algorithms are equivalent to the
corresponding centralized Kalman filter. The advantage of the feedback is a possibility
of a reduction of the local error state estimates.
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