
BULLETIN OF THE POLISH ACADEMY OF SCIENCES

TECHNICAL SCIENCES, Vol. 63, No. 3, 2015

DOI: 10.1515/bpasts-2015-0085

Towards the boundary between easy and hard control problems

in multicast Clos networks

P. OBSZARSKI, A. JASTRZĘBSKI, and M. KUBALE∗

Faculty of Electronics, Telecommunications and Informatics, Gdańsk University of Technology,

11/12 Gabiela Narutowicza St., 80-233 Gdańsk, Poland

Abstract. In this article we study 3-stage Clos networks with multicast calls in general and 2-cast calls, in particular. We investigate various

sizes of input and output switches and discuss some routing problems involved in blocking states. To express our results in a formal way

we introduce a model of hypergraph edge-coloring. A new class of bipartite hypergraphs corresponding to Clos networks is studied. We

identify some polynomially solvable instances as well as a number of NP-complete cases. Our results warn of possible troubles arising in

the control of Clos networks even if they are composed of small-size switches in outer stages. This is in sharp contrast to classical unicast

Clos networks for which all the control problems are polynomially solvable.
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1. Introduction

Clos networks were introduced by Charles Clos in his sem-

inal paper [1]. However, our basic notation and terminology

follows that of Hwang [2]. In this article we discuss 3-stage

Clos networks which consist of several switches arranged in 3

stages. Interconnection networks of this type are characterized

as follows:

• The first (input) stage consists of r1 switches (crossbars)

each with n1 inputs and m outputs. We say that such

a switch is of size n1 × m.

• The second (middle) stage consists of m switches each of

size r1 × r2.

• The third (output) stage consists of r2 switches each of size

m × n2.

• There exists exactly one link between each middle switch

and each input and output switch.

Clos network with these parameters is denoted

C(n1, r1, m, n2, r2). An example of such a network is pre-

sented in Fig. 1.

Clos networks are theoretical idealization of practical mul-

tistage switching systems, which means that each connection

from an inlet on input switch to an outlet on output switch

consists of links that are not to be shared with any other con-

nections.

We recall that in multicast calls each request is a pair of

one idle (unused) inlet and a set of idle outlets. A multicast

call is said to be f-cast if f outlets can be requested in one

call. To allow multicast connections, the switches with fan-

out capability are required. A switch with fan-out property is

capable of distributing a signal from one input to a few out-

puts. In our model we assume that only switches in the second

and the third stage have such a property (so-called model 1

in [3]). Accordingly, a Clos network having switches with

fan-out property in the middle and output switches which are

capable of implementing 2-cast calls is said to be a 2-cast Clos

network. Furthermore, such a network is called rearrangeable

if an idle inlet can always be connected to a couple of idle

outlets but for this to take place, existing calls may have to be

moved by assigning them to different middle stage switches

in the network. If, however, an idle inlet can be connected to

a couple of idle outlets without having to rearrange existing

calls then such a 2-cast Clos network is called nonblocking.

Some sufficient conditions for a 2-cast Clos network to be

rearrangeable and/or nonblocking are given in Sec. 3.

Fig. 1. Example of Clos network C(n1, r1, m, n2, r2)

In general, considerations devoted to combinatorial prop-

erties of 2-cast Clos networks may be headed into two di-
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rections. First, we may try to estimate a sufficient number of

middle-stage switches that need to be installed in order to

guarantee that the network is rearrangeable or nonblocking.

This problem is briefly discussed in Sec. 3. Secondly, given a

Clos network, we may try to design a routing algorithm that

attempts to minimize the number of middle switches used.

In this article we mainly point out in Secs. 4 and 5 several

reasons of intractability involved in the second approach. The

fact that rearranging multicast Clos networks is NP-complete

was first noticed in [4]. In this paper, however, we go a step

further by approaching the boundary between easy and hard

problems arising in the control of such networks and showing

that almost all blocking states of C(2, r1, m, 2, r2), m ≥ 3
can be unblocked.

The remainder of the paper is organized as follows. In

the next section we introduce a mathematical model (hyper-

graph edge-coloring) for analyzing the states of 2-cast Clos

networks. Section 3 is devoted to some bounds on the num-

ber of middle switches for a Clos network to be rearrangeable.

The main results of this paper are given in the last two sec-

tions. In Sec. 4 we point out several reasons of intractability

involved in the control of 2-cast Clos networks. In Sec. 5 we

attempt to elaborate the border between polynomially solvable

and NP-hard control problems and point out special cases that

can be solved efficiently in linear time.

2. Edge-coloring of hypergraphs

The problem of routing multicast Clos networks can be mod-

eled by a hypergraph edge-coloring. In particular, 2-cast Clos

network can be modeled by an edge-coloring of 3-uniform

hypergraph, which is introduced in this section.

Let H = (V, E) be a hypergraph, where V = V (H) is

a set of vertices and E = E(H) is a multiset of nonempty

subsets of V called hyperedges or simply edges. We say that

a hyperedge e and a vertex v are incident if v ∈ e. Also,

two edges that have a vertex in common are said to be adja-

cent. A d-edge is a hyperedge that contains exactly d vertices.

We say that d = |e| is the dimension of hyperedge e. If all

edges of a hypergraph are of the same dimension d then the

hypergraph is said to be d-uniform. A hypergraph is simple

if each edge is unique (in the sense of vertices it contains).

A hypergraph H is linear if each pair of edges share at most

one vertex. Linearity is stronger than simplicity in the sense

that each linear hypergraph is also simple. Notice that simple

(linear) 2-uniform hypergraphs are just graphs.

The degree deg(v) of a vertex v ∈ V is the number of

edges in which v occurs. ∆(H) = maxv∈V deg(v) is the

degree of H .

A proper edge-coloring (k-edge-coloring) of a hypergraph

H with k colors is a function c : E(H) → {1, ..., k} such

that no two adjacent hyperedges get the same color (number).

A coloring that uses the minimum number of colors is called

optimal. The chromatic index χ′(H) of H is defined to be

the number of colors in an optimal coloring of H .

For a hypergraph H , the line graph L(H) is a simple graph

representing adjacency between hyperedges in H . More pre-

cisely, each hyperedge of H is assigned a vertex in L(H)
and two vertices in L(H) are adjacent if and only if their

corresponding hyperedges in H have a vertex in common. It

is easy to notice that an edge-coloring of a hypergraph H

is equivalent to vertex-coloring of its line graph L(H). See

Fig. 2a,b for an example of a hypergraph and its line graph.

a) b)

c) d)

Fig. 2. Example of bipartite hypergraph and some related graphs:

a) hypergraph H . Black vertices belong to out-partition, white ver-

tices belong to in-partition, ∆(H) = 3; b) line graph L(H),
∆(L(H)) = 5; c) graph induced by set Vi of H , H(Vi). ∆i = 2;

d) Graph induced by set Vo of H , H(Vo). ∆o = 3

In this paper a special class of 3-uniform hypergraphs is

considered. For this reason we need some additional notions.

In particular, we say that a hypergraph is bipartite if its vertex

set can be split into two partitions in such a way that each edge

has exactly one vertex in the first partition and two vertices in

the second one. In connection with Clos networks terminol-

ogy we call the first partition the in-partition and the second

one the out-partition. We denote these partitions Vi and Vo,

respectively. An example of a bipartite hypergraph is shown

in Fig. 2a. The maximum degree of a vertex in the in-partition

is called the in-degree and denoted ∆i, while the maximum

degree of a vertex in the out-partition is called the out-degree

and denoted ∆o. Given a bipartite hypergraph H , by H(Vi)
(H(Vo)) we mean the graph induced by set Vi (Vo), respec-

tively. More precisely, H(Vo) is a graph or multigraph on |Vo|
vertices and |E(H)| edges in which each 3-edge {u, v, w} of

H , u ∈ Vi, v, w ∈ Vo generates one edge {v, w} in H(Vo),
while H(Vi) is a graph consisting of |Vi| isolated vertices

with bunches of |E(H)| 1-edges (loops) on them, one loop

{u} for each 3-edge {u, v, w} of H , u ∈ Vi. An example of

such graphs is depicted in Fig. 2c,d.

Edge-coloring of hypergraphs can be applied to model the

operation of multicast Clos networks in the following manner.

Input and output switches correspond to vertices of a hyper-

graph, connecting paths and connection requests are repre-

sented by hyperedges. The middle switch participating in a

connection determines the color of the corresponding hyper-
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edge. An example of reduction from a 2-cast Clos network

to edge-coloring of a 3-uniform hypergraph is presented in

Fig. 3a,b.

a) b)

c) d)

e) f)

Fig. 3. Example of 2-cast Clos network and corresponding hyper-

graphs: a) Clos 2-cast network C(2, 4, 2, 2, 5) with 3 connecting

paths; b) hypergraph corresponding to the Clos network (a) (vertices

from Vo are black and from Vi are white) and its coloring (numbers

inside hyperedges); c) Clos network (a) that needed to be rerouted

after one call was added (from c to x and w); d) hypergraph corre-

sponding to the Clos network (c) and its coloring; e) Clos network

(a) with one additional call (from b to u and x) that cannot be rerout-

ed and needs the 3rd middle switch; f) hypergraph corresponding to

the Clos network (e) and its coloring

In the following we mainly discuss 3-uniform hypergraphs.

Henceforth, by the term hypergraph we mean a 3-uniform hy-

pergraph, unless otherwise stated. The only exception is made

for propositions, conjectures and theorems, where we use the

full specification of a hypergraph at hand. Observe that al-

though we simplify the model by omitting 2-edges (that cor-

respond to 2-cast calls with outlets on the same output switch)

we can take them into account, since each 2-edge can be ex-

tended to 3-edge by introducing one dummy vertex into it.

Although our considerations are focused on 2-cast Clos

networks, they can be easily generalized to multicast Clos

networks. In fact, given a set of 2-cast calls modeled by 3-

edges of a hypergraph H , we can introduce to each hyper-

edge of H one dummy vertex. The new hypergraph I with

4-edges has the line graph L(I) isomorphic to L(H). There-

fore, edge-coloring of H is equivalent to edge-coloring of I .

Consequently, a larger (k + 1)-cast Clos network can mimic

the operation of smaller k-cast network for any k ≥ 2.

3. Upper bounds on the chromatic index

Proper estimation of the number of switches in the central

stage is essential in the phase of designing a Clos network

structure. In this section we present some relevant conjectures

and bounds on that number. Note that the minimal number of

switches in the middle stage of a rearrangeable multicast net-

work cannot be less than max{χ′(H)}, where maximum is

among all possible hypergraphs realized by the network.

We start with a basic bound that applies to all 3-uniform

hypergraphs.

Proposition 1. Each 3-uniform bipartite hypergraph H can

be edge-colored with 3∆(H) − 2 colors.

To justify this fact it is enough to notice that each vertex

of a 3-edge e is of degree at most ∆(H). Therefore, edge

e has at most 3∆(H) − 3 neighboring edges and at worst a

color 3∆(H) − 2 is free for e. This bound guarantees that

a new request can never be blocked regardless of the cur-

rent state of Clos network C(n1, r1, m, n2, r2) provided that

m ≥ 3 max{n1, n2} − 2.

There is a much stronger conjecture formulated in [5].

Unfortunately, the problem has been open for more than two

decades.

Conjecture 1 [5]. Every bipartite 3-uniform hypergraph is

(2∆)-edge-colorable.

In terms of Clos network the truth of Conjecture 1

implies that C(n1, r1, m, n2, r2) is rearrangeable if m ≥
2 max{n1, n2}. For some special cases the conjecture has

been proven to be true. For example:

• ∆i ≥ ∆o and ∆o ≤ 3 [6]

• ∆i > ∆o and |Vo| ≤ 4 [7]

• |Vi| ≤ 4 [8]

A generalization of Hwang-Lin’s conjecture has been pro-

posed in [6].

Conjecture 2. If ∆i ≥ ∆o then bipartite 3-uniform hyper-

graph is (∆o + ∆i)-edge-colorable.

Based on some computational experiments, we propose

even stronger conjecture.

Bull. Pol. Ac.: Tech. 63(3) 2015 741



P. Obszarski, A. Jastrzębski, and M. Kubale

Conjecture 3. If ∆i ≥ 2∆o then bipartite 3-uniform hyper-

graph is ∆i-edge-colorable.

If our conjecture is true then so are Conjectures 1 and 2.

4. Complexity of edge-coloring in special cases

In this section we discuss the cases in which H(Vo) forms

some highly structured graphs. We give a detailed proof of

NP-completeness of deciding the 3-edge-colorability of H

when the H(Vo) graph is composed of cycles. However, we

also consider forests, trees, collections of cliques and col-

lections of multipaths. Finally we indicate a polynomial-time

algorithm for the case in which H(Vo) is a collection of stars.

Theorem 1. It is NP-complete to decide whether a bipartite

3-uniform hypergraph H with ∆i = 3 has a 3-edge-coloring

in the following cases:

a) H is linear and H(Vo) is a collection of cycles C4,

b) H is linear, H(Vo) is a forest and ∆o = 3,

c) H is linear, H(Vo) is a caterpillar and ∆o = 3,

d) H is simple and H(Vo) is a collection of complete graphs

K4,

e) H is simple, H(Vo) is a collection of multipaths on three

vertices and ∆o = 3,

f) H is simple, H(Vo) is a multipath and ∆o = 3.

Proof. Obviously, the problem is in NP, since checking

whether a coloring is proper requires only verifying if adja-

cent edges are of different color. Below we consider 6 cases.

In each case the proof is based on the fact that 3-edge-coloring

of a cubic graph is an NP-complete problem [9].

Case (a) Let us consider a cubic graph G. We transform G

to a 3-uniform and bipartite hypergraph H by replacing each

edge {u, v} ∈ E(G) with a gadget shown in Fig. 4. Dashed

line marks a graph C4 in H(Vo). The gadget is joint to the

graph via vertices u and v. White vertices constitute the in-

partition. Note, that ∆i = 3 as the initial graph is cubic. The

black vertices stand for the out-partition. Together with the

hyperedges of gadget they form cycles C4, one for each gad-

get. Finally, we have to explain why graph G is 3-colorable if

and only if edges of the corresponding hypergraph H can be

colored with three colors. First, let us assume that we know a

3-edge-coloring of G. Then, consider each gadget separately,

and color the hypergraph H in the following manner.

• the far left hyperedge and the far right hyperedge get the

same color as that of the edge {u, v} of G replaced by the

gadget,

• two hyperedges inside the gadget get the remaining two

colors.

Fig. 4. Gadget for cycle. The dashed lines mark underlying cycle C4

One can easy see that each gadget of hypergraph is prop-

erly colored with three colors. Hence the whole hypergraph

can also be colored with three colors.

Now let us assume that we have a 3-edge-coloring of the

hypergraph H . The crucial point is that hyperedges on the

both sides of a gadget have to be colored with the same col-

or in each proper 3-edge-coloring. Otherwise, since the inner

side hyperedges are adjacent to both outer side hyperedges

and to each other, the fourth color would have to be used. On

the basis of this fact, all we need to do is to color the edges

of graph G with the colors of gadgets’ outer side hyperedges.

Case (b) Given any cubic graph G, replace each edge

{u, v} of it with the gadget presented in Fig. 5. The dashed

lines mark a tree in H(Vo). We connect the gadget via ver-

tices u and v. Bearing in mind the proof of case (a), to make

this one valid we need to show that the gadget can be edge-

colored with three colors and each proper 3-coloring requires

edges e1 and e2 to be of the same color. Edges e1, e3 and

e4 are adjacent to each other, so they should be colored with

three distinct colors. Let us assume that this colors are c1, c2

and c3, respectively. Observe that e5 needs to be colored with

the same color as e1 in each 3-coloring, so it gets c1. This and

the fact that e6 is colored with c2, implies that e7 is colored

with c3. So edge e2 in each proper 3-edge-coloring must be

colored with c1.

Fig. 5. Gadget for forest. The dashed lines mark an underlying tree

Case (c) We have proven that the problem is NP-hard for

a set of trees (forest). It occurs that it is enough to connect

gadgets together via a vertex of degree 1 in edges e6 or e5

using some additional edges in order to get a caterpillar (in

H(Vo)), i.e. a tree such that deleting vertices of degree 1
results in a path.

Case (d) The proof remains very similar to that for cycles

C4. Obviously, the gadget is different (see Fig. 6) but argument

remains the same. Hence, we leave detailed considerations to

the reader.

Case (e) Yet another proof similar to that of case (a). The

gadget that replaces edges of G is presented in Fig. 7. Observe

that H(Vo) is a collection of multipaths, where a multipath is

a path in which parallel edges are allowed.
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Fig. 6. Gadget for complete graphs. The dashed lines mark underly-

ing K4

Fig. 7. Gadget for multipath. The dashed lines mark an underlying

multipath

Case (f) Notice that if we connect gadgets from Fig. 7

together via vertices of degree 1 and some additional hyper-

edges we get a single multipath in H(Vo).

It has been shown in the proof of Theorem 1(a) that in

considered hypergraphs ∆i = 3. Also note that ∆o = 2, since

H(Vo) is a collection of cycles in that case. Hence we have:

Corollary 1. Edge-coloring of bipartite 3-uniform hyper-

graphs is NP-complete even for hypergraphs with ∆i = 3
and ∆o = 2.

In practice this means that there exists no polynomial-time

algorithm for rearranging general multicast Clos networks un-

less P = NP. This is in sharp contrast to unicast Clos networks

for which we have rearranging algorithms that run in polyno-

mial time [10, 11].

However, the problem becomes polynomial if both the in-

degree and the out-degree are bounded by 2. Then we have

the degree configuration ∆i = ∆o = 2, which is claimed

to be polynomial in Sec. 5. The edge-coloring problem also

becomes polynomial if we decrease the size of cycles and

consider a collection of triangles C3 in the out-partition (for

any in-degree). This situation is similar to that described in

Theorem 2.

Let us slightly simplify the problem from Theorem 1(e) to

the one with H(Vo) being a collection of multipaths P3. It is

not difficult to see that the problem becomes polynomial. First

observe, that the dependencies in terms of edge-coloring are

the same for multipaths on three vertices, multicycles based

on C3 and stars. Simply each edge is then adjacent to each

other. In the following we look closer to the cases with H(Vo)
composed of a number of stars.

Theorem 2. There exists an O(|E(H)| log ∆(H))-time al-

gorithm for optimal edge-coloring of a bipartite 3-uniform

hypergraph H in which H(Vo) is a collection of stars.

Proof. Consider a bipartite hypergraph H in which a set of

stars constitutes the out-partition. Notice that in such a con-

figuration each hyperedge has at least one vertex of degree 1.

Furthermore, such a vertex must be in out-partition and it is

a leaf of a star in H(Vo). Since such vertices do not influence

edge-coloring so we get rid of them and leave 2-edges on-

ly (see Fig. 8). Obviously, the remaining graph is a bipartite

multigraph. Clearly, the edge-coloring of H is equivalent to

edge-coloring of such a multigraph, which can be obtained in

time O(|E| log ∆) [12].

a) b)

Fig. 8. Illustration for the proof of Theorem 2: a) example of a bi-

partite hypergraph, b) bipartite multigraph corresponding to (a)

5. Complexity status for bounded degree

bipartite hypergraphs

In relation with Clos networks the restriction on ∆i may stand

for the maximal number of calls from a single switch of the

first stage. Similarly ∆o restricts the number of calls leaving

any switch form the third stage. We may write that considered

networks are of type C(∆i, r1, m, ∆o, r2).
Table 1 collects the information about the complexity sta-

tus for various combinations of ∆i and ∆o. Below we explain

the crucial points of this table.

Table 1

The complexity of edge-coloring depending on the in- and out-degrees

for 3-uniform bipartite hypergraphs

∆i = 1 ∆i = 2 ∆i ≥ 3

∆o = 1 trivial linear linear

∆o = 2 linear lineara NP-hard

∆o ≥ 3 NP-hard NP-hard NP-hard
a [14]

In the cases with ∆o = 1, the H(Vo) graph is simply a

matching. Then the model describes bunches of hyperedges

sharing at most one vertex from Vi. In this case all hyperedges

sharing the same vertex must get various colors.

If ∆i = 1, the in-partition consists of r1 vertices, each of

which is either isolated or incident with one hyperedge. As

noticed in the proof of Theorem 2, such vertices do not in-

fluence the edge-coloring. This implies that this is the struc-

ture of H(Vo) that determines the hypergraph colorability.

Although the classical edge-coloring problem is linearly solv-

able for graphs with ∆ = 2 and NP-hard if ∆ ≥ 3 [9], the

edge-coloring of bipartite hypergraphs is linearly solvable for

∆i = 1 and ∆o ≤ 2, and it is NP-hard if ∆i = 1 and ∆o ≥ 3.

If ∆i = ∆o = 1, the edge-coloring problem becomes triv-

ial, since H consists of isolated hyperedges. Of course, the

C(1, r1, m, 1, r2) networks have no practical significance.
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If ∆i = ∆o = 2, then the line graph of such a bipartite

hypergraph is of degree at most 3. If such a line graph is K4-

free then, in virtue of Brooks’ theorem [13], it has a vertex-

coloring with 3 colors which can be found in linear time [14].

Since such a coloring is equivalent to 3-edge-coloring of H , it

follows that there exists an efficient algorithm for rearranging

2-cast networks C(2, r1, 3, 2, r2), unless L(H) contains K4.

An example of the smallest network with such a blocking state

is shown in Fig. 9. Note that 2-cast networks C(2, r1, 4, 2, r2)
are already nonblocking.

a) b)

Fig. 9. a) Clos network C(2, 2, 3, 2, 4) with 3 connecting paths.

A new call (form b to y and z) would be blocked, b) corresponding

hypergraph. The new call is marked with a dashed cycle

The fact that the problem is NP-complete for ∆o = 2 and

∆i = 3 is claimed in Corollary 1.
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