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Abstract. This paper addresses computationally feasible multi-objective optimization of antenna structures. We review two recent techniques

that utilize the multi-objective evolutionary algorithm (MOEA) working with fast antenna replacement models (surrogates) constructed as

Kriging interpolation of coarse-discretization electromagnetic (EM) simulation data. The initial set of Pareto-optimal designs is subsequently

refined to elevate it to the high-fidelity EM simulation accuracy. In the first method, this is realized point-by-point through appropriate

response correction techniques. In the second method, sparsely sampled high-fidelity simulation data is blended into the surrogate model

using Co-kriging. Both methods are illustrated using two design examples: an ultra-wideband (UWB) monocone antenna and a planar

Yagi-Uda antenna. Advantages and disadvantages of the methods are also discussed.
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1. Introduction

One of the most important steps in the design process of

antenna structures is adjustment of their geometry and/or ma-

terial parameters. The aim is to satisfy given performance

specifications concerning antenna reflection, gain, radiation

pattern, and, more and more often, physical dimension (size,

footprint) [1–39]. For the sake of reliability, the adjustment

process normally relies on high-fidelity electromagnetic (EM)

simulation [1–3]. It is particularly important for contemporary

structures for which theoretical models either are not available

or are very inaccurate. Also, in many cases it is necessary to

account for EM interactions between the antenna itself and its

environment (connectors, housing, installation fixtures, etc.).

Perhaps the most common approach to geometry adjust-

ment is parameter sweeps guided by engineering insight. Un-

fortunately, this method is laborious and does not guaran-

tee optimum results, especially when the number of indepen-

dent parameters is large. Automated geometry optimization is

therefore highly desirable, however, quite challenging [37–39].

Majority of conventional techniques (such as gradient-based

algorithms or derivative free methods, e.g., pattern search al-

gorithms) require considerable number of objective function

evaluations (and, associated EM simulations) to yield an op-

timized design [4]. Recent availability of adjoint sensitivi-

ty techniques [5, 6] through certain commercial simulation

software packages (e.g., [7, 8]) revived interest in gradient

optimization. On the other hand, surrogate-based optimiza-

tion (SBO) techniques [9–13] allow for dramatic reduction of

the design optimization costs by shifting most of the opera-

tions into cheap replacement models (surrogates). The latter,

in case of antennas, are normally constructed using coarse-

discretization EM simulations [14].

For the sake of simplicity, most of antenna optimization

problems are reformulated as single objective ones, where one

primary objective is handled directly, whereas the others are

controlled through appropriately defined constraints or penal-

ty functions ([15]). However, real-world antenna design tasks

are multi-objective ones. In particular, if the designer pri-

orities are not clearly defined beforehand, identifying a set

of alternative design representing the best possible trade-offs

between conflicting objectives may be of fundamental im-

portance (e.g., in order to determine limitations of a given

antenna structure and its suitability for a given application)

[16–19]. Nowadays, population-based metaheuristics are un-

doubtedly the most popular solution approaches for handling

multi-objective antenna design problems. Techniques such as

multi-objective genetic algorithms (GAs) and particle swarm

optimizers (PSO), e.g., [16, 18–23], allow finding the entire

Pareto front in one algorithm run. However, their disadvan-

tage is high computational cost (hundreds, thousands or even

tens of thousands of objective function evaluations), which

becomes a serious bottleneck if high-fidelity discrete EM sim-

ulations are involved in antenna evaluation process.

Recently, two computationally efficient techniques for

multi-objective design optimization of antennas have been

proposed [24, 25]. Both methods rely on fast response sur-

face approximation (RSA) surrogates created from sampled

coarse-discretization EM simulation data, as well as refine-

ment procedures intended to obtain representations of the

Pareto-optimal sets at the high-fidelity EM antenna model lev-

el. The refinement strategy adopted in [24] is point-by-point
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identification using designs sampled from the initial Pareto

set (obtained by optimizing the RSA) model, and suitable re-

sponse correction techniques. In [25] refinement is realized

by blending sparsely sampled high-fidelity EM model data

into the RSA surrogate using Co-kriging [26]. In this paper,

we review both methods, provide their unified formulation, il-

lustrate and compare them using examples (an ultra-wideband

monocone, and a planar Yagi-Uda antenna), as well as discuss

their advantages and disadvantages.

2. Multi-objective antenna design using RSA

models and variable-fidelity EM simulations

In this section, we formulate the multi-objective antenna

design problem and introduce variable-fidelity EM models.

We also describe Kriging and Co-kriging interpolation as

fundamental tools for creating response surface approxima-

tion (RSA) surrogates utilized throughout the optimization

process. Finally, we describe the optimization flow including

two alternative options for Pareto set refinement.

2.1. Multi-objective antenna design. problem formulation.

Let Rf (x) be a response (e.g., reflection or gain versus fre-

quency) of an accurate model of the antenna structure under

design. The response Rf (x) is obtained using high-fidelity

EM simulation. Here, x is a vector of designable parameters,

i.e., antenna dimensions.

We consider Nobj design objectives, Fk(x), k = 1, . . .,
Nobj . A typical performance objective would be to minimize

antenna reflection over a certain frequency band of interest,

and to ensure that |S11| < −10 dB over that band. There

might be also geometrical objectives such as to minimize

Fk(x) = A(x) – the antenna size defined in a convenient

way (e.g., maximal lateral size, height, the maximal dimen-

sion, area of the footprint, antenna volume). Similar objectives

can be formulated with respect to antenna gain, radiation pat-

tern, efficiency, etc.

If Nobj > 1 then any two designs x(1) and x(2) for which

Fk(x(1)) < Fk(x(2)) and Fl(x
(2)) < Fl(x

(1)) for at least

one pair k 6= l, are not commensurable, i.e., none is better

than the other in the multi-objective sense. We define Pareto

dominance relation ≺ [27] saying that for the two designs x

and y, we have x ≺ y(x dominates y) if Fk(x) < Fk(y) for

all k = 1, . . ., Nobj . The goal of the multi-objective optimiza-

tion if to find a representation of a so-called Pareto front (of

Pareto-optimal set) XP of the design space X , such that for

any x ∈ XP , there is no y ∈ X for which y ≺ x [27].

2.2. Variable-fidelity electromagnetic models. As men-

tioned in the introduction, the high-fidelity model Rf is com-

putationally too expensive to be handled directly in multi-

objective optimization. In this work, we speed up the design

process by utilizing an auxiliary low-fidelity model Rc, which

is a coarse-discretization counterpart of Rf . By appropriate

mesh density manipulation and possible other simplifications

(see, e.g., [28]), Rc can be made 20 to 50 times faster than

Rf , however, at the expense of some accuracy degradation.

Because of this, as well as the fact that direct multi-objective

optimization is usually too expensive even at the Rc level, our

optimization methodology exploits response surface approxi-

mation models briefly described in the following Subsec. 2.3

and 2.4. The optimization algorithm is formulated in Sub-

sec. 2.5.

2.3. Surrogate modeling. Kriging interpolation. Response

surface approximation surrogates play a key role in the op-

timization methodology described in Subsec. 2.5. The first

part of the process (identification of the initial Pareto set)

is realized using a Kriging interpolation model constructed

from sampled coarse-discretization model data. Kriging is a

popular technique to interpolate deterministic noise-free data

[29]. Let XB.KR = {x1
KR, x2

KR, . . ., xNKR
KR } ⊂ XR be the

base (training) set and Rc(XB.KR) the associated low-fidelity

model responses. The Kriging interpolant is derived as

Rs.KR(x) = Mα+ r(x) · Ψ−1 · (Rf (XB.KR) − Fα), (1)

where M and F are Vandermonde matrices of the test

point x and the base set XB.KR, respectively. The coeffi-

cient vector α is determined by Generalized Least Squares

(GLS). r(x) is an 1×NKR vector of correlations between

the point x and the base set XB.KR, where the entries are

ri(x) = ψ(x,xi
KR), and Ψ is a NKR × NKR correlation

matrix, with the entries given by Ψi,j = ψ(xi
KR, x

j
KR). In

this work, the exponential correlation function is used, i.e.,

ψ(x,x′) = exp(
∑

k=1,...,n −θk|xk − x′k|), where the para-

meters θ1, ..., θn are identified by Maximum Likelihood Es-

timation (MLE). The regression function is chosen constant,

F = [1 ... 1]T and M = (1).

2.4. Surrogate modeling. Co-kriging. One of the Pareto set

refinement strategies, considered in this work, relies on com-

bining information from EM simulations of various fidelities.

Here, it is realized using Co-kriging [30]. Co-kriging is an ex-

tension of Kriging, which allows blending the low- and high-

fidelity EM simulation data into one surrogate by exploiting

correlations between the models of various fidelities [29].

Generation of a Co-kriging model is carried out through

sequential construction of the two Kriging models: the first

model Rs.KRc composed from the low-fidelity training sam-

ples (XB.KRc, Rc(XB.KRc)), and the second Rs.KRd mod-

el generated on the residuals of the high- and low-fidelity

samples (XB.KRf , Rd), where Rd = Rf (XB.KRf ) − ρ ·
Rc(XB.KRf ). The parameter ρ is a part of MLE of the sec-

ond model. In the absence of Rc(XB.KRf ), they can be

approximated by the first model, i.e., as Rc(XB.KRf ) ≈
Rs.KRc(XB.KRf ). Configuration (the choice of the correla-

tion function, regression function, etc.) of both models can be

adjusted separately for the low-fidelity data Rc and the resid-

uals Rd, respectively. Moreover, both models use the expo-

nential correlation function together with constant regression

function F = [1 1 . . . 1]T and M = (1).
The final Co-kriging model Rs.CO(x) is defined similarly

as in (1), i.e.,

Rs.CO(x) = Mα+ r(x) · Ψ−1 · (Rd − Fα) (2)
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where the block matrices M , F , r(x) and Ψ of (6) can be

written as a function of the two underlying Kriging models

Rs.KRc and Rs.KRd:

r(x)=[ρ·σ2
c ·rc(x), ρ2 ·σ2

c ·rc(x, XB.KRf
) + σ2

d ·rd(x)],

Ψ=

[

σ2
cΨc ρ·σ2

c ·Ψc(XB.KRc
, XB.KRf

)

0 ρ2 ·σ2
c ·Ψc(XB.KRf

, XB.KRf
) + σ2

d ·Ψd

]

,

F =

[

Fc 0

ρ · Fd Fd

]

, M = [ρ ·Mc Md],

(3)

where (Fc, σc, Ψc, Mc) and (Fd, σd, Ψd, Md) of (3) are ma-

trices obtained from the Rs.KRc and Rs.KRd, respectively.

Generally, σ2
c and σ2

d are process variances, while Ψc(·, ·) and

Ψd(·,·) stand for correlation matrices of two datasets with the

optimized θk parameters and correlation function of Rs.KRc

and Rs.KRd, respectively.

Figure 1 shows the operation of the Co-kriging model us-

ing a simple analytical function example. Densely sampled

low-fidelity model data supplemented with a few samples of

the high-fidelity model allows achieving very good accuracy

when the two types of data are blended together (Co-kriging),

whereas the accuracy of the Kriging interpolation model sole-

ly based on the high-fidelity data is quite limited.

Fig. 1. Co-kriging modeling concept [25]: high-fidelity model (—),

low-fidelity model (- - -), high-fidelity model samples (�), low-

fidelity model samples (◦). Kriging interpolation of the high-fidelity

model samples (- · -) is not an adequate representation of the high-

fidelity model (due to the limited data set size). Co-kriging interpo-

lation (· · · ·) of blended low- and high-fidelity model data provides

much better accuracy at low computational cost

2.5. Optimization algorithm: obtaining initial Pareto set.

The initial approximation of the Pareto set is obtained by

multi-objective optimization of the fast surrogate model con-

structed using Kriging interpolation (cf. Subsec. 2.2) and

based on sampled low-fidelity EM model data. The design of

experiments approach utilized here is Latin Hypercube Sam-

pling [31]. The Kriging model Rs.KR is very fast, smooth,

and, consequently, easy to optimize. In some cases it might be

necessary to perform initial reduction of the design space, that

is, identify the subset of the design space containing the Pare-

to front (which is normally a small part of the original design

space [32]). This step is necessary for highly-dimensional de-

sign spaces where, without design space reduction, the num-

ber of training samples necessary to ensure sufficient surro-

gate model accuracy is impractically large. Interested reader

is referred to [32–34] for exposition of simple design space

reduction methods.

Having constructed Rs.KR, we apply a multi-objective

evolutionary algorithm (MOEA) to find a set of designs rep-

resenting Pareto-optimal solutions with respect to the objec-

tives Fk of interest. Here, we use a standard multi-objective

evolutionary algorithm with fitness sharing, Pareto-dominance

tournament selection, and mating restrictions [27].

The design optimization flow leading to identification of

the initial Pareto set representation is the following:

1. (Optional) Perform design space reduction

2. Sample the design space and acquire the Rc data;

3. Construct the Kriging interpolation model Rs.KR;

4. (Optional) Correct the Kriging model Rs.KR using space

mapping;

5. Obtain the Pareto front by optimizing Rs.KR using MOEA;

Note that the high-fidelity model Rf is not evaluated in

the above procedure. The two method of refining the initial

Pareto set so that it can be elevated to the high-fidelity model

level are described in Subsecs. 2.6 and 2.7. Step 3 can be

executed in case of considerable discrepancy between Rs.KR

and Rf . In that case, before finding the Pareto set, the Kriging

model is enhanced by aligning it with the high-fidelity model

at certain (usually small) number of designs using space map-

ping. Typically, output space mapping and frequency scaling

are preferred [35].

2.6. Pareto set refinement using response correction. The

first refinement approach relies on point-by-point construction

of the high-fidelity model Pareto set representation, starting

from the designs sampled on the initial Pareto set obtained

using the algorithm of Subsec. 2.5. The latter consists of the

Pareto optimal solutions of the surrogate, which, because of

the discrepancies between Rc and Rf , have to be corrected

to adequately represent the high-fidelity model.

Let x
(k)
s , k = 1, . . .,K , be the selected elements of the

Pareto front found by the MOEA. For simplicity of the nota-

tion, the design refinement stage below is defined assuming

two objectives F1 and F2; however, it can be generalized for

any value of Nobj . The refinement stage exploits the output

space mapping (OSM) [35] process of the following form:

x
(k.i+1)
f = arg min

x, F2(x)≤F2(x
(k.i)
s )

F1

·
(

Rs(x) + [Rf (x(k.i)
s ) − Rs(x

(k.i)
s )]

)

.

(4)

The optimization process (4) is constrained not to in-

crease the second objective as compared to x
(k)
s . The surro-

gate model Rs is corrected using the OSM term Rf (x
(k.i)
s )−

Rs(x
(k.i)
s ) (here, x

(k.0)
f = x

(k)
s ), so that the corrected sur-

rogate model coincides with Rf at the beginning of each

iteration. In practice, two or three iterations of (4) are suffi-

cient to find a refined high-fidelity model design x
(k)
f . After

completing this stage, we create a set of Pareto-optimal high-
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fidelity model designs. This set is the final outcome of our

multi-objective optimization process.

2.7. Pareto set refinement using Co-kriging surrogates.

An alternative approach to Pareto set refinement is by us-

ing Co-kriging surrogates (cf. Subsec. 2.4). In this case, the

high-fidelity model evaluated at the designs sampled from the

initial Pareto set obtained by optimizing Rs.KR are included

into the surrogate model so that it becomes more and more

accurate representation of Rf at least in the vicinity of the

Pareto front.

The design algorithm flow is as follows:

1. Evaluate high-fidelity model Rf at selected locations along

the current Pareto front representation;

2. Update the Co-kriging surrogate Rs.CO (cf. (2));

3. Update Pareto set by optimizing Rs.CO using MOEA;

4. If termination condition is not satisfied go to 2; else END

When executing Step 1 for the first time, the current Pareto

front representation is a Pareto set obtained using the algo-

rithm of Subsec. 2.5. Typically, about 10 high-fidelity model

evaluations are used in Step 1, and the number of iterations

necessary to converge is two to three. Our convergence cri-

terion is the maximum distance between the Pareto front es-

timated in 3 and the sampled Rf data (here, we use 0.5 dB

for reflection objective). It should be emphasized that – upon

convergence – the entire Pareto set generated by the above

procedure (not just a set of design sampled from it) is a reli-

able representation of the high-fidelity Pareto set.

3. Case study 1: UWB monocone

In this section we demonstrate the multi-objective opti-

mization procedure exploiting both Pareto front refinement

schemes described in Subsecs. 2.6 and 2.7, respectively. The

methods are illustrated using an ultra-wideband (UWB) an-

tenna in the form of a monocone. The design objectives are

footprint reduction and minimization of reflection.

3.1. UWB monocone – antenna description. Consider a

monocone structure [24] that operates in the UWB frequency

band. The antenna is fed directly through 50-Ohm coaxial line

with Teflon filling and outer diameter of 0.635 mm. A para-

meter vector: x = [z1 z2 r1]
T represents antenna design vari-

ables. All parameter values are expressed in mm. The antenna

geometry is shown in Fig. 2.

a) b)

Fig. 2. UWB monocone: a) 3D view; b) the cut view, after Ref. 24

Two computational models of the antenna are implement-

ed in CST Microwave Studio and evaluated using its transient

solver [7]. The high-fidelity model Rf is consists of about

1,400,000 hexahedral mesh cells and its average evaluation

time is 23 min, whereas its less accurate counterpart Rc is

generated using 33,000 hexahedral mesh cells. An average

simulation time of the latter is 33 s and it is 42 times faster

than Rf .

In this example, we consider two design objectives:

(i) minimization of antenna reflection within UWB (3.1 GHz

to 10.6 GHz) frequency band (objective F1), and (ii) reduc-

tion of antenna footprint (objective F2), which is defined as

a maximum dimension out of vertical and lateral ones: S =
max{2r2, z1+z2+r2}. The symbol r2 = (r21−(z1+z2)

2)1/2

denotes the radius of the hemisphere terminating the mono-

pole.

3.2. UWB monocone. Generation of initial Pareto set. The

solution space for multi-objective antenna optimization is de-

fined by the lower and upper bounds l = [0 2 4]T and

u = [4 15 20]T . A Kriging surrogate model constructed using

600 low-fidelity model samples is optimized using methodol-

ogy of Subsec. 2.5. The initial Pareto optimal set is shown in

Fig. 3a, whereas visualization of Pareto optimal design vari-

ables within a defined solution space is illustrated in Fig. 3b.

a)

b)

Fig. 3. UWB monocone antenna: a) visualization of the Pareto op-

timal set (◦) in 3-dimensional solution space. The portion of the

design space that contains the part of the Pareto set we are inter-

ested in (red cuboid, where F1 ≤ −10), b) the part of the Pareto

set that is of interest from the point of view of adequate antenna

operation (�) versus the entire one mapped to the feature space (◦)
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One should note that despite the Pareto set range for ob-

jective F1 being from below – 20 up to near 0 dB, the antenna

is considered as operating properly if it can provide in-band

reflection below the level of −10 dB or lower. Therefore, only

the designs that fulfill this requirement are considered rele-

vant, and they are the subject of Pareto set refinement (cf.

Subsec. 3.3 and Subsec. 3.4).

3.3. UWB monocone. Pareto set refinement using response

correction. A set of 10 designs selected from the initial Pare-

to set have been refined using the response correction tech-

nique of Subsec. 2.6 in order to obtain high-fidelity represen-

tation of the Pareto front. Two refinement steps (per design)

were required to obtain the final solutions. The geometrical

details of the refined solutions are listed in Table 1. A compar-

ison of a Pareto front obtained through Rs model optimization

and its representation based on a set of 10 refined Rf model

samples is shown in Fig. 4.

Table 1

Refined designs of the optimized UWB monocone antenna

F1 F2

Design Variables [mm]

z1 z2 r1

−9.5 18 0.994 10.36 13.16

−10.9 19 0.021 12.18 12.97

−11.6 20 0.065 12.48 14.59

−12.3 21 0.051 12.84 15.23

−13.2 22 0.000 12.92 15.79

−14.7 23 0.000 12.06 16.28

−16.0 24 0.008 12.08 16.97

−17.1 25 0.079 12.42 17.68

−18.1 26 0.142 12.99 18.38

−18.4 27 0.169 13.43 19.09

−19.4 28 0.231 13.27 19.45

Fig. 4. Comparison of the Pareto front obtained from optimized Rs

model (◦) and eleven (see Table 1) refined Rf model designs (�)

The smallest footprint of an antenna that still satisfies the

minimum requirements upon its reflection (objective F2) is

19 mm, whereas the lowest in-band reflection (objective F1)
is −19.4 dB. Variations of objectives for extreme designs are

32% and 44% for the former and the latter, respectively.

The total cost of design optimization corresponds to on-

ly 44 Rf model evaluations (about 17 hours of CPU time)

and it includes: 600 Rc simulations (∼14 Rf evaluations) for

design of experiment (cf. Subsec. 3.2), and 10 Rf for initial

evaluation and refinement (2×10 Rf ) of selected samples.

The computational cost of MOEA optimization (a few dozen

thousands of Rs model evaluations) is negligible in compari-

son with the cost of antenna models simulation, thus it is not

included here.

3.4. UWB monocone. Pareto set refinement using co-

kriging. A set of 10 design samples is chosen from the initial

Pareto set (cf. Subsec. 2.5) and evaluated to obtain their high-

fidelity model responses. Subsequently a Co-kriging method-

ology of Subsec. 2.7 is utilized to refine the Pareto set. The

final Pareto set representation was obtained in three iterations

of the algorithm (cf. Subsec. 2.7). It should be noted that

high-fidelity model samples gathered across iterations are in-

corporated into the Co-kriging model to increase its accu-

racy. A comparison of initial and refined Pareto set as well

as 10 responses of evenly chosen high-fidelity model designs

evaluated for verification purpose is shown in Fig. 5. The

dimensions of selected antennas are shown in Table 2. The

minimum antenna footprint that satisfies requirements upon

reflection (objective F1) is 32% smaller in comparison to the

structure with the best in-band reflection (objective F2) of

−19.4 dB.

Fig. 5. UWB monocone antenna: initial Pareto set approximation

(◦), final Pareto set obtained after three iterations of the proposed

methodology (�), selected high-fidelity model designs (�) evaluated

for verification purpose

Table 2

Selected designs of the optimized UWB monocone antenna

F1 F2

Design Variables [mm]

z1 z2 r1

−10.1 18 0.23 11.79 13.61

−10.6 19 0.18 11.80 13.81

−11.1 20 0.28 11.63 14.44

−12.2 21 0.06 12.22 15.03

−13.6 22 0.06 11.76 15.81

−14.9 23 0.06 12.62 16.67

−16.5 24 0.05 12.66 17.31

−17.3 26 0.17 13.39 18.41

−17.6 27 0.21 13.38 18.98

−19.0 28 0.25 13.55 19.59
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The total aggregated cost of the design optimization

process corresponds to about 44 evaluations of the high-

fidelity model, i.e., ∼17 hours of CPU time (including 600 ×
Rc ≈ 14 × Rf for initial Kriging model construction, and 3

× 10 × Rf = 30 × Rf for three iterations of the surrogate

enhancement). The computational cost of MOEA optimiza-

tion of the Co-kriging model is not included for the same

reasons as mentioned in Subsec. 3.4.

4. Case study 2. Planar Yagi-Uda antenna

Our second example is a planar Yagi-Uda antenna with a sin-

gle director. Similarly as for the previous example, we demon-

strate the use of the two design refinement strategies. Here,

the objectives of interest are the average gain and in-band

reflection.

4.1. Planar Yagi-Uda. Antenna description. Consider a

planar Yagi-Uda antenna [36] shown in Fig. 6. It is com-

posed of a driven element fed by a microstrip-to-cps tran-

sition, a director, and a balun. The input impedance is 50-

Ohm and the structure is designated to operate on a Rogers

RT6010 dielectric substrate (εr = 10.2, tanδ = 0.0023,

h = 0.635 mm). A structure is described by a eight ad-

justable parameters: x = [s1 s2 v1 v2 u1 u2 u3 u4]
T . Ad-

ditional parameters, i.e., Parameters w1 = 0.6, w2 = 1.2,

w3 = 0.3 and w4 = 0.3 remain fixed. All dimensions are

expressed in mm. The design space is defined by the lower

and upper bounds l = [3.8 2.8 8.0 4.0 3.0 4.5 1.8 1.3]T and

u = [4.4 4.4 9.8 5.2 4.2 5.2 2.6 1.8]T .

Fig. 6. Geometry of a planar Yagi-Uda antenna

Both the high-fidelity model Rf composed of about

1,400,000 hexahedral mesh cells (average simulation time

of 36 min) and the low-fidelity model Rc containing about

100,000 mesh cells are implemented in CST Microwave Stu-

dio (average simulation time 90 s). It should be noted that Rc

is 24 times faster than Rf .

There are two design objectives: (i) minimization of an-

tenna in-band reflection (objective F1) and (ii) maximization

of average gain (objective F2), both within 10 to 11 GHz

bandwidth.

4.2. Planar Yagi-Uda antenna. Design with response cor-

rection. Direct multi-objective optimization of discussed pla-

nar Yagi-Uda structure is not possible due to a very large

number of low-fidelity model samples required for the gen-

eration of Rs model in the original design space. For that

reason, the procedure of Subsec. 2.5 cannot be directly ap-

plied for the considered antenna. This difficulty has been alle-

viated by decomposing the structure into two complementary

sub-circuits, i.e., the radiator and a balun (see Fig. 7), which

allows reducing the number of independent design variables

that participate in Rs model generation to four for each an-

tenna sub-structure. Subsequently, design of experiments is

conducted in corresponding sub-spaces and the antenna sur-

rogate model Rs is recomposed using circuit theory rules.

Such decomposition is feasible in this case because the balun

is primarily responsible for the reflection response of the an-

tenna but not for its radiation properties. A detailed descrip-

tion of the decomposition procedure is omitted for the sake

of brevity. A more detailed explanation is provided in [24].

a)

b)

Fig. 7. Visualization of a decomposition procedure, low-fidelity mod-

el of: (a) a radiator with excitation applied directly to the coplanar

slot-line; (b) a balun with two ports ([24]); the balun and the radia-

tor are physically present in (a) and (b) to account for EM couplings

between subcircuits

The surrogate model Rs of the Yagi-Uda antenna is op-

timized using MOEA and solutions with F1 ≤ −10 dB are

utilized in the refinement procedure (cf. Subsec. 3.3). Subse-

quently, response correction technique of Subsec. 2.6 is car-

ried out to refine nine designs evenly distributed along the

initial Pareto set. The final solutions are obtained after two

iterations of refinement procedure each. A comparison of the

initial Pareto set based on Rs model evaluations and its repre-
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sentation composed of Rf model responses is shown in Fig. 8,

whereas the geometrical details are listed in Table 3. The av-

erage gain and reflection varies over the Pareto front from

5.6 dB to 6.4 dB (13%) and from −18.3 dB up to −10 dB

(45%), respectively.

Fig. 8. Comparison of the Pareto front obtained from optimized Rs

model (◦) and refined 14 Rf model designs (�)

Table 3

Refined designs of the optimized planar Yagi-Uda antenna

F1 F2

Design Variables [mm]

s1 s2 v1 v2 u1 u2 u3 u4

−10.1 6.5 4.34 4.25 8.26 5.12 3.92 4.75 2.20 1.65

−12.0 6.3 4.36 4.22 8.46 5.03 3.85 4.86 2.20 1.63

−14.0 6.2 4.31 4.26 8.57 4.87 3.90 4.82 2.17 1.64

−16.0 6.1 4.30 4.25 8.76 4.77 3.88 4.84 2.21 1.65

−18.3 5.9 4.33 4.21 8.77 4.65 3.81 4.86 2.16 1.62

−20.0 5.7 4.22 3.82 9.13 4.68 3.87 4.83 2.22 1.68

−22.0 5.6 4.15 3.55 9.29 4.68 3.87 4.80 2.21 1.73

−24.0 5.5 4.16 3.38 9.34 4.67 3.90 4.76 2.20 1.72

−24.8 5.2 4.13 3.23 9.55 4.65 3.92 4.72 2.19 1.68

The total cost of design optimization is about 77 Rf mod-

el evaluations (∼29 hours). It includes: acquisition of the low-

fidelity simulation data for Kriging model construction (total

cost corresponds to about 60 Rf model evaluations), and a

total of 27 Rf model evaluations for high fidelity model eval-

uation and refinement. Similarly to previous cases, the cost of

MOEA optimization is neglected.

4.3. Planar Yagi-Uda antenna. Pareto set refinement using

Co-kriging. As indicated in Fig. 2, the Pareto set normally

occupies a very small fraction of the original design space.

Here, in order to allow construction of the initial Kriging

surrogate model using reasonably small number of samples

(not possible in the original design space), we perform reduc-

tion of the design space through finding two extreme points

of the Pareto set by means of single-objective optimizations

with respect to each considered objectives, one at a time.

The reduced space is determined by the following lower and

upper frontiers: l = [4.1 3.3 8.3 4.6 3.8 4.7 2.1 1.5]T and

u = [4.4 4.3 9.3 5.2 4.0 4.9 2.3 1.8]T . For the sake of brevity

we omit details related to design space reduction techniques.

Interested reader is referred to the literature (e.g., [32–34]).

The Kriging surrogate model is constructed using a set of 500

samples (cf. Subsec. 2.5) and optimized using MOEA. Only

the solutions with F1 ≤ −10 dB are considered as relevant

for the refinement (cf. Subsec. 3.3).

The initial Pareto front utilized for the refinement is ob-

tained using MOEA of Rs model constructed within reduced

solution space. The designs are refined using co-Kriging tech-

nique (cf. Subsec. 2.5). Only two iterations of the algorithm

were needed to obtain the final Pareto front. A comparison

of initial and refined sets is illustrated in Fig. 9. Detailed di-

mensions of a 10 selected antenna designs are collected in

Table 4. The maximum antenna gain (6.5 dB) comes with the

lowest obtained reflection (−10.6 dB) and if varies by 15%

along the Pareto optimal set. Moreover, the lowest reflection

value is −18 dB (corresponding gain is 5.5 dB).

Fig. 9. Initial Pareto set approximation (◦), final Pareto set obtained

after three iterations of the proposed methodology (�) and 9 selected

high-fidelity model designs (�) of a planar Yagi-Uda antenna

Table 4

Selected designs of the optimized planar Yagi-Uda antenna

F1 F2

Design Variables [mm]

s1 s2 v1 v2 u1 u2 u3 u4

−10.6 6.5 4.27 4.26 8.34 5.12 3.87 4.77 2.19 1.72

−11.2 6.4 4.27 4.26 8.32 5.05 3.85 4.83 2.17 1.72

−12.0 6.3 4.25 4.27 8.33 4.93 3.85 4.83 2.17 1.72

−13.0 6.2 4.30 4.19 8.33 4.83 3.89 4.80 2.16 1.73

−13.5 6.0 4.30 4.05 8.38 4.78 3.92 4.76 2.19 1.64

−15.7 5.9 4.21 4.07 8.63 4.66 3.85 4.85 2.14 1.61

−15.9 5.8 4.23 3.83 8.64 4.67 3.84 4.84 2.14 1.62

−16.8 5.7 4.23 3.57 8.77 4.67 3.86 4.82 2.15 1.62

−18.0 5.5 4.14 3.33 9.20 4.73 3.84 4.82 2.23 1.58

The total aggregated cost of the design optimization

process corresponds to ∼39 Rf model simulations (∼23

hours). The cost includes: 500×Rc ≈ 21× Rf for a construc-

tion of initial Kriging model and 18 × Rf for two iterations

of the Co-kriging algorithm. The cost of MOEA optimization

is excluded.

5. Discussion and conclusions

In this paper, we have reviewed two recent techniques for

computationally efficient multi-objective design of antennas.
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The presented methods utilize an evolutionary algorithm and

fast surrogate models constructed using Kriging interpolation

of low-fidelity simulation data. Two alternative techniques for

refinement of the Pareto optimal set, i.e., response correction,

and Co-kriging, are discussed. The methods are illustrated us-

ing two exemplary antennas, a three-variable UWB monocone

structure and an eight-variable planar Yagi-Uda antenna. Both

techniques allow for generating the Pareto front representa-

tion at a cost corresponding to several dozens of high-fidelity

model evaluations, which is only a small fraction of the cost

required by direct multi-objective optimization of EM anten-

na models using population-based MOEA, the latter usually

being well over several thousands of objective evaluations.

It should also be noted that several techniques for han-

dling the design space for the purpose of surrogate model

construction have been utilized, including: preparation of sur-

rogate model within the original solution space (sufficient for

lower-dimensional case), decomposition of the antenna struc-

ture into sub-circuits and construction of surrogate models in

corresponding subspaces, as well as design space reduction.

Slight differences between the Pareto sets obtained during the

numerical tests are partially due to utilizing these various ap-

proaches.

Although both Pareto set refinement methods generate

similar results, the response correction technique is signif-

icantly simpler to implement than Co-kriging. The method

utilizes output space mapping for a point-by-point refinement

of representative antenna designs selected along the Pareto

set. The latter approach requires iterative construction and

re-optimization of a surrogate model that incorporates both

high- and low-fidelity model samples. On the other hand, Co-

kriging allows for obtaining more complete Pareto set, not

just a few selected designs along it. Also, for the response

correction technique, the cost of generating the Pareto set

representation increases with the number of required final de-

signs, whereas it is essentially constant for the Co-kriging-

based method.

The methods discussed in this paper are promising

for rapid multi-objective optimization of expensive EM-

simulation-based antenna models. However, there are some is-

sues that should be addressed by the future research. Perhaps

the most important one is design space confinement aimed

at identifying the design space region that contains Pareto

optimal designs. This is particularly important for handling

problems with larger number of variables (>10–15). On the

other hand, for certain types of structures (e.g., narrow-band

antennas) it might be necessary to apply low-fidelity model

correction before attempting to construct the response sur-

face approximation surrogate, which because of the original

misalignment between EM simulation models of different fi-

delities may be too large to be accommodated at the design

refinement stage. Addressing the aforementioned issues may

results in increasing the range of application of the presented

techniques.
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