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Application of descriptor approaches in design of PD
observer-based actuator fault estimation

ANNA FILASOVÁ, DUŠAN KROKAVEC and VLADIMÍR SERBÁK

Stability analysis and design for continuous-time proportional plus derivative state ob-
servers is presented in the paper with the goal to establish the system state and actuator fault
estimation. Design problem accounts a descriptor principle formulation for non-descriptor sys-
tems, guaranteing asymptotic convergence both the state observer error as fault estimate error.
Presented in the sense of the second Lyapunov method, an associated structure of linear matrix
inequalities is outlined to possess parameter existence of the proposed estimator structure. The
obtained design conditions are verified by simulation using a numerical illustrative example.

Key words: PD observers, actuator fault estimation, descriptor system observation, convex
optimization, linear matrix inequalities.

1. Introduction

As is well known, observer design is a hot research field owing to its particular
importance in observer-based control, residual fault detection and fault estimation [1],
where, especially from the stand point of the active fault tolerant control structures, the
problem of simultaneous state and fault estimation is very eligible. In that sense various
effective methods have been developed to take into account the faults effect on control
structure reconfiguration and fault estimation [16], [20]. In particular, proportional plus
derivative (PD) observers introduce a design freedom giving an opportunity for generat-
ing state and fault estimates with good sensitivity properties and improving the observer
design performance [6], [18]. Since derivatives of the system outputs can be exploited in
the fault estimator design to achieve faster fault estimation, a proportional multi-integral
derivative estimators are proposed in [7], [22]. The requirement for fast adaptation reac-
tion to faults means that the adaptive observers are exploited [3], [20].
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Although the state observers for linear and nonlinear systems received considerable
attention, the descriptor design principles have not been studied extensively for non-
singular systems. Modifying the descriptor observer design principle [13], the first result
giving sufficient design conditions for linear time-delay systems can be found in [5]. Re-
flecting the same problems concerning the observers for descriptor systems, LMI meth-
ods were presented e.g. in [9] but a hint of this method can be found in [21], [23].

Adapting the approach to the observer-based fault estimation for descriptor systems
as well as its potential extension [12], the main issue of this paper is to apply the descrip-
tor principle in design of PD fault observers. Preferring LMI formulation, the stability
condition proofs use standard arguments in the sense of Lyapunov principle to obtain
the design conditions requiring to solve set of LMIs. This presents a method designing
the PD observation derivative and proportional gain matrices such that the design is non-
singular and ensures that the estimation error dynamics has asymptotical convergence.
From viewpoint of application, although the descriptor principle is used, it is not neces-
sary to transform the system parameter into a descriptor form or to use matrix inversions
in design task formulation.

The paper is organized as follows. Situated after Introduction, Sec. 2 gives the prob-
lem statement for PD fault observer and Sec. 3 presents basic preliminaries to formulate
a design problem in the descriptor form. A new LMI structure, describing the PD fault
estimator design conditions, is theoretically explained in Sec 4. An example is provided
to demonstrate the proposed approach in Sec. 5 and Sec. 6 draws some conclusions.

Used notations are conventional so that xxxT , XXXT denote transpose of the vector xxx
and matrix XXX , respectively, XXX = XXXT > 0 means that XXX is a symmetric positive definite
matrix, the symbol IIIn indicates the n-th order unit matrix, ρ(XXX) and rank(XXX) indicate the
eigenvalue spectrum and rank of a square matrix XXX , IR denotes the set of real numbers
and IRn, IRn×r refer to the set of all n-dimensional real vectors and n× r real matrices,
respectively.

2. Problem statement

The systems under consideration are linear MIMO continuous-time dynamic sys-
tems represented in state-space form as

q̇qq(t) = AAAqqq(t)+BBBuuu(t)+FFF fff (t) , (1)

yyy(t) =CCCqqq(t) , (2)

where qqq(t) ∈ IRn, uuu(t) ∈ IRr, yyy(t) ∈ IRm, fff (t) ∈ IRp, are vectors of the state, input, output
and fault variables, AAA ∈ IRn×n, BBB ∈ IRn×r, CCC ∈ IRm×n, FFF ∈ IRn×p are real finite values
matrices, m,r, p < n and

rank

[
AAA FFF
CCC 000

]
= n+ p . (3)
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Moreover, it is supposed that (AAA,CCC) is observable.
Focusing on fault estimation task for slowly-varying faults, a fault PD observer is

considered in the following form [19]

q̇qqe(t) = AAAqqqe(t)+BBBuuu(t)+FFF fff e(t)+ JJJ(yyy(t)− yyye(t))+LLL(ẏyy(t)− ẏyye(t)) , (4)

yyye(t) =CCCqqqe(t) , (5)

ḟff e(t) = MMM(yyy(t)− yyye(t))+NNN(ẏyy(t)− ẏyye(t)) , (6)

where qqqe(t) ∈ IRn, yyye(t) ∈ IRm, fff e(t) ∈ IRp are estimates of the system states variables,
output variables and augmented variables vectors, respectively, and JJJ,LLL ∈ IRn×m, MMM,NNN ∈
IRp×m is the set of observer gain matrices to be determined.

3. Basic preliminaries

To explain and concretize the obtained results the following well known lemma of
Schur complement property is suitable.

Lemma 1 (Schur Complement) Let SSS, QQQ=QQQT , RRR=RRRT , detRRR ̸= 0 are real matrices of
appropriate dimensions, then the next inequalities are equivalent[

QQQ SSS
SSST −RRR

]
< 0 ⇔

[
Q+SR−1ST 0

0 R

]
< 0 ⇔ Q+SR−1ST < 0, R > 0 .

(7)

Proof (compare, e.g., [2], [4]) If the linear matrix inequality takes the composed form[
Q S
ST −R

]
< 0 , (8)

then using the Gauss elimination principle it yields[
I SR−1

0 I

][
Q S
ST −R

][
I 0

R−1ST I

]
=

[
Q+SR−1ST 0

0 −R

]
. (9)

Since

det

[
I SR−1

0 I

]
= 1 , (10)

it is evident that this transform doesn’t change negativeness of (8) and so (9) implies
(7). This concludes the proof.
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Using the descriptor approach the basic descriptor system properties are presented,
considering the descriptor system model of the form [10]

EEEq̇qq(t) = AAAqqq(t)+BBBuuu(t) , (11)

yyy(t) =CCCqqq(t) , (12)

with singular matrix EEE ∈ IRn×n, where rank(EEE) = p < n. This part is primarily limited
on restrictions under which the descriptor system stability can be regularized and when
this task is feasible.

Definition 1 [14]

(I) The pair (EEE,AAA) is regular if det(sEEE −AAA) is not identically zero.

(II) For a regular pair (EEE,AAA) the finite eigenvalues of (sEEE −AAA) are said to be the finite
modes of (EEE,AAA). If there is EEEvvv1 = 0, then the infinite eigenvalues, associated with
the generalized principal right vectors vvvi satisfying EEEvvvi = AAAvvvi−1 for i = 2,3,4, · · · ,
are impulsive modes of (EEE,AAA).

(III) A pair (EEE,AAA) is admissible if is regular and has neither impulsive modes nor
unstable finite modes.

Admissibility conditions for a descriptor system pair (EEE,AAA) are given by the follow-
ing lemma [15]:

Lemma 2 (system pair admissibility) The pair (EEE,AAA) is admissible if there exists XXX ∈
IRn×n such that

XXXT AAA+AAAT XXX < 0 , (13)

XXXT EEE = EEET XXX ­ 0 . (14)

Proof (compare [14]) Analyzing stability of the equilibrium point of the system
(11), the following Lyapunov function candidate can be defined

v(qqq(t)) = qqqT (t)EEET XXXqqq(t)­ 0 , (15)

where XXX ∈ IRn×n and EEET XXX ­ 0.
To obtain asymptotic stability condition then derivative of (15) with respect to time has
to be

v̇(qqq(t)) = q̇qqT (t)EEET XXXqqq(t)+qqqT (t)EEET XXXq̇qq(t)< 0 . (16)

Thus, to acquire a symmetric quadratic form of (16) (with respect to the left side of
equation (11)), it is necessary that the constraints (14) has to be satisfied. This gives

v̇(qqq(t)) = q̇qqT (t)EEET XXXqqq(t)+qqqT (t)XXXT EEEq̇qq(t)< 0 . (17)
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Using (11) in the form reflecting the unforced system regime, it is easy to show that

v̇(qqq(t)) = qqqT (t)(AAAT XXX +XXXT AAA)qqq(t)< 0 , (18)

which implies (13).
If (13) is satisfied, then XXX , AAA are nonsingular and it yields

(sEEE −AAA) =−sAAA(−AAA−1EEE + s−1IIIn) =−sIIInAAA(s−1IIIn −AAA−1EEE) . (19)

Thus, since
det(sEEE −AAA) = (−s)ndetAAAdet(s−1IIIn −AAA−1EEE) , (20)

this implies the regularity of (EEE,AAA).
Exploiting Krasovskii theorem [8] it can be set with respect to (13)

XXXT AAA+AAAT XXX ¬ ZZZ < 0 (21)

where ZZZ ∈ IRn×n is a symmetric positive definite matrix. Because ZZZ is nonsingular,
satisfies the condition that (EEE,AAA,ZZZ1/2) is observable [14]. This implies that (EEE,AAA) has
neither impulsive nor unstable finite modes. This concludes the proof.

Note, the inequality (13) is said to be Lyapunov inequality for a system given by (11)
and (12) and Lemma 2 get the sufficient and necessary condition of descriptor systems
to be regular, impulse free and stable by Lyapunov direct method.

To formulate the PD fault observer design conditions, a modification of the above
given descriptor principle in the PD fault estimator stability analysis is applied in the
following.

4. PD fault observer design conditions

If the observer errors between the system state vector and the observer state vector,
as well as between the fault vector and the vector of its observer estimate, are defined as
follows

eeeq(t) = qqq(t)−qqqe(t) , (22)

eee f (t) = fff (t)− fff e(t) , (23)

then for slowly-varying faults it is reasonable to consider

ėee f (t) = 000− ḟff e(t) =−MMMCCCeeeq(t)−NNNCCCėeeq(t) . (24)

Note, since fff e(t) can be obtained as integral of ḟff e(t), an adapting parameter matrix GGG
can be computed interactively to set the amplitude of fff e(t), i.e.

fff e(t) = GGG
t∫

0

ḟff e(τ)dτ . (25)
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Giving notion about time derivative of the system state error eeeq(t), the equations (1), (4)
together with (2), (5) can be integrated as

ėeeq(t) = AAAeeeeq(t)+FFFeee f (t)−LLLCCCėeeq(t) , (26)

where
AAAe = AAA− JJJCCC (27)

and the PD observer system matrix is

AAAPDe = (IIIn +LLLCCC)−1AAAe = (IIIn +LLLCCC)−1(AAA− JJJCCC) . (28)

To eliminate matrix inversion, (24), (26) can be rewritten in the following composed
form [

ėeeq(t)

ėee f (t)

]
=

[
AAAe FFF

−MMMCCC 000

][
eeeq(t)

eee f (t)

]
−

[
LLLCCC 000

NNNCCC 000

][
ėeeq(t)

ėee f (t)

]
, (29)

and using the following notations

eee◦T (t) =
[

eeeT
q (t) eeeT

f (t)
]
, (30)

AAA◦ =

[
AAA FFF

000 000

]
, JJJ◦ =

[
JJJ

MMM

]
, LLL◦ =

[
LLL

NNN

]
, (31)

III◦ =

[
IIIn 000

000 IIIp

]
, CCC◦ =

[
CCC 000

]
, (32)

where AAA◦, III◦ ∈ IR(n+p)×(n+p), JJJ◦,LLL◦ ∈ IR(n+p)×m, CCC◦ ∈ IRm×(n+p), then (29) can be written
as

(III◦+LLL◦CCC◦)ėee◦(t) = (AAA◦− JJJ◦CCC◦)eee◦(t) , (33)

AAA◦
eeee◦(t)−DDD◦

e ėee◦(t) = 000 , (34)

respectively, with
AAA◦

e = AAA◦− JJJ◦CCC◦, DDD◦
e = III◦+LLL◦CCC◦. (35)

Introducing the equality
ėee◦(t) = ėee◦(t) , (36)

then (36), (34) can be written as[
III◦ 000

000 000

][
ėee◦(t)

ëee◦(t)

]
=

[
ėee◦(t)

000

]
=

[
000 III◦

AAA◦
e −DDD◦

e

][
eee◦(t)

ėee◦(t)

]
. (37)
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Thus, denoting

EEE• =

[
III◦ 000

000 000

]
, AAA•

e =

[
000 III◦

AAA◦
e −DDD◦

e

]
, eee•(t) =

[
eee◦(t)

ėee◦(t)

]
, (38)

the obtained descriptor form to PD fault observer is

EEE•ėee•(t) = AAA•
eeee•(t) , (39)

where AAA•
e ,EEE

• ∈ IR2(n+p)×2(n+p).
The following solvability theorem is proposed to design PD fault observer in the

structure given in (4)-(6).

Theorem 1 The PD fault observer (4)-(6) is stable if for given positive scalar δ ∈ IR
there exist a symmetric positive definite matrix PPP◦

1 ∈ IR(n+p)×(n+p), a regular matriz PPP◦
3 ∈

IR(n+p)×(n+p) and matrices YYY ◦ ∈ IR(n+p)×m, ZZZ◦ ∈ IR(n+p)×m such that

PPP◦
1 = PPP◦T

1 > 0 , (40)[
AAA◦T PPP◦

3 +PPP◦T
3 AAA◦−YYY ◦CCC◦−CCC◦TYYY ◦T ∗∗∗

VVV ◦
21 VVV ◦

22

]
< 0 , (41)

VVV ◦
21 = PPP◦

1 −PPP◦
3 +δPPP◦T

3 AAA◦−δYYY ◦CCC◦−CCC◦T ZZZ◦T , (42)

VVV ◦
22 =−δPPP◦

3 −δPPP◦T
3 −δZZZ◦CCC◦−δCCC◦T ZZZ◦T . (43)

If the above conditions hold, the set of the extended observer gain matrices is given by
the equations

JJJ◦ = (PPP◦T
3 )−1YYY ◦, LLL◦ = (PPP◦T

3 )−1ZZZ◦ (44)

and the matrices JJJ, LLL MMM, NNN can be separated with respect to (31).

Proof Defining the Lyapunov function of the form

v(eee•(t)) = eee•T (t)EEE•T PPP•eee•(t)> 0 , (45)

where, considering (14), it yields

EEE•T PPP• = PPP•T EEE• ­ 0 , (46)

then the time derivative along a trajectory of (39) becomes, using the constraints (46),

v̇(eee•(t)) = ėee•T (t)EEE•T PPP•eee•(t)+ eee•T (t)PPP•T EEE•ėee•(t)< 0 . (47)

Thus, substituting (39) into (47), it yields

v̇(eee•(t)) = eee•T (t)(PPP•T AAA•
e +AAA•T

e PPP•)eee•(t)< 0 , (48)
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which implies
PPP•T AAA•

e +AAA•T
e PPP• < 0 . (49)

Defining the Lyapunov matrix

PPP• =

[
PPP◦

1 PPP◦
2

PPP◦
3 PPP◦

4

]
, (50)

then with respect to (38) it has to be[
III◦ 000

000 000

][
PPP◦

1 PPP◦
2

PPP◦
3 PPP◦

4

]
=

[
PPP◦T

1 PPP◦T
3

PPP◦T
2 PPP◦T

4

][
III◦ 000

000 000

]
­ 0 , (51)

which gives [
PPP◦

1 PPP◦
2

000 000

]
=

[
PPP◦T

1 000

PPP◦T
2 000

]
­ 0 . (52)

It is evident that (52) can be satisfied only if

PPP◦
1 = PPP◦T

1 > 0 , PPP◦
2 = PPP◦T

2 = 000 (53)

and, using (38) and (50) with (53) in (49), it yields[
000 AAA◦T

e

III◦ −DDD◦T
e

][
PPP◦

1 000

PPP◦
3 PPP◦

4

]
+

[
PPP◦

1 PPP◦T
3

000 PPP◦T
4

][
000 III◦

AAA◦
e −DDD◦

e

]
< 0 . (54)

After simple algebraic matrix manipulations, (54) can be expressed in the following form[
UUU•

1 UUU•T
2

UUU•
2 UUU•

3

]
< 0 , (55)

where, with (35),
UUU•

1 = (AAA◦− JJJ◦CCC◦)T PPP◦
3 +PPP◦T

3 (AAA◦− JJJ◦CCC◦) , (56)

UUU•
2 = PPP◦

1 −PPP◦
3 +PPP◦T

4 (AAA◦− JJJ◦CCC◦)−CCC◦T LLL◦T PPP◦
3 , (57)

UUU•
3 =−PPP◦

4 −PPP◦T
4 −PPP◦T

4 LLL◦CCC◦−CCC◦T LLL◦T PPP◦
4 . (58)

Setting
PPP◦

4 = δPPP◦
3 , YYY ◦ = PPP◦T

3 JJJ◦, ZZZ◦ = PPP◦T
3 LLL◦, (59)

where δ > 0, δ ∈ IR, then (55)-(58) imply (41)-(43). This concludes the proof.

Note, though the form seems to be complicated in Theorem 1, it is easily to get the
solution when they is applied.
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Remark 1 Writing (58) as follows

UUU•
3 =−(PPP◦T

4 (III◦+LLL◦CCC◦)+(III◦+LLL◦CCC◦)T PPP◦
4) =−RRR• (60)

and comparing (7) and (55), then, if (40)-(43) is satisfied, the Schur complement property
implies that RRR• is positive definite. Since PPP◦

4 is regular, (III◦+LLL◦CCC◦) is also regular and
so AAAPDe given by (28) exists.

Theorem 2 (LMIs with one symmetric slack matrix) The PD observer (4)-(6) is stable
if for given positive scalar δ ∈ IR there exist a symmetric positive definite matrix QQQ◦ ∈
IR(n+p)×(n+p) and matrices YYY ◦ ∈ IR(n+p)×m, ZZZ◦ ∈ IR(n+p)×m such that

QQQ◦ = QQQ◦T > 0 , (61)[
AAA◦T QQQ◦+QQQ◦AAA◦−YYY ◦CCC◦−CCC◦TYYY ◦T ∗∗∗

WWW ◦
21 WWW ◦

22

]
< 0 , (62)

WWW ◦
21 = PPP◦−QQQ◦+δQQQ◦AAA◦−δYYY ◦CCC◦−CCC◦T ZZZ◦T , (63)

WWW ◦
22 =−2δQQQ◦−δZZZ◦CCC◦−δCCC◦T ZZZ◦T . (64)

If the above conditions are affirmative, the extended observer gain matrices are given by
the equations

JJJ◦ = XXX−1YYY ◦, LLL◦ = XXX−1ZZZ◦. (65)

Proof Since there is no restriction on the structure of PPP3 it can be set

PPP◦
1 = PPP◦ > 0, PPP◦

3 = PPP◦T
3 = QQQ◦ > 0 (66)

and the conditioned structure of PPP◦
4 (with respect to PPP◦

3 and AAA◦
e) can be taken into account

as
PPP◦

4 = δPPP◦
3 = δQQQ◦, (67)

where δ > 0, δ ∈ IR. If these conditions are incorporated into associated elements of
(56)-(58), then

PPPT
3 AAA◦

e = QQQ◦(AAA◦− JJJ◦CCC◦) = QQQ◦AAA◦−YYY ◦CCC◦, (68)

PPP◦T
4 LLL◦CCC◦ = δPPP◦T

3 LLL◦CCC◦ = δQQQ◦LLL◦CCC◦ = δZZZ◦CCC◦, (69)

where
YYY ◦ = QQQ◦JJJ◦, ZZZ◦ = QQQ◦LLL◦. (70)

and with these modifications then (55)-(58) imply (62)-(64). This concludes the proof.

Note, the design conditions formulated in Theorem 2 give potentially more conser-
vative solutions.
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5. Illustrative example

The considered system is represented by the model (1), (2) with the model parame-
ters [11]

AAA =


1.380 −0.208 6.715 −5.676

−0.581 −4.290 0.000 0.675
1.067 4.273 −6.654 5.893
0.048 4.273 1.343 −2.104

 ,

BBB =


0.000 0.000
5.679 0.000
1.136 −3.146
1.136 0.000

 , CCC =

[
4 0 1 0
0 0 0 1

]
.

To consider single actuator faults it was set EEE = BBB, and the matrix variables PPP◦
1, PPP◦

3, YYY ◦,
ZZZ◦ satisfying (40)-(43) for δ = 0.1 were as follows

PPP◦
1 =



1.1656 −0.0292 0.1399 −0.0330 0.0540 0.1956
−0.0292 0.7469 0.0382 0.0930 −0.3023 −0.0165

0.1399 0.0382 0.6756 0.1090 −0.0627 0.2747
−0.0330 0.0930 0.1090 1.1578 −0.0744 −0.0321

0.0540 −0.3023 −0.0627 −0.0744 1.1850 −0.0067
0.1956 −0.0165 0.2747 −0.0321 −0.0067 1.1826


,

PPP◦
3 =



−0.4070 −0.1151 0.7466 −0.7338 0.0774 0.5150
0.0578 0.6332 −0.2863 0.1368 0.0928 −0.1483

−0.0743 0.3681 0.7681 −0.7179 −0.2233 0.1232
0.1152 0.1302 −0.2963 0.2091 −0.6558 0.0281

−0.1147 −0.6971 0.0402 0.0067 1.2193 0.0645
−0.7134 0.1249 0.2635 −0.2000 −0.0920 1.1889


,

YYY ◦ =



0.0636 −0.0189
−0.0260 0.3146

0.0029 0.6994
−0.0345 0.0126

0.0364 −0.1243
0.2618 −0.0972


, ZZZ◦ =



0.4497 −0.2263
0.0208 −0.3275

−0.1868 0.4742
0.2276 0.9275
0.0060 0.5989

−0.0765 0.1860


,

where the SeDuMi package [17] was used to solve given set of LMIs.
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The PD observer extended matrix gains are then computed using (44) as

JJJ◦ =



−0.1164 −3.5011
0.0759 −2.3994
0.2602 2.0855
0.7696 −3.8495
0.5644 −1.5565
0.2142 1.2266


, LLL◦ =



−2.0570 −7.1432
−0.5649 −5.1745

1.8857 2.7134
1.9169 −7.8482
1.7384 −2.6444
0.4862 2.8783


,

which imply the PD fault estimator parameters

JJJ =


−0.1164 −3.5011

0.0759 −2.3994
0.2602 2.0855
0.7696 −3.8495

 , LLL =


−2.0570 −7.1432
−0.5649 −5.1745

1.8857 2.7134
1.9169 −7.8482

 ,

MMM =

[
0.5644 −1.5565
0.2142 1.2266

]
, NNN =

[
1.7384 −2.6444
0.4862 2.8783

]
.

Verifying the PD observer system matrix eigenvalue spectrum, the results were

ρ(AAAe) = ρ(AAA− JJJCCC) =
{

−6.4616, −7.7123, 3.2804±1.7596i
}
,

ρ(AAAPDe) = ρ
(
(IIIn +LLLCCC)−1(AAA− JJJCCC)

)
=

=
{

−0.4875, −0.6138, −4.1538±3.0874i
}
,

that means the PD fault estimator is stable although its ”P” part stay unstable.
Of course, also the descriptor form (33) of the PD fault estimator is stable, where

ρ
(
(III◦+LLL◦CCC◦)−1(AAA◦− JJJ◦CCC◦)

)
=

= {−0.3117, −0.4654, −0.8185±1.9964i, −4.0034±5.0494i} .

Note, solving (61)-(64), it is not possible to obtain for given system a stable ”P” part of
the fault estimator. If it would be desirable for a reason to set up stable also this ”P” part,
it is needed to look a more conservative solution from (61)-(64), e.g., for δ = 1.

Setting the adapting parameter matrix GGG in (25) as follows

GGG =

[
12.0000 0.1000

0.1000 12.0000

]
,
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0 20 40 60 80 100 120 140 160 180

−0.5

0

0.5

1

1.5

2

2.5
f(

t)
, 

f e
(t

)

t[s]

 

 
f
1

f
2

f
e1

f
e2

Figure 1: Single actuator faults and their estimates.

the results are illustrated in Fig. 1. This figure present the fault signals, as well as their
estimates, reflecting a single actuator fault in the first actuator, starting at the time instant
t = 30s and applied for 40s and then the fault of the first actuator is introduced in the
time instant t = 100s and lasts for 40s. The presented simulation was carried out in the
system autonomous mode, practically the same results were obtained for forced regime
of the system.

The adapting parameter GGG and the tuning parameter δ were set experimentally con-
sidering the maximal value of fault signal amplitude and fault observer dynamics. The
faults considered in simulation do not cause closed-loop instability and it can be seen
that there exist small differences between the signals reflecting single actuator faults and
the observer approximate ones for piecewise constant actuator faults.

6. Concluding remarks

Based on the descriptor system approach a new PD fault observer design method
for continuous-time linear systems and slowly-varying actuator faults is introduced in
the paper. Presented version is derived in terms of optimization over LMI constraints
using standard LMI numerical procedures to manipulate the fault observer stability and
fault estimation dynamics. Formulated in the sense of the second Lyapunov method,
expressed through LMI formulation, design conditions guaranty the asymptotic conver-
gence of the state as well as fault estimation errors. The numerical simulation results
show good estimation performances.
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