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Topology optimization for elastic base under
rectangular plate subjected to moving load

SAMVEL H. JILAVYAN and ASATUR ZH. KHURSHUDYAN

Distribution optimization of elastic material under elastic isotropic rectangular thin plate
subjected to concentrated moving load is investigated in the present paper. The aim of opti-
mization is to damp its vibrations in finite (fixed) time. Accepting Kirchhoff hypothesis with
respect to the plate and Winkler hypothesis with respect to the base, the mathematical model of
the problem is constructed as two–dimensional bilinear equation, i.e. linear in state and control
function. The maximal quantity of the base material is taken as optimality criterion to be min-
imized. The Fourier distributional transform and the Bubnov–Galerkin procedures are used to
reduce the problem to integral equality type constraints. The explicit solution in terms of two–
dimensional Heaviside‘s function is obtained, describing piecewise–continuous distribution of
the material. The determination of the switching points is reduced to a problem of nonlinear
programming. Data from numerical analysis are presented.

Key words: distributed system, moving load, Kirchhoff plate, Winkler base, topology opti-
mization, problem of moments, L∞-optimal control, distributions, Bubnov–Galerkin procedure.

1. Introduction

The optimal design problems are traditionally considered in order to minimize or
maximize some parameters (weight, volume, load capacity and etc.) of a design with
given structure [1]. In the monograph [1] a wide range of construction optimization
problems of three main kinds: optimization of size, form and structure, are investigated.
Recently, the so–called design topology optimization problems have begun to be in-
vestigated in order to minimize a specific functional describing material distribution in
given domain, retaining or even improving desired properties of structures. The solution
of topology optimization problems, unlike problems of structural optimization, where
necessary conditions of optimality to be solved, are generally reduced to problem of
nonlinear programming (see, for example, [2, 3, 4, 5, 6, 7, 8, 15, 16, 18, 17] and the ref-
erences therein). Nevertheless, the explicit analytical form determination for unknown
controls in such problems is connected with significant difficulties, and the numerical
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solution requires high computational costs. Topology optimization of a construction can
lead not only to an advantageous distribution of material in its volume, which is of di-
rect practical importance, preserving or even optimizing its target properties; it also can
directly affect the processes in which it is involved. It opens further opportunities as in
engineering practice, as well as in manufacturing.

Such problems have not only practical importance, but stand out with complexity of
investigation, because mathematically they are formulated as bilinear control systems,
i.e. systems containing linear product of control and state function or their derivatives.
Such systems can be used to model a wide range of physical, chemical, biological pro-
cesses that cannot be effectively modelled under the assumption of linearity (see [19]
and the references therein).

From the other hand side, vibration reduction and damping in particular systems
present a very important engineering problem. Besides the literature cited above we
refer to [9, 12, 14, 10, 13, 11] and the references therein. The investigation is devoted
to vibration reduction or damping for structures with actuators or absorbers having fixed
placements and configurations under it. In [8, 15, 16] we have attempted and here we
are going to attempt to damp bending vibrations of elastic structures (beam and plate)
by optimizing the way of placing the subgrade under those structures.

In general statement topology optimization problems require minimization of given
criterion

κ[u]−→
u

min, u ∈ U,

describing as usual the distribution of material in design, by choosing u bounded by our
resources, under certain geometrical and characteristic constraints.

If, for example, the control problem is considered for a deformable design, equation
of its motion

Du[w] = f (xxx, t), (xxx, t) ∈ O × [0,T ], (1)

(or static equilibrium) may be considered as characteristic (differential) constraints,
whereby xxx ∈ O ⊂ R3 will be the geometrical constraint. Besides, the solution of (1)
satisfies given conditions on boundary:

B[w] = w∂(t), (xxx, t) ∈ ∂O × [0,T ]. (2)

In dynamical problems some initial conditions at t = 0 moment are also considered. Main
purpose of control problem may be, for instance, ensuring given terminal conditions at
t = T moment.

The bilinear differential operator Du[w] is defined in O × [0,T ], B[·] is a linear or
nonlinear operator, representing the boundary conditions, f (xxx, t) is a given function sat-
isfying certain conditions.

Examples of operators Du[·] and B[·] may be found, for instance, in the above cited
literature and in [22, 23, 24, 20, 21].
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2. Notations and abbreviations

We use the definitions

θ(x) =

{
1, x > 0,
0, x < 0,

θ(x,y) = θ(x)θ(y) =

{
1, x > 0 and y > 0,
0, otherwise,

for Heaviside‘s one and two-dimensional function, and δ = Dθ for Dirac‘s delta func-
tion. The key technique we use to deal with distributions is their Fourier transform
[26, 27], defined in terms of direct

Ft [η] := η(σ) =
∞∫

−∞

η(t)exp [iσt]dt,

and inverse operators

F −1
t [η] =

1
2π

∞∫
−∞

η(σ)exp [−iσt]dσ = η(t),

σ ∈ R is the transform parameter. We use also the operators F −1
s [·] and F −1

c [·] for
Fourier inverse sine and cosine transforms

F −1
s [η] =

1
π

∞∫
0

η(σ)sin(σt)dσ, F −1
c [η] =

1
π

∞∫
0

η(σ)cos(σt)dσ.

The Fourier transform of Dirac‘s delta F [δ(t − t0)] = exp [iσt0] is used during computa-
tions below.

We use the filtering property of Dirac‘s delta

ε∫
−ε

δ(t − t0)η(t)dt = η(t0), t0 ∈ (−ε,ε), ε > 0,

for all test functions η [27].
The following properties are also used throughout the paper without special refer-

ence [27]:

δ(x− x0) =
1
|x0|

δ
(

x
x0

−1
)
, θ(x− x0) =

θ
(

x
x0
−1
)
, x0 > 0,

1−θ
(

x
x0
−1
)
, x0 < 0,

x0 ̸= 0,

in the sense of distributions [27].
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D is the bending stiffness of the plate, ∆ is the two–dimensional Laplacian,

δµ
m = δm

µ =

π∫
−π

sin(πmx)sin(πµx)dx =

{
1, m = µ,
0, m ̸= µ,

δµν
mn = δµ

mδν
n,

are the Kronecker one and two-dimensional symbols. For short we write {1;N} instead
of {1,2, . . . ,N}.

The operator A[a,b][·], introduced in [8, 15, 16, 25, 28], is defined as follows

A[a,b][η] =

{
η(t), t ∈ [a,b],
0, t /∈ [a,b].

It obviously may be represented in terms of characteristic function of [a,b]

χ[a,b](t) =

{
1, t ∈ [a,b],
0, t /∈ [a,b],

as follows
A[a,b][η] = χ[a,b](t)η(t) := η1(t),

but it is more convenient to use the representation [8, 15, 16, 25, 28]

A[a,b][η] = [θ(t −a)−θ(t −b)]η(t).

supp η = {x ∈ R; η(x) ̸= 0} denotes the support of η. It is obvious that supp A[a,b][η] =
[a,b].

Remark 1 The above introduced operator A[a,b][·] is a linear continuous mapping from
the space of ordinary functions into the Sobolev space of functions, which are concen-
trated on [a,b] and has distributional derivatives of any order.

The derivatives of η may be expressed in terms of distributional derivatives of η1 =
A[a,b][η]:

Dnη1(t) = A[a,b][D
nη]+

n−1

∑
ν=1

Cn
ν
[
Dνη(a)Dn−ν−1δ(t −a)−Dνη(b)Dn−ν−1δ(t −b)

]
,

(Cn
m are the binomial coefficients).
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3. The method of solution

In order to solve the bilinear control problems when B[·] is linear we suggest [15] to
use the Bubnov–Galerkin procedure [29]. Suppose, that we have constructed a complete
system of basis (approximating) functions {φn(xxx)}N

n=0, the first one of which satisfies
non–homogeneous, and the rest– to homogeneous boundary conditions (2). Then the
residual, obtained as a result of substitution of approximate solution

wN(xxx, t) = ε0(t)φ0(xxx)+
N

∑
n=1

εn(t)φn(xxx), (xxx, t) ∈ O × [0,T ], (3)

where the coefficients εn(t) should be determined, t is considered as a parameter, into
(1.1), will be

RN(xxx, t) = Du[wN ]− f (xxx, t), (xxx, t) ∈ O × [0,T ]. (4)

According to the Bubnov–Galerkin procedure, the unknown coefficients ε(t) are
determined from orthogonality conditions of the residual (4) and basis functions
{φn(xxx)}N

n=0 ∫
O

RN(xxx, t)φn(xxx)dxxx = 0, t ∈ [0,T ], n ∈ {0;N}. (5)

Remark 2 If for some N0 ∈N the residual (4) is identically zero: RN0(xxx, t)≡ 0, then the
corresponding function wN0(xxx, t) (3) will be the exact solution of boundary–value prob-
lem (1), (2). Otherwise, increasing the number N of approximating functions {φn(xxx)}N

n=0
we may increase the accuracy of approximation (3).

After determining the unknown coefficients εn(t) from the system of linear equations
(5) and substituting them into (3), and taking into account, that at T given terminal
conditions must be satisfied, we will derive the system

wN(xxx,T ) = ε0(T )φ0(xxx)+
N

∑
n=1

εn(T )φn(xxx), xxx ∈ O.

Then, the unknown function u has to be determined from

wn
NT = εn(T ), n ∈ {0;N} (6)

in which
wn

NT =

∫
O

wN(x,T )φn(xxx)dxxx.

Remark 3

i) Naturally, we should put the subscript N to the unknown u to underline that it is
an approximation, but we omit it implying the dependence obvious.
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ii) The complexity of the technique application depends on complexity of operator
Du[·] and, especially, its component with respect to t: it defines the type (algebraic,
differential, integral, integro-differential etc.) of (5) for εn(t).

4. The problem statement

In this section we are going to apply the technique described in the previous section
for a two–dimensional bilinear system. We consider an elastic, isotropic, solid rectan-
gular plate of sufficiently small constant thickness 2h, the middle plane of which in
Cartesian system of coordinates occupies the domain

O∗ = {(x∗,y∗); x∗ ∈ [−l1, l1], y∗ ∈ [−l2, l2]} ⊂ R2, min(l1, l2)≫ 2h.

Let the plate lies on a linear–elastic one–parametric base with substrate ratio α2
∗, dis-

tributed in O∗ by a controlled law u = u(x,y). The plate is supposed to be simply sup-
ported by edges x∗ =±l1 and y∗ =±l2, as well as subjected to a constant normal load P∗
distributed on the upper surface of the plate by given law r∗ = r∗(y∗), supp r∗ ̸=∅, and
moving along the upper surface of the plate in x∗ direction with constant velocity v∗.

We accept the Kirchhoff hypothesis with respect to the plate and the Winkler hy-
pothesis with respect to the elastic base. Then, the vertical displacements of the plate
middle plane satisfy

D∆∆w∗(x∗,y∗, t∗)+α2
∗u(x∗,y∗)w∗(x∗,y∗, t∗)+2ρh

∂2w∗(x∗,y∗, t∗)
∂t2

∗
= f∗(x∗,y∗, t∗), (7)

(x∗,y∗, t∗) ∈ O∗× (0,T ),

and the boundary conditions of simply supported edges

w∗(±l1,y∗, t∗) =
∂2w∗(x∗,y∗, t∗)

∂x2
∗

∣∣∣∣
x∗=±l1

= 0, (y∗, t∗) ∈ [−l2, l2]× [0,T ],

w∗(x∗,±l2, t∗) =
∂2w∗(x∗,y∗, t∗)

∂y2
∗

∣∣∣∣
y∗=±l2

= 0, (x∗, t∗) ∈ [−l1, l1]× [0,T ].
(8)

Above u is the law of the elastic base distribution in O∗, f∗(x∗,y∗, t∗) characterizes
the impact of the moving load on the plate:

f∗(x∗,y∗, t∗) = P∗A[0,τ∗][δ(x∗+ l1 − v∗t∗)]r∗(y∗). (9)

The initial state of the plate is known:

w∗(x∗,y∗,0) = w0∗(x∗,y∗),
∂w∗(x∗,y∗, t∗)

∂t∗

∣∣∣∣
t∗=0

= w1
0∗(x∗,y∗), (x∗,y∗) ∈ O∗. (10)
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Our main purpose is the determination of an admissible control uo ∈ U = {0¬ u ∈
L∞(O∗); |u|¬ 1, supp u ⊆ O∗} providing the following terminal state in required (fixed)
time T :

w∗(x∗,y∗,T ) = 0,
∂w∗(x∗,y∗, t∗)

∂t∗

∣∣∣∣
t∗=T

= 0, (x∗,y∗) ∈ O∗, (11)

as well as minimizing intensity of the elastic base distribution under the plate described
by the functional

κ[u] = max
(x∗,y∗)∈O∗

|u(x∗,y∗)|, u ∈ U. (12)

Remark 4 It is obvious that the plate vibrations may "vanish" solely after the load de-
taches from it. Thence we suppose that the load detaches from the plate at a given mo-
ment τ∗ < T , such that v∗τ∗ = 2l1. Naturally, we have to restrict us by condition T < T0,
where T0 is the time in which the vibrations will "vanish" in the case of u(x,y)≡ 1.

We realize that, in general, terminal conditions (11) may not be provided by choice
of any distribution u (even in the case u ≡ 1) exactly, because there will remain some
residual stresses of very small amplitude inversely proportional to the base stiffness.
Thus, we deal with a problem of approximate controllability, i.e. equality signs in (11)
are, actually, approximate equalities.

We additionally suppose, that the consistency conditions concerning boundary, ini-
tial and terminal data are satisfied:

w0∗(±l1,y∗) = w0∗(x∗,±l2) = 0, w1
0∗(±l1,y∗) = w1

0∗(x∗,±l2) = 0,

∂2w0∗(x∗,y∗)
∂x2

∗

∣∣∣∣
x∗=±l1

=
∂2w0∗(x∗,y∗)

∂y2
∗

∣∣∣∣
y∗=±l2

= 0.

Before proceeding to the control problem solution, let us transform (7)-(12) intro-
ducing the dimensionless variables and functions

w =
w∗
h
, r =

r∗
l2
, x =

x∗
l1
, y =

y∗
d
, t =

2t∗−T
T

ϑ, τ =
2ϑ
T

τ∗, v =
v∗
l1

T
2ϑ

,

α2 =
α2
∗l4

1
D

, β2 = 2ρh
l4
1

D

(
2ϑ
T

)2

, γ =
l1
l2
, P∗ =

Pdl3
1

Dh
.

Then, we will obtain

D[w]+α2u(x,y)w(x,y, t)+β2 ∂2w(x,y, t)
∂t2 = f (x,y, t), (x,y, t) ∈ O × (−ϑ,ϑ), (13)

w(±1,y, t) =
∂2w(x,y, t)

∂x2

∣∣∣∣
x=±1

= 0, (y, t) ∈ [−1,1]× [−ϑ,ϑ],

w(x,±1, t) =
∂2w(x,y, t)

∂y2

∣∣∣∣
y=±1

= 0, (x, t) ∈ [−1,1]× [−ϑ,ϑ],
(14)
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D[w] =
∂4w(x,y, t)

∂x4 +2γ2 ∂4w(x,y, t)
∂x2∂y2 + γ4 ∂4w(x,y, t)

∂y4 ,

O := (−1,1)× (−1,1).

As a result of the variables change, the expression (9) transforms to

f (x,y, t) = PA[−ϑ,ϑ−τ] [δ(x+1− v(t +ϑ))]r(y).

In order to deal with control problem under study we are aimed to use the
Butkovskiy‘s generalized method, suggested in [25, 28]. For that purpose we apply the
operator A[−ϑ,ϑ][·] to (10) and (11). Taking into account that in the sense of distributions

[θ(t +ϑ)−θ(t −ϑ)]
∂2w(x,y, t)

∂t2 =
∂2w1(x,y, t)

∂t2 − [δ(t +ϑ)−δ(t −ϑ)]
∂w(x,y, t)

∂t
−

− [δ′(t +ϑ)−δ′(t −ϑ)]w(x,y, t) =

=
∂2w1(x,y, t)

∂t2 −w1
0(x,y)δ(t +ϑ)−w0(x,y)δ′(t +ϑ),

we will arrive at

D[w1]+α2u(x,y)w1(x,y, t)+β2 ∂2w1(x,y, t)
∂t2 = G(x,y, t), (x,y, t) ∈ O ×R, (15)

w1(±1,y, t) =
∂2w1(x,y, t)

∂x2

∣∣∣∣
x=±1

= 0, (y, t) ∈ [−1,1]×R,

w1(x,±1, t) =
∂2w1(x,y, t)

∂y2

∣∣∣∣
y=±1

= 0, (x, t) ∈ [−1,1]×R,
(16)

where
G(x,y, t) = f1(x,y, t)+β2[w0(x,y)δ′(t)+w1

0(x,y)δ(t)].

Applying now the Fourier transform with respect to t variable to system (15), (16),
we will obtain

D[w1]+
[
α2u(x,y)−σ2β2]w1(x,y,σ) = G(x,y,σ), (x,y,σ) ∈ O ×R, (17)

w1(±1,y,σ) =
∂2w1(x,y,σ)

∂x2

∣∣∣∣
x=±1

= 0, (y,σ) ∈ [−1,1]×R,

w1(x,±1,σ) =
∂2w1(x,y,σ)

∂x2

∣∣∣∣
y=±1

= 0, (x,σ) ∈ [−1,1]×R,
(18)

G(x,y,σ) = f 1(x,y,σ)+β2[w1
01(x,y)− iσw01(x,y)],

f 1(x,y,σ) =
P
v
[θ(x+1)−θ(x−1)]exp

[
iσ
(

x+1
v

+ϑ
)]

r(y).
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It is taken into account here that vτ = 2.
In order to solve this problem we aimed to apply the Bubnov–Galerkin procedure.

Orthonormal in O system of functions {sin(πmx)sin(πny)}m,n∈N, is, obviously, approx-
imating for boundary value problem (17), (18), and therefore we may look its solution
for as follows:

w1N(x,y,σ) =
N

∑
m,n=1

εmn(σ)sin(πmx)sin(πny), (x,y,σ) ∈ O ×R, (19)

where εmn(σ) are unknown yet. Applying the procedure described above, we will derive
the following system of linear algebraic equations for εmn(σ):

N

∑
m,n=1

Λµν
mn(σ)εmn(σ) = Ωµν(σ), µ,ν ∈ {1;N}, (20)

where

Λµν
mn(σ) = Γmnδµν

mn +α2Jµν
mn[u], Γmn =

[
(πm)2 + γ2(πn)2]2 −σ2β2,

Jµν
mn[u] =

1∫
−1

1∫
−1

u(x,y)sin(πmx)sin(πµx)sin(πny)sin(πνy)dxdy,

Ωµν(σ) = Yµ(σ)
1∫

−1

r(y)sin(πνy)dxdy+β2 [Kµν − iσLµν] ,

Yµ(σ) =
(−1)µ+1πµ ·Pv

σ2 +(πµv)2

[
1− exp

[
2iσ
v

]]
exp [iσϑ] ,

Kµν =

1∫
−1

1∫
−1

w1
01(x,y)sin(πµx)sin(πνy)dxdy,

Lµν =

1∫
−1

1∫
−1

w01(x,y)sin(πµx)sin(πνy)dxdy.

It is obvious, that Jmn
mn [u]­ 0, Jµν

mn[u] = Jνµ
nm[u], m,n,µ,ν ∈ {1;N}.

Remark 5 Since the Chebyshev polynomials of the first kind {Tm(x)Tn(y)}m,n∈N are
orthogonal in O and provide more accuracy of approximation compare with that by
trigonometric system {sin(πmx)sin(πny)}m,n∈N [29], it is more efficient to use them
instead. But we take into account, that the aim is to show that the proposed algorithm
works in dimensions two, and not the accuracy of the approximation.
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Since w1(x,y, t) ≡ A[−ϑ,ϑ][w] by the definition is compactly supported in [−ϑ,ϑ],
then, according to Wiener–Paley–Schwartz theorem [26, 27], the extension w1(x,σ+ iς),
ς ∈R, is entire. It means, that ∆11(z) = 0, as long as ∆0(z) = 0, where ∆0 and ∆11 are the
main and (for instance) the first auxiliary determinants of (20), respectively.

Remark 6

i) It is easy to see from the expression of Λµν
mn, the determinant ∆0(σ) is a polynomial

of degree 2N, therefore ∆0(z) = 0 admits 2N complex roots. From the other hand
side

Re ∆0(−σ− iς) = Re ∆0(σ+ iς), Im ∆0(−σ− iς) = Im ∆0(σ+ iς),

which means that zk = σk + iςk and zk = −σk − iςk satisfy ∆0(z) = 0 simultane-
ously. Then, since

Re ∆11(−σ− iς) = Re ∆11(σ+ iς), Im ∆11(−σ− iς) = Im ∆11(σ+ iς),

we conclude that ∆11(z) = 0 contains only N independent conditions.

ii) Moreover, even though

Re ∆0(−σ+ iς) = Re ∆0(σ− iς) = Re ∆0(σ+ iς)

Im ∆0(−σ+ iς) = Im ∆0(σ− iς) =−Im ∆0(σ+ iς),
nevertheless ∆11(σ+ iς) does not have the same property, therefore the number of
independent equalities cannot be reduced further.

Suppose that we were able to solve ∆0(z) = 0 and find the roots zk, k ∈ {1;N}. Sub-
stituting them into ∆11(z) = 0 and separating its real and imaginary parts, with respect
to Jµν

mn[u] we will obtain the system of restrictions

Jµν
mn[u] = M µν

mn , m,n,µ,ν ∈ {1;N},

According to [17, 28], the solution will be

uo(x,y) =
J

∑
j=1

[
θ
(
x− xo

j ,y− yo
j
)
−θ
(
x− xo

j+1,y− yo
j+1
)]
, (x,y) ∈ O. (21)

The obtained solution describes the distribution law of the elastic base under the plate,
and the set of points {xo

j ,y
o
j}J

j=1 ∈ O underlines the domains where the base exists and
depends on inner and external parameters D,r(y),v,τ,P,α2,β2,γ.

After determination of optimal solution (21), we might need also the optimal deflec-
tion of the plate. Applying the Fourier inverse transform to (19)we will obtain

w1N(x,y, t) =
N

∑
m,n=1

εmn(t)sin(πmx)sin(πny), (x,y, t) ∈ O ×R, (22)
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Remark 7 Taking into account that

Λµν
mn(−σ) = Λµν

mn(σ), Re Ωµν(−σ) = Re Ωµν(σ), Im Ωµν(−σ) =−Im Ωµν(σ),

we see that

Re εmn(−σ) = Re εmn(σ), Im εmn(−σ) =−Im εmn(σ).

It is necessary and sufficient for εmn(t) = F −1
t [εmn], and therefore for w1N(x,y, t), to be

real valued. Then,

εmn(t)=
1
π

∞∫
0

[Re εmn(σ)cos(σt)+ Im εmn(σ)sin(σt)]dσ=F −1
c [Re εmn]+F −1

s [Im εmn],

where

Re εmn(σ) =
Re ∆mn(σ)Re ∆0(σ)+ Im ∆mn(σ)Im ∆0(σ)

(Re ∆0(σ))2 +(Im ∆0(σ))2 ,

Im εmn(σ) =−Re ∆mn(σ)Im ∆0(σ)− Im ∆mn(σ)Re ∆0(σ)
(Re ∆0(σ))2 +(Im ∆0(σ))2 .

5. Numerics

To demonstrate the procedure of the switching points calculation, let us consider a
numerical experiment. Let

w01(x,y) = sin(πx)sin(πy), ẇ01(x,y) = 0.

We additionally assume, that the moving load has a point support: r(y) = δ(y − y0),
y0 ∈ (−1,1). Then, limiting the consideration by N = 3 we have the results combined in
Figures 1 and 2 and in Tables 1–3 for various values of dimensionless parameters D, α2,
β2, γ, P, v, τ. Poisson‘s ratio of the plate material is taken equal to 0.25.

Since the expressions for ∆0 and ∆11 are unwieldy and it is useless to bring them
here, we bring the expressions for

Jµν
mn[u] =

J

∑
j=1

xo
j+1∫

xo
j

sin(πmx)sin(πµx)dx

yo
j+1∫

yo
j

sin(πny)sin(πνy)dy,

Ωµν(z) =
(−1)µ+1πµ · vP

z2 +(πµv)2

[
1− exp

[
2iz
v

]]
exp [izϑ] · sin(πνy0)− izβ2δµ

1δν
1,
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Table 2: β2 = 50, γ = 0.25

α2 P v τ y0
xo

1 xo
2 xo

3 xo
4

yo
1 yo

2 yo
3 yo

4

0.01 0.1 0.01 100 -0.25
0.1973 0.2650 0.2691 0.3355
0.3307 0.4931 0.5330 0.6699

0.01 0.5 0.05 150 0.5
−0.4444 −0.2989 0.3074 0.4349
−0.4444 −0.2989 0.3074 0.4349

0.05 0.1 0.01 100 0.25
−0.7264 −0.5139 −0.0475 0.0969
−0.7809 −0.4936 −0.0077 0.1864

0.05 0.5 0.1 150 0.25
−0.4167 −0.2703 0.3270 0.4466
−0.4167 −0.2703, 0.3270 0.4466

0.1 0.1 0.1 100 -0.5
−0.7557 0.1406 0.5143 0.7555
−0.5619 0.0554 0.4113 0.9799

0.1 0.5 0.1 150 0.5
−0.4371 −0.2963 0.3042 0.4282
−0.4371 −0.2963 0.3042 0.4282

Table 3: β2 = 25, γ = 1

α2 P v τ y0
xo

1 xo
2 xo

3 xo
4

yo
1 yo

2 yo
3 yo

4

0.01 0.1 0.01 100 0.25
−0.8376 −0.6615 0.6087 0.6897
−0.9815 −0.4452 −0.3912 0.0556

0.01 0.5 0.05 150 -0.75
−0.4146 −0.2677 0.3283 0.4349
−0.4146 −0.2677 0.3283 0.4477

0.05 0.1 0.01 100 -0.1
−0.2748 −0.2709 0.5555 0.7504
−0.3973 −0.2035 0.2735 0.3567

0.05 0.5 0.1 150 0.1
−0.4421 −0.2965 0.2926 0.4228
−0.4421 −0.2965 0.2926 0.4228

0.1 0.1 0.05 100 0.4
−0.2065 −0.1324 0.4080 0.4781
−0.2984 −0.2968 0.3931 0.3943

0.1 0.5 0.1 150 0.1
−0.4211 −0.2759 0.3234 0.4437
−0.4211 −0.2759 0.3233 0.4437
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Figure 1: uo(x,y) when β2 = 50,γ = 0.25,α2 = 0.05,P = 0.5,v = 0.1,τ = 150 and y0 =
0.25.

Figure 2: uo(x,y) when β2 = 25,γ = 1,α2 = 0.01,P = 0.5,v = 0.05,τ = 150 and y0 =
−0.75
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Table 4: β2 = 20, γ = 2

α2 P v τ y0
xo

1 xo
2 xo

3 xo
4

yo
1 yo

2 yo
3 yo

4

0.01 0.1 0.01 100 0.25
−0.4258 −0.2114 0.3054 0.4408,
−0.3881 −0.2724 = 0.4269 0.4270

0.01 0.5 0.05 150 -0.75
−0.4389 −0.2925 0.3025 0.4308,
−0.4146 −0.2925 0.3025 0.4308

0.05 0.1 0.05 100 -0.4
−0.4360 −0.2888 0.3136 0.4399,
−0.4360 −0.2888 0.3136 0.4399

0.05 0.5 0.1 150 0.4
−0.4105 −0.1466 0.4508 0.5467,
−0.3583 −0.3567 0.4778 0.5478

0.1 0.1 0.01 100 0.25
−0.4456 −0.2521 0.4542 0.4566
−0.3596 −0.2483 0.2450 0.46

0.1 0.5 0.1 150
-
-0.25

−0.2776 0.0706 0.4388 0.5237,
−0.1503 −0.1494 0.5020 0.5192

6. Conclusion

The solution of distribution optimization problem for elastic material in rectangu-
lar domain is obtained explicitly using the Butkovskiy‘s generalized method and the
Bubnov–Galerkin procedure in turn. The aim is the minimization of the material quan-
tity in order to damp the bending vibrations of a simply supported isotropic elastic plate
caused by a moving load in required time. The mathematical model is constructed as
a bilinear partial differential equation of fourth order. Introducing a new, generalized
state function, the state equation is written in the class of distributions and the initial
conditions are included in it. Involving the Fourier distributional transform, the govern-
ing system is reduced to a boundary–value problem for partial differential equation with
two independent variables. The solution is approximated by means of Bubnov–Galerkin
orthonormal sequence and with respect to approximation coefficients a system of alge-
braic equations is obtained. Those coefficients are found and extended in C as entire
functions. Resolving conditions (necessary and sufficient) are the zeros of one of the
auxiliary determinants extended in C in roots of the main determinant extended in C.
It turns out that the piecewise–continuous distribution of the material is optimal and is
determined uniquely via solution of a problem of nonlinear programming. Numerical
analysis is done for a particular initial state and for various values of the system internal
and external parameters.
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