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Stability conditions for linear continuous-time fractional-order

state-delayed systems
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Abstract. The stability problem of continuous-time linear fractional order systems with state delay is considered. New simple necessary and

sufficient conditions for the asymptotic stability are established. The conditions are given in terms of eigenvalues of the state matrix and

time delay. It is shown that in the complex plane there exists such a region that location in this region of all eigenvalues of the state matrix

multiplied by delay in power equal to the fractional order is necessary and sufficient for the asymptotic stability. Parametric description of

boundary of this region is derived and simple new analytic necessary and sufficient conditions for the stability are given. Moreover, it is

shown that the stability of the fractional order system without delay is necessary for the stability of this system with delay. The considerations

are illustrated by a numerical example.
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1. Introduction

Dynamical systems described by fractional order differential

or difference equations have been investigated in several ar-

eas such as viscoelasticity, electrochemistry, diffusion process-

es, automatic control, power electronic, etc. The problem of

analysis and synthesis of dynamical systems described by frac-

tional order differential (or difference) equations has been con-

sidered in monographs [1–4], for example.

The problems of stability of linear continuous-time and

discrete-time fractional order systems, standard and positive,

have been investigated in the above mentioned monographs

and in many papers, see [5–12] for example, and references

therein.

In last years the stability problem of fractional systems

with delays has been considered in [13–19].

The aim of the paper is to give the methods (graphical and

analytic) for asymptotic stability checking for fractional order

continuous-time linear systems with state delay. The stability

problem of such systems has not been considered yet. The

stability problem of standard (i.e. non-fractional) continuous-

time linear systems with pure delay has been considered in

[20–24].

In the paper the following notations is used: ℜn×m – the

set of n × m real matrices and ℜn = ℜn×1; I – the identity

matrix.

2. Preliminaries and problem formulation

Consider a continuous-time linear system of fractional order

with pure state delay described by the state equation

Dα
t x(t) = Ax(t − h) + Bu(t), 0 < α < 2, (1)

where x(t) ∈ ℜn, u(t) ∈ ℜm, A ∈ ℜn×n, B ∈ ℜn×m, h ∈ ℜ
is a delay and

Dα
t x(t) =

1

Γ(p − α)

t∫

0

x(p)(τ)dτ

(t − τ)α+1−p
, p − 1 ≤ α ≤ p,

(2)

is the Caputo definition of the fractional α-order derivative,

where x(p)(t) = dpx(t)/dtp (p is a natural number) and Γ(α)
is the Euler gamma function.

The characteristic function (quasi-polynomial in sα and

e−sh) of the system (1) can be computed from the formula

q(s) = det(Isα − Ae−sh) =

n∏

i=1

qi(s)

=

n∏

i=1

(sα − λie
−sh),

(3)

where

qi(s) = sα − λie
−sh (4)

and λi = ui + jvi is the i-th eigenvalue of the matrix A
(i = 1, ..., n).

The fractional system (1) is bounded-input bounded-

output (BIBO) stable (shortly stable) if and only if q(s) has

no poles with non-negative real parts, i.e.

q(s) =

n∏

i=1

(sα − λie
−sh) 6= 0 for Re s > 0. (5)

The condition (5) can be written in the form of n condi-

tions

qi(s) 6= 0 for Re s > 0, i = 1, ..., n. (6)

The characteristic quasi-polynomial which has no poles

with non-negative real parts is called the stable quasi-

polynomial.

∗e-mail: andrusz@pb.bialystok.pl

3



M. Busłowicz

The aim of the paper is to give the methods for checking

the conditions (6) and (5).

3. The main result

First of all we consider the stability problem for the fraction-

al quasi-polynomial (4), where λi = ui + jvi is a complex

number.

A root location of (4) in the open left-half plane is equiv-

alent to the root location in this plane of the quasi-polynomial

wi(z) = zαez − λ̃i, (7)

where λ̃i = ũi + jṽi, ũi = hαui, ṽi = hαvi.

We apply the D decomposition method of Nejmark (see

[23] for the state of the art and [10] as an example of applica-

tion) for determining the stability region of (4) in the complex

(ũi, ṽi)-plane.

Substituting z = jω in (7) and equating to zero we obtain

the parametric description of boundary of the stability region

in the complex (ũi, ṽi)-plane. This boundary is a part of the

curve with the parametric description

(jω)αejω = ũi(ω) + jṽi(ω) (8)

for ω ∈ (−∞, ∞).
Taking account that (jω)α = ωαejαπ/2, Eq. (8) for ω > 0

can be written in the form of two real equations

ũi(ω) = ωα cos(ω + απ/2),

ṽi(ω) = ωα sin(ω + απ/2).
(9)

Since (−jω)α = ωαe−jαπ/2 (ω > 0) one has

(−jω)αe−jω = ũi(ω) − jṽi(ω), ω ∈ (−∞, ∞), (10)

where ũi(ω) and ṽi(ω) are defined by (9).

This means that the curve described by (8) (or (9), equiv-

alently) for ω ∈ (−∞, ∞) is symmetric with respect to the

real axis of the complex (ũi, ṽi)-plane.

From (9) it follows that ṽi(ω) = 0 for ω = ±ωb where

wb = π − απ/2 and

ũi(ωb) = ũi(−ωb) = −ωα
b = −[π(1 − α/2)]α. (11)

Hence, the curve (8) (or (9)) for ω ∈ [−ωb, ωb] is a closed

curve. This curve divides the complex (ũi, ṽi)-plane into two

regions, one bounded and one unbounded (see Fig. 1). Denote

by S(α) the bounded region.

The quasi-polynomial (7) for z = jω can be written in the

form wi(jω) = Pi(ω) + jQi(ω), where Pi(ω) = ωα cos(ω +
απ/2) − ũi(ω), Qi(ω) = ωα sin(ω + απ/2) − ṽi(ω). If ω
increases in the interval [−ωb, ωb] from −ωb to ωb then the

point wi(jω) moves along the boundary (8) in the positive

direction. From this and positivity of the Jacobian

J(ω) = det




∂Pi(ω)

∂ũi(ω)

∂Pi(ω)

∂ṽi(ω)

∂Qi(ω)

∂ũi(ω)

∂Qi(ω)

∂ṽi(ω)


 = 1

it follows that the stability region lies on the left of the bound-

ary (8) [24]. This means that S(α) is the stability region of

the quasi-polynomial (7) and also (4).

Fig. 1. Stability region S(α) for 0 < α < 1

From the above we have the following lemma.

Lemma 1. The quasi-polynomial (7) (and (4)) is stable if and

only if the complex number λi = ui + jvi multiplied by hα

(i.e. λ̃i = ũi + jṽi with ũi = hαui, ṽi = hαvi) lies in the

complex (ũi, ṽi)-plane in the stability region S(α) with the

boundary (8) for ω ∈ [−ωb, ωb].
From (9) for ω = 0 we have ũi(0) = ṽi(0) = 0 and

tan

∣∣∣∣
ṽi(0)

ũi(0)

∣∣∣∣ = tan
απ

2
. (12)

This means that for any point λ̃i = ũi + jṽi in the stability

region S(α) the following condition holds

| arg λ̃i| > απ/2, (13)

where arg λ̃i ∈ (−π, π] denotes the main argument of the

complex number λ̃i.

The main argument of λi = ui + jvi can be computed

from the formula

argλi = sgn(vi) · arccos(ui/|λi|). (14)

The stability regions S(α) in the complex (ũi, ṽi)-plane are

shown in Figs. 1 and 2 for 0 < α < 1 and for 1 < α < 2,

respectively. Figure 3 shows the stability regions S(α) for a

few values of fractional order 0 < α < 2. For α ≥ 2 the

stability regions S(α) are empty sets.

Fig. 2. Stability region S(α) for 1 < α < 2
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Fig. 3. Stability regions S(α) for a few values of α: α = 0.3 (bound-

ary 1); α = 0.5 (boundary 2); α = 1 (boundary 3); α = 1.2 (bound-

ary 4); α = 1.4 (boundary 5); α = 1.6 (boundary 6)

For α = 1 the stability region S(α) is the asymptotic sta-

bility region of the natural order system with pure state delay

ẋ(t) = Ax(t − h) [20]. This region is shown in Fig. 3 as the

region with boundary denoted by number 3.

From (3) and the above consideration we have the follow-

ing theorem and remarks.

Theorem 1. The fractional system (1) with pure state delay

is stable if and only if all eigenvalues λi, i = 1, ..., n, of the

matrix A multiplied by hα (i.e. λ̃i = ũi + jṽi) lie in the open

region S(α) in the complex (ũi, ṽi)-plane with the boundary

(8) (or (9)) for ω ∈ [−ωb, ωb].

Recall that satisfaction of (13) for i = 1, ..., n, is the nec-

essary and sufficient condition for stability of the system (1)

without delay, that is of the system Dα
t x(t) = Ax(t)+Bu(t),

0 < α < 2 (here λ̃i = λi = ui + jvi is the i-th eigenvalue

of A).

Remark 1. Stability of the fractional system (1) without delay

is necessary for stability of this system with delay.

Remark 2. Asymptotic stability of the matrix A (all eigen-

values have negative real parts) is necessary for stability of

the system (1) for 1 < α < 2. For 0 < α < 1 eigenvalues

of A may have positive real parts. Moreover, the system for

0 < α < 1 may be stable when all eigenvalues of A are

complex conjugate with positive real parts.

Remark 3. The fractional system (1) is unstable if the matrix

A has at least one non-negative real eigenvalue. In particular,

this holds if detA = 0.

Remark 4. If the fractional system (1) is stable then re-

al eigenvalues of A are negative and greater than −[π(1 −
α/2)]α/hα.

The condition of Theorem 1 can be written in the analytic

form as follows.

Theorem 2. The fractional system (1) with pure state delay

is stable if and only if for all eigenvalues λi = ui + jvi,

i = 1, 2, ..., n, of the matrix A the following two conditions

hold

| argλi| > απ/2, (15)

hα|λi| < |ω0i|
α, (16)

where argλi ∈ (−π, π] denotes the main argument of the

eigenvalue λi and

ω0i = arg λi − sgn(vi) · απ/2. (17)

Proof. Since ϕi = argλi = argλih
α = arg λ̃i (see Fig. 4),

satisfaction of (15) for i = 1, 2, ..., n is necessary for the

stability of the fractional system (1).

Fig. 4. Plot for the proof of Theorem 2

From Fig. 4 it follows that the point λ̃i = ũi + jṽi =
hα|λi|e

jϕi lies in S(α) if and only if hα|λi| < |gi(ω0i)|,
where ω0i is defined by (17) and g(ω0i) = (jω0i)

αejω0i . Be-

cause |g(ω0i)| = |(jω0i)
αejω0i | = |ω0i|

α the condition (16)

must be satisfied. This completes the proof.

Remark 5. It is interesting to note that the form of the stability

criterion (15), (16) is quite similar to the stability criterion of

Ref. [9], in that it includes both the phase/argument condition

of Matignon [5] and, additionally, the modulus condition.

From Theorem 2 we have the following corollary.

Corollary 1. If the fractional system (1) with pure state de-

lay is stable for h = 0 then it is stable for all h ∈ [0, h0),
h0 = mini{hi}, where

hi = exp

(
ln(|ω0i|

α/|λi|)

α

)
, i = 1, 2, ..., n. (18)

Proof. From (16) it follows that hα
i = |ω0i|

α/|λi|. Computing

hi from this equality one obtains (18).

Remark 6. If λi = ui is real and negative then |λi| = |ui|
and |ω0i| = [π(1 − α/2)].

Remark 7. It is sufficient to check the stability conditions

given in Theorems 1 and 2 only for real and complex eigen-

values of A with positive imaginary parts. This follows from

the fact that complex eigenvalues of A are pair-wise conju-

gate and the stability region S(α) is symmetric with respect

to real axis.
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If α = 1 then the stability region S(α) has the form

shown in Fig. 3 (boundary 3). From (15) and (16) we ob-

tain, respectively, | argλi| > π/2, which is equivalent to

ui < 0, and h|λi| < |ω0i|. From (14) for vi ≥ 0 it fol-

lows that argλi = arctan(|vi|/|ui|) and by (17) |ω0i| =
| arctan(|vi|/|ui|) − π/2| = arctan(|ui|/|vi|).

Corollary 2. If α = 1 then the system (1) is asymptotical-

ly stable if and only if for all eigenvalues λi = ui + jvi

(i = 1, ..., n) of the matrix A the following conditions holds:

ui < 0 and h|λi| < arctan(|ui|/|vi|).

Corollary 3. If the system (1) with α = 1 is asymptotically

stable for h = 0, then this system is asymptotically stable for

all h ∈ [0, h0), h0 = mini{hi}, where

hi =
1

|λi|
arctan

|ui|

|vi|
, i = 1, 2, ..., n. (19)

The above results have been obtained in [20].

4. Illustrative example

Consider the fractional system (1) with h = 1 and the matri-

ces

A =




0 1 0
0 0 1
−1 −2 −2.3



, B =




0
0
1



. (20)

The matrix A has the following eigenvalues: λ1,2 =
−0.4629± j0.7165 and λ3 = −1.3741.

Eigenvalues of A (denoted by ‘o’) and the stability regions

S(α) for a few values of α are shown in Fig. 5. From this fig-

ure and Theorem 1 it follows that the system is stable for α =
0.4 and α = 0.8, and it is unstable for α = 0.3 and α = 0.9.

Moreover, from Fig. 3 we conclude that for α ∈ [0.4, 0.8]
the system is stable and it is unstable for α ∈ [0.9, 2).

Fig. 5. Eigenvalues of A (‘o’) and stability regions for a few val-

ues of α: α = 0.3 (boundary 1); α = 0.4 (boundary 2); α = 0.8
(boundary 3) and α = 0.9 (boundary 4)

If, for example, α = 0.8 then one has | arg λ1,2| = 2.1444
and | arg λ3| = π. This means that | argλi| > απ/2 and the

system with α = 0.8 is stable for h = 0.

From Corollary 1 one has h1,2 = 1.0828, h3 = 1.2670
and h0 = min{h1, h2, h3} = 1.0828. This means that if

α = 0.8 then the fractional system (1), (20) is stable if and

only if h ∈ [0, 1.0828).

Figure 6 shows step responses y(t) = x1(t) of the system

for α = 0.8 and a few values of delay. The plots confirm the

above result that the system is stable for h < h0 and unstable

for h > h0.

Fig. 6. Step responses for α = 0.8 and few values of delay: h = 0.7
(plot 1); h = 0.9 (plot 2); h = 1.1 (plot 3)

5. Concluding remarks

The stability problem for continuous-time linear fractional or-

der systems with state delay (1) has been considered. It has

been shown that the system is stable if and only if all eigen-

values of the state matrix multiplied by delay in power equal

to a fractional order lie in the stability region in the complex

plane (Theorem 1). The new simple analytic condition for the

stability are given in Theorem 2. Moreover, a new simple an-

alytic method for computation of values of delay for which

the system is stable, is derived in Corollary 1.
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