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Modeling and control of an unstable system using
probabilistic fuzzy inference system

N. SOZHAMADEVI and S. SATHIYAMOORTHY

A new type Fuzzy Inference System is proposed, a Probabilistic Fuzzy Inference system
which model and minimizes the effects of statistical uncertainties. The blend of two differ-
ent concepts, degree of truth and probability of truth in a unique framework leads to this new
concept. This combination is carried out both in Fuzzy sets and Fuzzy rules, which gives rise
to Probabilistic Fuzzy Sets and Probabilistic Fuzzy Rules. Introducing these probabilistic ele-
ments, a distinctive probabilistic fuzzy inference system is developed and this involves fuzzi-
fication, inference and output processing. This integrated approach accounts for all of the un-
certainty like rule uncertainties and measurement uncertainties present in the systems and has
led to the design which performs optimally after training. In this paper a Probabilistic Fuzzy
Inference System is applied for modeling and control of a highly nonlinear, unstable system
and also proved its effectiveness.

Key words: inverted pendulum and cart system, probabilistic fuzzy set, probabilistic fuzzy
relation, probabilistic fuzzy inference system, probabilistic fuzzy logic controller.

1. Introduction

Basically the methods used to design controllers for complex and highly nonlin-
ear systems fall into two categories. A nonlinear system is linearized and then applied
classical linear control laws in the first category, but the performance of the control sys-
tem might be deteriorated because of the assumptions made in the approximation of the
nonlinear system. The methods of second category implement directly nonlinear con-
trollers based on nonlinear systems, which preserve the nonlinear characteristics of the
system. But to design such a controller accurate mathematical models of the process are
required, which are very difficult to obtain because the real world systems are highly
complex with unknown dynamics and also the classical control methods could not per-
form well. Hence for modeling nonlinear functions Fuzzy Systems can be considered as
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a good tool. In fuzzy theory fuzzy modeling is a key issue because the linguistic If -Then
Fuzzy rules carry much information about the system behavior [25].

The Fuzzy Logic Control (FLC), most useful method to collect human knowledge
and proficiency, has been the accent for the study of various plants which are poorly
modeled or the model uncertainty in the dynamics is not known. Fuzzy controls have
achieved worldwide success in large commercial products and applications due to two
advantages: little dependence on the process model and adequate control performance
developed by using human control knowledge and experience [11]. In a complex and un-
certain described system a fuzzy model has excellent capability and specifically suitable
for modeling the nonlinear systems using a set of local linear models corresponding to
different operating points which are combined by a fuzzy inference mechanism which
can preserve the nonlinear characteristics [15, 16]. However, the nonlinearities exist-
ing in the dynamic system are not known in advance, then the performance is degraded
quickly to unacceptable levels. When the number of the fuzzy local models is greater,
then adaptive on line control provides an alternative approach that is global stability
analysis with a minimum modeling effort and has promising potential for the task of
tackling the presence of unknown parameters with better performance [18].

To control completely an inverted pendulum and cart system (IPC), two different
control processes of swinging up the pendulum and positioning the pendulum and cart
are considered. A hybrid fuzzy controller that consists of a fuzzy swing-up controller
and a fuzzy controller using the parallel distributed pole assignment scheme is presented
in [17]. Three dimensional FLC based on 3-D fuzzy set and the third dimension of the
spatial information had been developed for spatially distributed dynamic systems, which
controls the overall behavior of the space domain instead of accurately the variable of in-
terest at each sensing location like conventional FLC [21]. Different modeling methods
based on fuzzy clustering techniques for IPC are presented and compared in [14], but
they do not consider the modeling error due to measurement noises. A robust adaptive
control architecture in which two control rules are applied first to swing up the pendu-
lum from pendant position to an upward position by driving the cart back and forth and
then stabilized the inverted pendulum by applying the adaptive control law. This con-
trol architecture uses the fuzzy system to adaptively model the plant nonlinearities [4].
An integrative optimization approach for the design of robust quadratic-optimal parallel
distributed compensation controllers for Takagi-Sugeno (TS) fuzzy model based control
system involves both parametric uncertainties and approximation error by minimizing
directly the quadratic integral performance index. This integrative method complemen-
tarily fuses the orthogonal function approach, the hybrid Taguchi-genetic algorithm and
the linear matrix inequalities technique for ensuring that the closed loop TS-fuzzy model
based control systems with both elemental parametric uncertainties and norm bounded
approximation error can be stabilized [19].

In all the above cases of conventional Fuzzy Inference Systems (FISs) are employed.
When real-world problems are considered, uncertainty cannot be ignored. At the exper-
imental level, uncertainty is a unified companion of any measurement, resulting from a
combination of resolution limits of measuring devices and unavoidable measurement er-
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rors. In many real world systems the uncertainty is a result of any information deficiency,
which means the information may be contradictory, not completely reliable, fragmentary,
deficient, incomplete, or vague in some other way. These various deficiencies might re-
sult in various types of uncertainty. Out of these, only two types of uncertainties are
accepted: linguistic and random. The linguistic uncertainties are associated with words
whereas the random uncertainties are associated with unpredictability. Fuzzy logic is
capable to handle only linguistic uncertainties. The FIS, as known well, comprises of
rules. The knowledge which is utilized to create rules is uncertain. These uncertainty re-
sults in rules whose consequents and/or antecedents are uncertain, which transforms into
uncertain membership functions (MFs) for consequents and/or antecedents. The conven-
tional FIS, whose MFs are conventional fuzzy sets, is not able to model and minimize
the effects of rule uncertainties [24].

Therefore to overcome the shortcomings of conventional FIS, a new concept of Prob-
abilistic Fuzzy Inference System (PFIS) is introduced by integrating fuzzy theory and
probability theory, which has been discussed in [1-3,5,6,9,10], but these works present
only the relationship of randomness and fuzziness, and are not applied to process con-
trol engineering applications. In this PFIS, the MFs of the antecedent and consequent
are Probabilistic Fuzzy Sets (PFS), whose membership grades for each element of this
set is a fuzzy number in (0,1), hence useful for incorporating uncertainties [13]. A prob-
ability density function (PDF) in probability theory, personifies total information about
random uncertainties. In most real world applications, it is difficult to define PDF since
an infinite number of moments are required to characterize it completely. When the PDF
is Gaussian, as known well, its first two moments, i.e., mean and variance are sufficient
to completely specify it. But infinite number of moments is required for most PDFs,
which is impossible in practice. Instead, one can compute as many moments as neces-
sary to extract as much information from the data for establishing probabilistic modeling
of random uncertainty [8]. Using just the first order moment is not useful since random
uncertainty requires knowledge of dispersion about the mean, which is indicated by the
variance. The output of conventional FISs may be viewed as similar to the mean of a
PDF. Hence FIS requires some dispersion measure to capture more information about
random uncertainties.

A PFIS provides this dispersion measure and appears to be very essential to design
systems that incorporate linguistic and/or numerical uncertainties, which transform into
rule uncertainties, like variance is to the mean. A PFS was also introduced by L.A. Zadeh
in 1975 as an extended version of the conventional fuzzy set (henceforth called as first
order fuzzy set), whose grades of membership themselves fuzzy, so it could be called a
"fuzzy-fuzzy set" (second order fuzzy set). It provides measures of dispersion, which can
model and minimize the effects of random uncertainties. This is very useful in situations
where it is difficult to define the shape of MFs or some of its parameters and hence it
helps to incorporate uncertainties [12].

The systematic framework for the proposed Probabilistic Fuzzy Inference System is
presented in this paper for process control applications. Like FIS, the PFIS also includes
fuzzifier, rule base, fuzzy inference engine and defuzzification. The fuzzifier maps the
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crisp input into a fuzzy set, which is a Probabilistic Fuzzy Set (PFS). A Probabilistic
Fuzzy Relation, which is a fuzzy relation of higher order, has been considered as one
way of emerging fuzziness of a relation, which means increased capacity to handle in-
definite information in a logical truthful manner [12, 23]. The PFIS is characterized by
the same IF–THEN rules but its antecedents and/or consequents are PFSs, hence it is
able to capture information with random uncertainties. Defuzzification process of PFIS
is difficult since MFs of PFS is obtained by probabilistic method, but with the proposed
unique defuzzification method, the PFIS can be viewed as a random version of FIS for
the sake of understanding and implementation.

The organization of the paper is as follows. Section 2 discusses the design concepts
of the Probabilistic Fuzzy Inference System. In Section 3 the mathematical model of an
inverted pendulum and cart system, a highly nonlinear and an unstable system, which is
considered for simulation study is presented. Section 4 presents the simulation results of
the application of the Probabilistic Fuzzy Inference System for modeling and balancing
control of an IPC system. In section 5 the conclusions drawn from the simulation studies
are presented.

2. Design of Probabilistic Fuzzy Inference System

A PFIS like conventional FIS has fuzzification, fuzzy rules, inference engine and
defuzzification as presented in Fig. 1. But here fuzzification and defuzzification are im-
plemented on PFSs.

Figure 1: Probabilistic Fuzzy Inference System – structure

2.1. Fuzzification in PFIS

A conventional fuzzy set is a two dimensional MF, in which degree of membership
is a crisp value. But PFS is a three dimensional MF, in which degree of membership is a
random variable and should be represented with its continuous or discrete PDF. A PFS



MODELING AND CONTROL OF AN UNSTABLE SYSTEM USING
PROBABILISTIC FUZZY INFERENCE SYSTEM 381

is denoted as S̃ and can be expressed mathematically as

S̃ = {((x,u),µS̃(x,u)) ∀x ∈ X ,∀u ∈ Ix ⊆ [0,1]} (1)

where: x – primary variable (x ∈ X), Ix – primary membership (each value of x has a
band of MF values), u – secondary variable (u ∈ Ix ⊆ [0,1]), µS̃(x,u) – secondary mem-
bership, 0 ¬ µS̃(x,u) ¬ 1 which is presented in Fig. 2 with primary and secondary MFs
individually.

The domain of secondary MF is referred as primary MF of x. Hence S̃ is also ex-
pressed as

S̃ =
∫

x∈X

∫
u∈Ix

µS̃(x,u)
(x,u)

, Ix ⊆ [0,1] (2)

where
∫∫

represents union over all admissible x and u. For discrete universes of dis-
course,

∫
is replaced by ∑.

Gaussian primary membership function with uncertain mean and fixed standard de-
viation is considered for the design of PFIS, which is presented in Fig. 3 and takes on
values as

µr
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where mr
p is the mean of pth antecedent probabilistic fuzzy set of rth rule and mr

p ∈
[mr

p1
,mr

p2
], σr

p is the standard deviation of pth antecedent probabilistic fuzzy set of rth

rule, p = 1,2, . . . ,k, k is a number of antecedents; r = 1,2, . . . ,L and L is a number of
rules.

Uncertainty in the primary membership grades of a Probabilistic Fuzzy MF con-
sists of a bounded region referred as the foot print of uncertainty (FOU) of Probabilistic
Fuzzy MF which is the union of all primary membership grades. The FOU may also be
described in terms of upper membership function (UMF) and lower membership func-
tion (LMF). They are the two conventional MFs that bound the FOU. The UMF is a
subset that has the maximum membership grade of FOU and the LMF is a subset has the
minimum membership grade of FOU. In Fig. 3 the UMF is represented by the thick solid
line and the LMF by the thick dashed line. The footprint of uncertainty is denoted by the
shaded region between them. An over bar and under bar are used to represent UMF
and LMF. For example, the LMF and UMF of a PFS µB̃r

p
(xp) are µ

B̃r
p
(xp) and µB̃r

p
(xp)

respectively, so that

µB̃r
p
(xp) =

∫
b∈
[

µB̃rp
(xp),µB̃rp
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]
1
br . (4)
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Figure 2: Probabilistic Fuzzy Set (Primary and Secondary MFs shown individually)

Figure 3: PFS - Primary MFs are Gaussian MFs with Uncertain Mean (mr
p1
, mr

p2
)

2.2. Inference in PFIS

The inference engine in PFIS maps the input fuzzy set to output fuzzy set similar to
conventional FIS. But the fuzzy sets are PFSs. The inference is based on the set theo-
retic operations union, intersection and complement on PFSs developed using Zadeh’s
extension principle [25]. Consider a PFIS having k inputs, x1 ∈ X1, x2 ∈ X2, . . . , xk ∈ Xk
and one output y ∈ Y and has L number of rules. The rth rule is given by

Rr : IF x1 is S̃r
1 and x2 is S̃r

2 and . . . and xk is S̃r
k, THEN y is C̃r (5)

where S̃r
p denotes antecedents and C̃r is the consequent of rth rule.

The equation (5) gives a PFR between the input space X1 × X2 × ·· · × Xk and the
output space Y of FIS. The MF of this relation is represented as µS̃r

1 × ··· × S̃r
k→C̃r(x,y),

where S̃r
1 × ·· · × S̃r

k represents the Cartesian product of S̃r
1, S̃

r
2, . . . , S̃

r
k and x =



MODELING AND CONTROL OF AN UNSTABLE SYSTEM USING
PROBABILISTIC FUZZY INFERENCE SYSTEM 383

{x1,x2, . . . ,xk}. The extended sup-star composition [12] is used to find the composition
of rule Rr and the fuzzy set X̃′ to which x′ belongs when an input x′ is applied,

µX̃′◦S̃r
1 × ··· × S̃r

k→C̃r(y) = ⊔x∈X̃′

[
µX̃′(x)⊓µS̃r

1 × ··· × S̃r
k→C̃r(x,y)

]
(6)

where X̃′
p (p = 1,2, . . . ,k) are the fuzzy sets describing the inputs.

In singleton fuzzification, the fuzzy set X̃′ has a membership grade 1 at x = x′ and
has zero membership grades for all other inputs; hence (6) reduces to

µX̃′◦S̃r
1 × ··· × S̃r

k→C̃r(y) = µS̃r
1 × ··· × S̃r

k→C̃r(x′,y). (7)

We represent X̃′ ◦ S̃r
1 × ·· · × S̃r

k → C̃r as D̃r, the output set corresponding to the rth

rule and calculated using the meet operation with product or minimum t-norm as given
by

µDr(y) = µS̃r
1 × ··· × S̃r

k
(x′)⊓µC̃r(y). (8)

Then the MF for a Cartesian product of sets is found out by computing the meet between
the MFs of individual sets and hence (8) is given by

µDr(y) = µS̃r
1
(x1)⊓µS̃r

2
(x2)⊓·· ·⊓µS̃r

k
(xk)⊓µCr(y) =

(9)
µCr(y)⊓

[
⊓k

j=1µS̃r
j
(x j)

]
.

In PFIS with singleton fuzzification and meet under minimum or product t-norm,
the result of the input and antecedent operations that are contained in the firing set,
⊓k

p=1µH̃r
p
(x′p) ≡ Hr(x′), is a conventional fuzzy set, that is Hr(x′) =

[
hr(x′), h̄r(x′)

]
≡[

hr, h̄r
]
, where hr, h̄r are the left most and right most points which are given by

hr = µ
S̃r

1
(x1)⋆ · · ·⋆µ

S̃r
k
(xk) and h̄r = µ̄S̃r

1
(x1)⋆ · · ·⋆ µ̄S̃r

k
(xk) (10)

where xp (p = 1,2, . . . ,k) represents the location of the singleton. Fig. 4 presents this
result of input and antecedent operations with singleton fuzzification for minimum and
product inference with the number of antecedent value for k = 2. The firing strength is
an conventional fuzzy set, [hr, h̄r] , where hr = hr

1 ⋆hr
2 and h̄r = h̄r

1 ⋆ h̄r
2.

2.3. Order reduction and defuzzification

Order-reduction is an "extended version" of defuzzification methods of FIS, which is
called so, since this operation takes the output probabilistic fuzzy sets (higher order) and
results in an conventional fuzzy set (lower order), which is called the "order-reduced set".
This set may then be defuzzified to obtain a single crisp number. The order reduced set
may be more important in many situations, since it transmits a measure of uncertainties
that have fluttered through the PFIS.
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Figure 4: Input and antecedent operations: (a) minimum inference, (b) product inference

The fired output consequent set corresponding to each rule is a PFS and for rth rule
which is given by

µD̃r(y) =
∫

dr∈[hr⋆µC̃r (y), h̄r⋆µ̄C̃r (y)]

1
dr (11)

where dr is the element of output consequent set µD̃r(y) corresponding to rth rule and
µ

C̃r(y), µ̄C̃r(y) are the lower and upper membership grades of µC̃r(y) respectively. All
such output sets are combined by the center of sets method of order reduction and rep-
resented by

Ycos
(
Y 1, . . . ,Y L,H1, . . . ,HL)= [yl,yr] =

∫
y1

. . .
∫
yL

∫
h1

. . .
∫
hL

1
∑L

j=1 h jy j

∑L
j=1 h j

(12)

where Y is the PFS determined by two end points yl and yr, j = 1,2, . . . ,L, L is the
number of rules, h j ∈ H j − [h j, h̄ j], y j ∈Y j = [y j

l ,y
j
r ] and Y j – centroid of the consequent

PFS. For any value of y ∈ Ycos, y is given by

y =
∑L

j=1 h jy j

∑L
j=1 h j

. (13)

The maximum value of y is yr and the minimum value of y is yl , they are given as

yr =
∑L

j=1 h j
ry j

r

∑L
j=1 h j

r
and yl =

∑L
j=1 h j

l y j
l

∑L
j=1 h j

l

. (14)
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The crisp output from PFIS is obtained by defuzzifying the order – reduced set, i.e.,
finding the centroid of the order – reduced set. The computation of centroid is equivalent
to the computation of a weighted average of the outputs of all conventional FISs embed-
ded in the PFIS, the centroid is the average of yr, and yl . Hence the defuzzified output of
a PFIS is

f (x) =
yl + yr

2
. (15)

The entire chain of computations is summarized as shown in Fig. 5. The firing in-
tervals, which are depend explicitly on the input x are computed for all rules. The com-
putations of the centroids are performed for each of the M consequent PFSs and are
then stored in memory. Then on order reduction the firing intervals and pre-computed
consequent centroids are combined to perform the actual calculations.

Figure 5: Order-reduction and defuzzification in PFIS

2.4. Systematic design procedure for PFIS

For the given N samples of input - output training pair (x,d), x ∈ Rk the vector input
and, d ∈ R the scalar output, we are interested to design a PFIS with output (15) to
minimize the error function as e = 1

2 [ f (x)−d]2.

i. Set the initial values for all the antecedent and consequent MFs parameters, the
epoch training counter c = 0 and the training data sample counter t = 1.
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ii. Apply k×1 input x(t) to the PFIS and compute the total firing degree for each rule,
i.e., compute h̄p and hp for p = 1,2, . . . ,k, by using (10), where k is the number of
inputs.

iii. Compute yl and yr as given by (14).

iv. Compute f (x(t)) = (yl(x(t))+ yr(x(t)))/2, the defuzzified output.

v. Test each component of x(t) to find the active branches in µ
H̃r

q
(xq) and µ̄H̃r

q
(xq),

(q = 1,2, . . . ,k), and represent the active branches as explicit functions of their
associated parameters and adjust the parameters of the active branches of the an-
tecedent’s MFs and the parameters associated with the consequent using a steepest
descent algorithm or any other optimization method for the error function.

vi. Set t = t +1. If t = N +1, go to step vii; otherwise, go to step ii.

vii. Set c = c+1. If c = number of epochs (say E), stop; otherwise set t = 1 and repeat
from step ii.

3. Mathematical model of an inverted pendulum and cart system

The highly nonlinear and unstable system chosen for the simulation study is the
inverted pendulum and cart system which is given in Fig. 6. In this system, the inverted
pendulum is mounted on a moving cart; it is a highly nonlinear and open loop unstable
system without controller which means the pendulum will just fall over if the cart is
not displaced to balance it. The task of the control system is to stabilize the inverted
pendulum by driving the cart to which the pendulum is attached, by the force applied
to it. Here the pendulum is forced to move in the vertical plane and the force F (in
Newtons), which is applied to move the cart horizontally is the control input and the
angular position of the pendulum, T heta (in radians) and the horizontal position of the
cart, x (in meters) are the outputs. The physical parameters of the considered IPC system
are presented in Tab. 1.

The equations governing the IPC system that is the mathematical model is as follows
[14, 18]

(M+m)ẍ+bẋ+mlΘ̈cosΘ−mlΘ̇2 sinΘ = F (16)(
I +ml2)Θ̈+mgl sinΘ =−mlẍcosΘ. (17)

4. Simulation studies

In this section the effectiveness of the proposed PFIS is verified by simulating two
cases. A Probabilistic Fuzzy Inference System has been designed for modeling and the
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Figure 6: Inverted pendulum and cart system

Table 11: The physical parameters of an IPC system

Normal
S.No. Process parameters Nomenclature operating

condition

1 Mass of the cart M 0.5 Kg

2 Mass of the pendulum m 0.2 Kg

3 Coefficient of friction for cart b 0.1 N/m/sec

4 Length to pendulum center of mass l 0.3 m

5 Mass moment of inertia of the pendulum I 0.006 Kgm2

control of an inverted pendulum and cart system and its performance is compared with
the conventional Fuzzy Inference Systems.

4.1. Modeling of an IPC system using PFIS

An IPC system is simulated using the nonlinear first principle model presented
in section 3 in all simulation runs. A collection of N input-output data training pairs
(x(1) y(1)), (x(2) y(2)), . . . , (x(N) y(N)), where x is the vector input and y is the scalar out-
put. Simulation is based on 500 samples, the first 250 data samples are for training and
the remaining is for testing. Four antecedents are used for estimating the model of an IPC
system; the force applied to the cart F(k), F(k−1), cart position x(k−1) and pendulum
angle Θ(k−1). Three fuzzy sets are used for each antecedent, so the number of rules is
34 = 81.

In order to prove the performance of the proposed probabilistic fuzzy modeling, first
conventional fuzzy model is obtained [7, 20, and 22]. For the design of a fuzzy model
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of an IPC system Gaussian MFs, product implication and t-norm, and weighted average
are assumed.

To design the probabilistic fuzzy modeling for our process, Gaussian primary MFs
with constant standard deviation and uncertain mean for the antecedents, product im-
plication and t-norm, and centroid defuzzification are assumed. The initial locations of
the antecedents MFs were based on the mean mt and standard deviation σt of the first
250 samples. The Root Mean Square Error (RMSE) for both models (FIS and PFIS) is
computed as defined by

RMSE =

(
1
N

N

∑
k=1

(y(k)− ŷ(k))2

) 1
2

(18)

where N = 250 is the number of samples, y(k) is the desired output and ŷ(k) is the
estimated output of a modeled system. Data is corrupted by random noise (Gaussian
noise) with various SNR and in each case RMSE is calculated which is presented in
Tab. 2. The simulation comparison of a FIS and PFIS for the system is shown in Fig. 7.
From the simulation results it can be concluded that the RMSE values of PFIS have been
found to be considerably less than that of FIS.

Figure 7: Comparison of approximation error e = y− ŷ

4.2. Design of Probabilistic Fuzzy Logic Controller for an IPC system

The objective of the control system is to keep the pendulum in the upright position
by means of force, F for any initial position of the pendulum without concern to the
position and velocity of the cart. At the stable equilibrium point of the system, any small
perturbation to the pendulum position from its vertical equilibrium position will cause
control to return the pendulum to the equilibrium position. To prove the performance of
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Table 12: TRMSE values of FIS and PFIS for noise with various SNR values

Noise with various Signal to RMSE
noise ratio (SNR) dB FIS PFIS

-8.0000 0.9412 0.6828

2.3975 0.2042 0.1660

3.4888 0.2152 0.1532

3.8000 0.2213 0.1618

4.9501 0.1919 0.1435

7.1686 0.1735 0.1182

11.9399 0.1311 0.0963

the proposed Probabilistic Fuzzy Logic Controller over other controllers, PID and Fuzzy
Logic Controllers are designed for an IPC system. The Internal Model Control (IMC)
based PID tuning procedure is used for the design of PID controller. The parameters of
PID controller are the controller gain Kc, integral time Ti and derivative time Td and they
have been determined using the internal model control (IMC) tuning rules. The con-
ventional PI Fuzzy Logic Controller is designed using Gaussian membership functions
for both, antecedents and the consequents. Seven MFs are used for each of the two in-
puts, error (e) and change in error (∆e), and also for the output, hence forty nine rules.
The fuzzy inference system (FIS) has been used with minimum implication, maximum
aggregation and centroid defuzzification [11, 17 and 21].

The Probabilistic Fuzzy Logic Controller is similar to the conventional Fuzzy Logic
Controller; the major structural difference is that the defuzzifier block of conventional
fuzzy controller is actually replaced by the output processing block, which consists of
an order-reduction followed by defuzzification. In the simulation, the inverse dynamic
controller of an IPC system is modeled by a PFIS with the th fuzzy rule as follows

Rule r : IF x1 is S̃r
1 and x2 is S̃r

2 and . . . and xk is S̃r
k, THEN y is C̃r.

Gaussian primary membership functions with constant standard deviation and un-
certain mean for antecedent and consequent MFs, minimum implication, maximum ag-
gregation and centroid defuzzification are assumed. Seven MFs are chosen for each of
the two antecedents, error (e) and change in error (∆e) and also for the controller output,
hence forty nine rules.

Fine tuning of the parameters of PID controller is more complicated for the unstable
process. Tuning of the FLC parameters is simple but it is not cable of dealing uncertainty
effectively. In spite of complications in implementation of PFLC it produces better cor-
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rective action for random uncertainties. The tool used for simulation of both modeling
and controller is Matlab (7.14.0.739) R2012a.

4.2.1. Servo performance

The pendulum in an IPC is bumped with an impulse force, F . The dynamic responses
of the pendulum angle for a balancing problem of an inverted pendulum with (i) PID con-
troller (ii) conventional Fuzzy Logic Controller (FLC) and (iii) proposed Probabilistic
Fuzzy Logic Controller (PFLC) have shown in Fig. 8(a) and 8(c). It can be inferred from
the response that all the controllers are able to stabilize the pendulum. But the PFLC
balances the pendulum a little bit faster with small overshoot than the other controllers.
The corresponding variations in the controller outputs are presented in Fig. 8(b) and Fig.
8(d). The ISE, IAE and ITAE values of PID, FLC and PFLC are reported in Tab. 3, which
are defined mathematically as follows

Integral of the square error, ISE =
∞
∫
0

e2(t)dt (19)

Integral of the absolute value of the error, IAE =
∞
∫
0
|e(t)|dt (20)

Integral of time-weighted absolute error, ITAE =
∞
∫
0

t|e(t)|dt (21)

where e(t) is the difference between the set point and the process variable, which repre-
sents the deviation of the response from the desired set point.

It can be inferred that from Tab. 3 that the ISE, IAE and ITAE values of PFLC
are found to be considerably less than PID and FLC. However the performance of the
proposed controller is found to be better than conventional PID and FLC, as there is less
overshoot and balances the pendulum a little bit faster

Table 13: ISE, IAE and ITAE values of PID, FLC and PFLC for set point tracking

Controllers ISE IAE ITAE

PID 7.999e-11 6.718e-6 2.756e-6

FLC 2.915e-13 7.483e-7 8.115e-7

PFLC 9.225e-14 4.269e-7 4.177e-7

4.2.2. Servo-regulatory performance

The disturbance rejection capability that is the robustness of the proposed controller
has been demonstrated by simulation studies and also compared with PID and FLC. A
step change of small magnitude is given in the force applied to the cart and this simu-
lation results are shown in Fig. 9(a) and Fig. 9(c). The corresponding controller outputs
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Figure 8: Dynamic Responses of the Pendulum angle with: (a) PID, FLC and PFLC
– process output, (b) PID, FLC and PFLC – controllers output, (c) FLC and PFLC –
process output, (d) FLC and PFLC – controllers output

are presented in Fig. 9(b) and Fig. 9(d). The ISE, IAE and ITAE values of PID, FLC and
PFLC are reported in Tab. 4.

The following observations can be made from this part of the simulation study. From
Fig. 9(a) and Fig. 9(c) it is concluded that the PFLC outperforms than PID and FLC by
all means and similarly it is driving the cart quickly to the desired position in order to
balance a pendulum. From Fig. 9(c) it is proved that the proposed controller is able to
quickly discard the disturbance and balance the pendulum. The values of ISE, IAE and
ITAE for the proposed controller are found to be considerably less from the Tab. 4.

4.2.3. Performance of FLC and PFLC in the presence of noise measurement

Gaussian noise has been added to the true value of the process variable, i.e. pendulum
angle. The performances of the FLC and proposed PFLC controllers in the presence
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Figure 9: Regulatory responses of an IPC System with: (a) PID, FLC and PFLC – process
output, (b) PID, FLC and PFLC – controllers output, (c) FLC and PFLC – process output,
(d) FLC and PFLC – controllers output

of measurement noise of various levels and their corresponding controller outputs are
shown in the Fig. 10, Fig. 11 and Fig. 12. The mean and the standard deviation of the
true value of the measured variable (pendulum angle) for noise with various values of
the standard deviations are reported in Tab. 5.

The following observations can be made from this part of the simulation study. From
Fig. 10(a) it seems that the FLC performs satisfactorily if the noise level is small in mag-
nitude. From Fig. 11(a) it is proved that the PFLC outperforms irrespective of magnitude
of noise level. From Fig. 12(a) it is proved that the PFLC produces robust control action
than FLC in the presence of measurement noise. The standard deviation of the controlled
variable has been found to be very less in the case of PFLC than FLC from Tab. 5.
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Table 14: ISE, IAE and ITAE values of PID, FLC and PFLC in the presence of load
change

Controllers ISE IAE ITAE

PID 2.052e-10 1.156e-5 9.345e-6

FLC 7.500e-13 1.315e-6 2.004e-6

PFLC 2.725e-13 7.904e-7 1.121e-6

Figure 10: Performance of FLC in the presence of measurement noise of various levels:
(a) process output, (b) controllers output

Figure 11: Performance of PFLC in the presence of measurement noise of various levels:
(a) process output, (b) controllers output
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Figure 12: Performance of FLC and PFLC in the Presence of Measurement Noise: (a)
process output, (b) controllers output

Table 15: Mean and std of the true value of the process variable (pendulum angle) for
various values of std of noise signal

Standard Deviation FLC PFLC
(std) of noise signal Mean std Mean std

1.2e-15 -8.4903e-8 1.4769e-7 -5.7312e-8 1.1842e-7

1.2e-17 -7.2948e-8 1.4848e-7 -5.6131e-8 1.1838e-7

5. Conclusions

In this paper to handle random uncertainties in the modeling and control problems, a
Probabilistic Fuzzy Inference system is introduced. Also straightforward procedure for
designing PFIS is provided and has been applied for modeling and control of an IPC sys-
tem. From the widespread simulation studies, it can be concluded that the performance
of the proposed model is better than the conventional fuzzy model. Similarly the pro-
posed controller has successfully driven the cart of an IPC to the desired position as well
as stabilizing the pole of the pendulum in the upright position with minimum ISE, IAE
and ITAE and also has good disturbance rejection capability and robustness properties.
The performance of the proposed controller has been compared with conventional PID
and FLC, its performance is proven to be better than the others by all means. It has also
been proved that the proposed controller captures the stochastic uncertainties effectively
and outperforms particularly in the presence of measurement noises. It is trusted that the
PFIS will be capable for many engineering applications like pattern recognition, deci-
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sion making, system identification, robust control where stochastic uncertainties could
be expected.
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