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Energy-optimal current distribution in a complex linear electrical

network with pulse or periodic voltage and current signals.

Optimal control
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Abstract. The article presents that in the circuits of electrical signals belonging to the L1-impulses space or periodic signals space, real
distribution of electrical currents occurs which does not meet the principle of minimum energy losses. The paper presents a solution of
this problem by using the control system in the form of current-dependent voltage sources entering it into a meshes set of a complex RLC
network. It has been shown that the control is energy-neutral.
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1. Introduction

The issues relating to the quality of electrical energy distrib-
ution and minimization of energy losses usually refer to min-
imization of some energy indicators, such as reactive power,
or to obtain an optimal, on account of energy, currents distri-
bution.

In the DC circuits there is the minimum energy princi-
ple, according to which the currents distribution in a complex
network is such that the total energy loss is minimal [1, 2].
However, this rule usually no longer works in the sinusoidal
current circuits. [3]

On the other hand, in non-sinusoidal signals domain, the
term “reactive power” makes no sense, which means that this
term should not be used during testing the quality of elec-
trical energy distribution in the network [4, 5]. However, the
compensation problems aimed at resetting the indicator of re-
active power can be solved as optimization tasks consisting in
minimizing energy losses in the network or as related tasks of
minimizing the RMS value of currents [6, 7]. This publication
comes out to meet this issue.

The article shows that in the circuits with the signals be-
longing to the linear L1-impulses space, there actually occur-
ring current distribution does not satisfy the principle of min-
imum energy losses. To make it so, it is necessary to use the
control system. It was considered a complex network powered
multicurrent and with a multidimensional current-voltage con-
trol. It has been shown that the system of controlled sources
is energy neutral. Thus, the process of minimal energy con-
trolling is energy neutral.

In Fig.1. the RLC network with power given as a vector
of current signals i0 is shown. Distribution of mesh currents
within the network is determined by the vector of current sig-
nals i. The network is characterized by the so-called “internal
operators matrix” Z(s) (s = d/dt), and the matrix so-called

“contact operators” Z0(s). The equations of network operator
assume the form:

Zi − Z0i0 = 0,

−ZT

0
i + Z00i0 = u0

(1)

(0 – zero vector (or zero operator), T – a sign of transposition)

Fig. 1. The complex network with multicurrent power; i – internal
mesh currents vector; i0 external current vector

All impedance matrices have a distribution of: Hermitian
R and skew-Hermitian X parts:

Z(s) = R(s) + X(s) (2)

i.e. such that

R(−s) = R(s); X(−s) = −X(s). (3)
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In Fig. 2 the structure of system of equations (1) is illus-
trated. In this figure the sizes of the matrix and vectors are
shown.

Fig. 2. Scheme the system of Eqs. (1); 1 – internal operators ma-
trix, 2 – contact operators matrix, 3 – external operators matrix, 0 –

vector (or operator) zero

The signals i(t) – the coordinates of the current vector, be-
long to the L1 signal space, so-called the L1-impulses space:

L1 = {x(t) :

∞∫

−∞

|x(t)|dt < ∞}

or to generated by it the T-periodic signals space PT [8, 9]:

PT = {x̃(t) : x̃(t) =

∞∑

p=−∞

x(t + pT ); x(t) ∈ L1}.

In these spaces the inner product is defined, in L1:

(u, i) =

∞∫

−∞

u(t)i(t)dt

and in PT

(u, i) =

T∫

o

u(t)i(t)dt.

All operators are convolutional type, i.e. in a time represen-
tation they have the form

Zi(t) =

+∞∫

−∞

z(t − t′)i(t′)dt′ in L1

or

Zi(t) =

T∫

O

z(tΘt′)i(t)dt′ in PT

Θ – operation of subtraction modulo T.

In the notation using the Fourier transform:

ZI(s) = Z(s)I(s).

The impedance operator Z is decomposed into two compo-
nents R and X [10, 11]:

Z =
1

2
(Z + Z∗) +

1

2
(Z − Z∗) = R + X,

i.e., operator

R =
1

2
(Z + Z∗),

which is the Hermitian operator (self-adjoined), ie: R∗ = R,
and the operator

X =
1

2
(Z − Z∗),

which is skew-Hermitian, ie: X∗ = −X .
Operator Z∗ is an adjoined operator relative to Z , i.e. such

that for any signals x, y occurs (Zx, y) = (x, Z∗y).
The R operator represents the active component of the

impedance operator Z and the operator X is the passive com-
ponent. This means that the following conditions for quadratic
forms are fulfilled:

(Zi, i) = (Ri, i); (Xi, i) = 0

for any signal i.
It can be shown that the functions Z(t) and Z(s) deter-

mined by the convolution operators meet the conditions [12]:

Z∗(t) = Z(−t); Z∗(s) = Z(−s).

2. The principle of minimum energy losses

in the electrical network at L
1 and PT spaces.

Optimal control

The current functional

f(i) = [iT , iT0 ]

[
R −R0

−RT R00

][
i

i0

]
, (4)

has a value that is equal to the energy losses in the elec-
trical network. Equation (4) creates an operator-matrix inner
product, ie. if

A = [Apq]; X = [xq], Y = [yq],

the bilinear form takes a form

xTAy =
∑

p,q

(xp, Apqyq)

=
∑ ∑

p,q

∫
xp(t)

[∫
Apq(t − t′)yq(t

′)dt′
]

dt

=
∑ ∑

p,q

∫∫
Apq(t − t′)xp(t)yq(t

′)dtdt′.

(5)

Integrals in the formula (5) are taken in the interval (−∞,
+∞) or in [0,T], depending on which space L1 or PT is
used. Depending on this, the operators are linear or cyclic
convolutions.
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The principle of minimum requires the functional (4),
which value is equal to the total energy losses in the net-
work, to reach a minimum. To find this minimum, variation
of a functional is required:

df (i) = f (i + di) − f (i)

=
[
diT ,0T

]
[

R −R0

−RT
0 R00

][
i

i0

]

+
[
iT , iT0

]
[

R −R0

−RT
0 R00

] [
di

0

]

+
[
diT ,0T

]
[

R −R0

−RT
0 R00

][
di

0

]
,

where 0 – vector-zero signal, R – the Hermitian part of the
Z operator matrices.

After other transformations variation takes the following
form:

df (i) = diTRi − diTR0i0

+iTRdi − iT0 RT
0 di + diTRdi

but occurs:
xT Ry = yT Rx

because
xT Ry =

(
xT Ry

)T
= yT RTx

but
RT = R

thus:
df (i) = 2diTRi − 2diTR0i0 + diTRdi

= 2diT (Ri− R0i0) + diTRdi.
(6)

For the energy reasons the last component of the expression
(6) is positively determined quadratic form (this is the ener-
gy loss within the network). Thus, the condition of minimum
energy functional (4), i.e.

∧
di

df (i) > 0

takes the form:
Ri− R0i0 = 0

or the system of operator equations form

Ri = R0i0. (7)

The system of Eq. (7) must be reconciled with the system of
Eq. (1):

Zi = Z0i0 (8)

the solution of which is the real distribution of mesh currents
inside the network. The systems of Eqs. (7) and (8) have the
same structure, but the system (7) is Hermitian type, part of,
the system of Eq. (8).

The solution of the system of Eq. (7) is energy optimal
distribution of mesh currents minimizing energy losses within
the network:

iopt = R−1R0i0 (9)

called the optimal distribution. Whereas the solution system
of Eq. (8):

i = Z−1Z0i0 (10)

gives the actual distribution of mesh currents in the network
called “current divider” distribution.

For DC currents the optimal distribution matches the dis-
tribution of the current divider, but it is not only in this case.
However, these distributions do not match in general.

This means that the optimal distribution is achieved by
using a current-voltage control system:

est = Zi
opt − Z0i0

= Ri
opt − R0i0 + Xi

opt − X0i0

= (XR−1R0 − X0)i0.

(11)

Equation (11) gives the voltage signal sources which must
be plugged into internal network meshes to induce energy-
optimal current distribution. That formula is written in the
form

est = Xsti0, (12)

where
Xst = XR−1R0 − X0. (13)

Is the skew-Hermitian, matrix control operator.

3. Deviation operator

The optimal distribution of current (9) and distribution of the
current divider (10) generally do not match. This is because
of the operator

∆ = R−1R0 − Z−1Z0 (14)

called then deviation operator. It is related to the control op-
erator as follows:

∆ = Z−1(ZR−1R0 − Z0) = Z−1(XR−1R0 − X0),

where, (see. Eq. (13)):

∆ = Z−1Xst. (15)

From formulas (12), (13) and (15) arises the equivalence of
the following conditions:

∆ = 0 XR−1R0 = X0

m ⇔ or

Xst = 0 RX−1X0 = R0

(16)

Then current distributions: optimum and current divider over-
lap without control. Such a network is called naturally energy-

optimal. It is, of course, the DC network, where the operators
Z and R overlap, but it is also an infinite number of networks
which meet the conditions of equivalence (16).

Example 1. For the network of branches RLC (Fig. 3), oper-
ators type Z have the form:

Z(s) = r + sL + s−1Σ = r + X(s),

Z0(s) = r0 + sL0 + s−1Σ0 = r0 + X0(s),

where r, r0 – resistance matrices, L, L0 – inductance matri-
ces, Σ, Σ0 – elastance matrices (the inverse of the capacity).
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Fig. 3. Structural construction of RLC branch

Conditions (16) of naturally energy-optimal networks then
take the following form:

(sL + s−1Σ)r−1r0 = sL0 + s−1Σ0

for each s where

r−1r0 = L−1L0 = Σ−1Σ0.

Example 2. For the distribution of current signal 01 into two
parallel branches 1, 2 (Fig. 4), determine the current-voltage

optimal control operator Xsti01 .

Fig. 4. Energy-optimal distribution of the current signal 01 into two
parallel branches 1, 2; below there is the structure of Eqs. (8) and (7)

It is obtained for branches 1, 2 having the structure RL:

Xst(s) = s(Lr−1r0 − L0)

= s

(
L1 + L2

r1 + r2

r2 − L2

)
= s

L1r2 − L2r1

r1 + r2

or for branches 1, 2 RC type:

Xst(s) = s−1(Σr−1r0 − Σ0)

= s−1

(
Σ1 + Σ2

r1 + r2

r2 − Σ2

)
= s−1 Σ1r2 − Σ2r1

r1 + r2

= s−1 r2C2 − r1C1

C1C2(r1 + r2)
.

These are appropriately: the differential operators (for RL type
of branches) and the integral operators (for RC type of branch-
es).

Example 3. Determine the conditions (16) of naturally
energy-optimal networks in the case of the distribution of

current signal 01 into two parallel branches (1-2 circuit) and
three parallel branches (1-2-3 circuit). Suitable circuits are
shown in Fig. 5.

Fig. 5. Energy-optimal distribution of the current 01 for two and
three parallel branches

Structures “Z, R” of operator Eqs. (7) and (8) are as fol-
lows:
(1-2):

(1-2-3):

Appropriate conditions (16) for the network (1-2) and
(1-2-3) take the form of matrix equations:
(1-2):

(1-2-3):
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From equation (1-2) it is obtained:

L1 + L2

r1 + r2

r2 = L2, or
L1

r1

=
L2

r2

.

While the condition (1-2-3) turns into:

where δ = r1r2 + r1r3 + r2r3

thus:
L1

r1

=
L2

r2

=
L3

r3

and after the transformation RL→RC:

L → Σ → C−1 :

r1C1 = r2C2 = r3C3

Example 4. Energy-optimal distribution of the current signals
01, 02 in the circuit of the ladder structure (Fig. 6).

Fig. 6. Energy-optimal distribution of the currents 01, 02 in the lad-
der circuit

Structures “Z, R” of operator equations: current divider
(8) and the optimal one (7) have the following form:

For the branch structure of RLC type:

optimal control operators (11)–(13) have the form:

Xst(s) = s(Lr−1r0 − L0)

or Xst(s) = s−1(Σr−1r0 − Σ0),
or Xst(s) = s(Lr−1r0 − L0) + s−1(Σr−1r0 − Σ0).

Whereas, the condition (16), which the naturally energy-
optimal networks must meet, takes the form of the following
matrix structure:

Figure 6 shows also optimal control implemented using
voltage sources controlled by the currents 01, 02 distributed
in the meshes of the ladder circuit.

4. Summary

The study showed that in the complex RLC network, besides
the currents flows arising from the normal laws of Kirchhoff-
called current divider, through appropriate controls may also
be received other distributions of current, resulting from cer-
tain optimization criteria.

This paper examined the distribution that meets the condi-
tion of the minimum energy losses within the network, call-
ing it the energy-optimal distribution. A current divider is
described by the system of operator equations (8):

Z(s)i = Z0(s)i0

and energy-optimal current distribution also meets the system
of operator equations (7):

R(s)i = R0(s)i0.

Matrices of impedance Z(s) and R(s) type of network are
related in the way that:

Z(s) = R(s) + X(s),

where
R(−s) = R(s); X(−s) = −X(s)

what makes this distribution a unique one:

R(s) =
1

2
[Z(s) + Z(−s)],

X(s) =
1

2
[Z(s) − Z(−s)].

In this way the systems of Eqs. (7) and (8) are a matrix identi-
cal, but in an operator way the Eq. (7) is the Hermitian variant
of Eq. (8).

Optimal distribution itself is not as reachable as the dis-
tribution of a current divider, but in order to trigger it off, it
is necessary to use optimal control carried out by the control
operator Xst(s) (13), generating an appropriately distributed
signal of the voltage source est (12):

est = Xst(s)i0,

Xst(s) = X(s)[R(s)]−1R0(s) − X0(s).

It also appears that distributions: energy-optimal (7) and the
current divider (8) can be the same without control when the
deviation operator disappears (14):

∆(s) = [R(s)]−1R0(s) − [Z(s)]−1Z0(s)
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which is related to the optimal control operator by the for-
mula (15):

Xst(s) = Z(s)∆(s).

Networks meeting this condition are called naturally energy-

optimal networks. As shown, for them (16) must occur:

X(s)[R(s)]−1R0(s) = X0(s)

or equivalently (16):

R(s)[X(s)]−1X0(s) = R0(s).

The optimal control operator Xst(s) is skew-Hermitian, i.e.
Xst(−s) = −Xst(s) which makes that skew-Hermitian is
also an operator:

[R0(s)]
T [R(s)]−1Xst(s)

and so disappears quadratic form

(iopt)T est = iT0 RT
0 R−1Xsti0.

Thus, the controlled sources est do not produce energy – the
optimal control is energy-neutral.

The study presents several examples, with particular em-
phasis on networks consisted of branches with a serial struc-
ture of RLC elements.
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