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Compound-combination synchronization of chaos 
in identical and different orders chaotic systems

K. S. OJO, A. N. NJAH, O. I. OLUSOLA 

This paper proposes a new synchronization scheme called compound-combination syn-
chronization. The scheme is investigated using six chaotic Josephson junctions evolving from 
different initial conditions based on the drive-response configuration via the active backstepping 
technique. The technique is applied to achieve compound-combination synchronization of: (i) 
six identical third order resistive-capacitive-inductive-shunted Josepshon junctions (RCLSJJs) 
(with three as drive and three as response systems); (ii) three third order RCLSJJs (as drive 
systems) and three second order resistive-capacitive-shunted Josepshon junctions (RCSJJs 
(as response systems). In each case, sufficient conditions for global asymptotic stability for 
compound-combination synchronization to any desired scaling factors are achieved. Numerical 
simulations are employed to verify the feasibility and effectiveness of the compound-combina-
tion synchronization scheme. The result shows that this scheme could be used to vary the junc-
tion signal to any desired level and also give a better insight into synchronization in biological 
systems wherein different organs of different dynamical structures and orders are involved. The 
scheme could also provide high security in information transmission due to the complexity of 
its dynamical formulation. 

Keywodrs: control and applications of chaos, low- and high-dimensional chaos, numeri-
cal simulations of chaotic models, synchronization, coupled oscillators.

1.  Introduction

Josephson in 1962 predicted that a Cooper pair of electron can tunnel through the 
junction of two superconductors separated by a thin layer of nonsuperconducting mate-
rial in the absence of voltage difference, a phenomenon referred to as Josephson junc-
tion effect [1]. The tunneling of the Cooper pairs of electrons of opposite spin and 
momenta results in quantum-mechanical current, called the superconducting current. 
Several devices have been developed based on the fundamental idea of Josephson junc-
tion effect and as a result Josephson junction has become a subject of intense study of 
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considerable physical interest. Josephson junction plays very important role in physics 
of superconductors and nonlinear physics, and can be used for designing future devices 
such as emitters, filters, detectors and waveguides working in the sub-terahertz and 
terahertz frequency ranges, which could be very significant for various applications in 
different disciplines. Josephson junctions play a major role in the fabrication of low-
noise microwave amplifiers, as the only nonlinear non-dissipating element useable at 
microwave frequencies [2]. Josephson junction is also one of the basic element in the 
design of superconducting quantum interference devices (SQIUD) [3, 4] which are used 
for sensing the magnetic fields created by neurological currents. 

Josephson junction is a strong nonlinear device that has received considerable atten-
tion due to its advantages in devices that require ultra low noise, low power consump-
tion, high frequency. Motivated by the important applications of Josephson junctions, 
researchers have proposed different models of Josephson junctions as follows: the 
shunted linear resistive-capacitive Josephson junction (RCSJJ) [5], the shunted nonlin-
ear resistive-capacitive Josephson junction (SNRCJJ) [6], the shunted nonlinear resis-
tive-capacitive-inductive Josephson junction (RCLSJJ) [7] and periodically modulated 
Josephson junction (PMJJ) [8]. The chaotic nature of Josephson junctions makes them 
important systems in secure information transmission. Great attention has been given to 
studies of chaotic dynamical behaviour of Josephson junction in the nonlinear dynam-
ics community due to its extensive applications in many areas like SQUIDs, microwave 
devices where the high critical-current junctions are preferred [9, 10]. Meanwhile, the 
present research will utilize the RCLSJJ and the RCSJJ to investigate the proposed syn-
chronization scheme compound-combination synchronization scheme. 

Synchronization between coupled chaotic systems [11] is an interesting area of 
study for understanding the collective behaviour of nonlinear systems [12]. Synchroni-
zation of the superconducting junction arrays is important for the purpose of generating 
reasonably large output power [13]. Also, chaos synchronization in superconducting 
Josephson junction of parallel array of coupled Josephson junctions linked together 
by inductors has been used in the fabrication of high sensitive detectors [14, 15, 16]. 
Synchronization of RCLSJJs could be a suitable superconduting junction that can be 
used as high frequency transmitter and receiver in chaotic secure communications since 
it has been found to be appropriate for high frequency applications and there is a good 
agreement between its experimental and numerical results [7, 17, 18]. Several research 
papers have reported on the synchronization of Josephson junctions [19, ?, 20, 21, 22, 
23] to mention a few. Notable among these research is the paper on generalized con-
trol and synchronization of RCL-shunted Josephson junction using backstepping design 
[19] wherein chaos control, tracking and synchronization were generalized such that the 
designed control functions for the Josephson junction could be used to tune the output 
signal of the Josephson junction into desired form and the generalized projective syn-
chronization could be used to amplify the Josephson junction signal. 

In the last two decades, there has been a considerable interest in understanding 
the process of synchronization in chaotic oscillators and their stability criteria due 
to their real life applications in natural and artificial systems. This interest has led 
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to the discovery of different synchronization types and schemes such as complete 
synchronization [24], phase synchronization, anti-synchronization [25], projective 
synchronization [26], time delay synchronization [27], generalized synchronization 
[28], function projective synchronization [29], increased order synchronization [30], 
reduced order synchronization [31] and others [23, 32]. Most of the previous dis-
coveries on synchronization focus on synchronization between one drive and one 
response oscillator only. 

Among all these chaos synchronization scheme, hybrid synchronization is very 
interesting because involves coexistence of synchronization and anti-synchronization 
in a  synchronization scheme that is one part of the system synchronized while the 
other part of the system anti-synchronized [33]. Then, hybrid projective synchroniza-
tion involves coexistence of projective synchronization and projective anti-synchro-
nization in a synchronization scheme so that one part of the synchronizes to a positive 
scaling factor while, other part synchronizes to a negative scaling factor. One of the 
most significant feature of hybrid projective synchronization is that it can be used 
to achieve faster and enhanced security in communication and chaotic encryption 
scheme [34, 33]. 

Meanwhile, there is increasing interest in the study of chaotic synchronization with 
different structures and different orders due to its wide existence in biological science 
and social science [35, 36, 37, 38]. For example, the order of the thalamic neurons can 
be different from the hippocampal neurons yet they exhibit synchronous behaviour. One 
more instance is the synchronization that occurs between heart and lungs, where one 
can observe that circulatory and respiratory systems synchronize with different orders. 
Hence, the investigation of synchronization of different chaotic systems with different 
orders is very important from the perspective of practical application and control theory. 
Synchronization of system with different orders is very interesting and challenging, 
however, it has received less attention perhaps due to the parameters mismatch and dif-
ference in the order of the drive and the response systems. There are only a few results 
in the literature about the synchronization between chaotic systems whose order are 
different [35, 38, 39]. 

In 2011 and 2012, two papers were published on combination synchronization 
scheme for three chaotic systems [40, 41]. These authors were the first to show the 
possibility of synchronizing the sum of the state variables of two drive systems with 
the state variables of a  response system. In 2012, Finite-time stochastic combination 
synchronization of three different chaotic systems and its application in secure commu-
nication was presented in [42] where the same authors successfully split the information 
signal into two and added each of them to each of the drive in the presence of noise 
and were able to recover the information signal in its original form after synchroniza-
tion has taken place between the two drive systems and the response system. In 2013 
combination-combination synchronization scheme for four chaotic systems based on 
drive-response configuration which investigates synchronization of the sum of state var-
iables of two drive systems with the sum of the state variables of two slave systems was 
reported in [43]. The authors stated that the disadvantage of combination synchroniza-
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tion scheme as a result of its one response system has been overcome in combination-
combination synchronization scheme. 

Furthermore, in 2013 a new synchronization scheme for four chaotic systems called 
compound synchronization was reported in [44]. The authors carried out compound 
synchronization of four chaotic memristor oscillator systems, applied it to secure com-
munication and highlighted the advantages of their synchronization scheme in security 
of information transmission. The compound synchronization scheme is different from 
combination and combination-combination synchronization schemes since it involves 
multiplication as well as sum of the master systems state variables and a response sys-
tem state variables while, the combination and combination-combination synchroniza-
tion involve only addition of the state variables of the systems. In order to overcome 
the disadvantage of single response system in compound synchronization we propose 
compound-combination synchronization scheme in this work. 

The compound-combination synchronization involves multiplication as well as the 
sum of the master systems state variables with the sum of the response systems state 
variables. The major difference between compound-combination synchronization and 
compound synchronization is that compound-combination scheme involves many re-
sponse systems while compound synchronization involves only one response system. 
This difference makes compound-combination synchronization to have a wider appli-
cation to the real world situations than the compound synchronization scheme. Apart 
from the fact that compound-combination synchronization enables higher security of 
information transmission due to complex dynamical formulation of the drive systems, 
it also enables information signal to be transmitted to the desired receiver or all the 
receivers either at the same time or different time. So, compound-combination will be 
highly effective in secure information transmission among network of systems since as 
many systems as possible can be incorporated in the design. Furthermore, the flexibility 
of the compound-combination synchronization scheme gives the possibility of design-
ing suitable controllers for achieving a desired synchronization goal or target such as 
generalized synchronization, generalized anti-synchronization, generalized hybrid syn-
chronization, function projective synchronization and chaos control which has many 
application in biological systems, chemical systems and physical systems. Moreover, 
the incorporation of scaling factor in this compound-combination scheme enables the 
output signal of the Josephson junctions to be tuned to any desired level. Motivated by 
above discussion, this paper presents compound-combination synchronization among 
six identical third order resistive-capacitive-inductive-shunted Josepshon junctions 
(RCLSJJs) via the active backstepping technique. 

The rest of this paper is organized as follows. Section 2 gives mathematical back-
ground of generalized compound-combination synchronization scheme of five chaotic 
systems. Section 3 deals with compound-combination synchronization of six third order 
chaotic JJs (with three as drive and three as response systems). Section 4 investigates 
reduced order compound-combination synchronization of three third order JJs as drive 
systems and three second order JJs as the response systems. Section 5 concludes the 
paper. 
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2.  Compound-combination synchronization scheme

In this section, compound-combination synchronization scheme is designed for five 
chaotic systems based on the drive-response scheme. In this scheme, we shall consider 
three drive systems and two response systems. The first drive system is given as 

	 = ( )x f x 		  (1)

The second drive system is given as 

	 = ( )y f y 		  (2)

The third drive system is given as 
	 = ( )z f z 		  (3)

The first response system is given as 

	 1= ( )w f w U+ 		  (4)

The second response system is given as 

	 2= ( )s f s U+ 		  (5)

where: 1 2= ( , ,... )T
lx x x x , 1 2= ( , ,... )T

my y y y , 1 2= ( , ,... )T
nz z z z , 1 2= ( , ,... )T

pw w w w  
and 1 2= ( , ,... )T

qs s s s  are the state variables of systems (1)–(5) respectively; 
( ) , ( ) , ( ) , ( ) , ( )l m n p qf x f y f z f w f s∈ℜ ∈ℜ ∈ℜ ∈ℜ ∈ℜ  are continuous functions of the 

systems; 1 1 2= ( , ,... )T p
pU u u u ∈ℜ , 2 1 2= ( , ,... )T q

qU u u u ∈ℜ  are controllers to be designed. 

Definition 1 If the order of the drive and the response systems are the same 
and there exists five scaling matrices 1 2 3 4 5, , , , lM M M M M ∈ℜ  such that 

5 4 1 2 3( ) ( ) = 0limt M s M w M x M y M z→∞ + − +  , where .  represent the matrix norm. 
Then, the drive systems (1)-(3) and the response systems (4) and (5) achieve compound-
combination synchronization. 

Remark 1 The drive system (1) is called the scaling drive system while the drive sys-
tems (2) and (3) are called the base drive systems.

Remark 2 M1,  M2,  M3,  M4 and  M5 are constant scaling matrices.

Remark 3 If  M4 or  M5 is zero then, the generalized compound-combination synchro-
nization becomes compound synchronization.

Remark 4 If the scaling matrices 1 20, = 0M M≠  or 3 = 0M  and either  M4 or  M5 
is zero then, the generalized compound-combination synchronization becomes a novel 
function projective synchronization where the scaling matrix is a chaotic system which 
is different from the usual function projective synchronization scheme where the scaling 
matrix is usually a constant or a smooth function of time.

Remark 5 If the scaling matrices 1 2 3= = = 0M M M  and either M4 or M5 is zero then, 
the compound-combination synchronization reduces to chaos control problem.
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Remark 6 From definition 1 we can extend the number of chaotic systems in the drive 
and response systems to any number n.

Definition 2 The drive systems (1)-(3) and the response systems (4),(5) are said to 
achieve generalized increased or reduced order compound-combination synchroniza-
tion if there exists five constant matrices 1

lM ∈ℜ , 2
mM ∈ℜ , 3

nM ∈ℜ , 4
pM ∈ℜ  and 

5
qM ∈ℜ  such that 4 3 1 2( ) ( ) = 0limt M w M z M x M y→∞ + − +  , where .  represent the 

matrix norm. Where , , < ,l m n p q  for increased order compound-combination synchro-
nization and , > ,lm n p q  for reduced order compound-combination synchronization 
case. 

Remark 7 If M4 or M5 is zero then, the generalized increased/reduced order compound-
combination synchronization becomes incereased/reduced order compound synchroni-
zation.

Remark 8 If the scaling matrices 1 20, = 0M M≠  or 3 = 0M  and either M4 or M5 is zero 
then, the generalized increased/reduced order compound-combination synchronization 
becomes an increased/reduced order novel function projective synchronization where 
the scaling matrix is a chaotic system which is different from the usual function projec-
tive synchronization scheme where the scaling matrix is usually a constant or a smooth 
function of time.

3.  Compound-combination synchronization of six third order Josephson 
junctions via active backstepping technique

In this section, Josephson junction in (6)–(8) are taken as the drive systems and 
Josephson junctions in (9)–(11) are taken as the response systems in order to achieve 
generalized compound-combination synchronization among the six chaotic third order 
Josephson junctions: 

	

1 2

2 2 2 1 3

3 2 3

=

1
= ( ( ) sin )

1
= ( )

C

L

x x

x i g x x x x

x x x

β

β

− − −

−







		  (6)

	

1 2

2 2 2 1 3

3 2 3

=

1
= ( ( ) sin )

1
= ( )

C

L

y y

y i g y y y y

y y y

β

β

− − −

−







		  (7)
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1 2

2 2 2 1 3

3 2 3

=

1
= ( ( ) sin )

1
= ( )

C

L

z z

z i g z z z z

z z z

β

β

− − −

−







		  (8)

	

1 2 1

2 2 2 1 3 2

3 2 3 3

=

1
= ( ( ) sin )

1
= ( )

C

L

w w u

w i g w w w w u

w w w u

β

β

+

− − − +

− +







		  (9)

	

1 2 4

2 2 2 1 3 5

3 2 3 6

=

1
= ( ( ) sin )

1
= ( )

C

L

s s u

s i g s s s s u

s s s u

β

β

+

− − − +

− +







	 (10)

	

1 2 7

2 2 2 1 3 8

3 2 3 9

=

1
= ( ( ) sin )

1
= ( )

C

L

v v u

v i g v v v v u

v v v u

β

β

+

− − − +

− +







	 (11)

where 1 2 3 4 5 6 7 8, , , , , , ,u u u u u u u u  and 9u  are the controllers to be designed. The error sys-
tems are defined as follows 

	

1 1 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2 2 2

3 3 3 3 3 3 3 3 3 3

= ( )

= ( )

= ( )

e v s w x y z

e v s w x y z

e v s w x y z

ξ ε δ α β γ
ξ ε δ α β γ
ξ ε δ α β γ

+ + − +
+ + − +
+ + − +

	 (12)

From (12), the error dynamics is 

	

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

3 3 3 3 3 3 1 3 1 3 3 3 3 3 3 3

= ( ) ( )

= ( ) ( )

= ( ) ( )

e v s w x y z x y z

e v s w x y z x y z

e v s w x y z x y z

ξ ε δ α β γ α β γ
ξ ε δ α β γ α β γ
ξ ε δ α β γ α β γ

+ + − + − +
+ + − + − +
+ + − + − +

      

      

      

	 (13)
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Substituting (6)–(11) into (13) yields 

	

1 2 1 1

3
2 2 2

3 2 3 3 3

=

=

1
= ( )

C

L

e e A U

e
e A U

e e e A U

β

β

+ +

− + +

− + +







	 (14)

where 

1 2 2 2 2 2 2 1 2 1 1 1 1 1 1 1 2 1 2

2 3 3 3 3 3 3 2 2 1

2 2 1 2 2 1

2
2 2 1 3 2 2 2 2

2
2 2 2 2 1

= ( ) ( ) ( )

1
= ( ( )) ( ( ) sin )

( ( ) sin ) ( ( ) sin )

( ( ) sin )( )

( ( ( ) sin

C C

C C

C

C

A x y z x y z x y z

A x y z i g v v v

i g s s s i g w w w

i g x x x x y z

x i g y y y

α β γ α β γ α β γ
ξα β γ

β β
ε δ
β β
α β γ
β

βα
β

+ − + − +

− + + − −

+ − − + − −

− − − − +

− − − − 2
3 2 2 1 3

3
3 2 2 2 2 2 2 3 3 3 3 3 3 2 3 3 3 3 3

3 3
3 3 2 3 2 3

1 1 4 7

2 2 5 8

3 3 6 9

) ( ( ) sin ))

1
= ( ( ) ( )) ( )( )

( ( ) ( ))

=

=

=

C

L L

L L

y i g z z z z

A x y z x y z x x y z

x y y z z

U u u u

U u u u

U u u u

γ
β
αα β γ α β γ β γ

β β
β γα
β β

δ ε ξ
δ ε ξ
δ ε ξ

+ − − −

+ − + − − +

− − + −

+ +
+ +
+ +

and then the following theorem is obtained. 

Theorem 1 If the controllers are chosen as 

1 1 2 1 1 1 1 1 1 1 2 1 2 2 2 2 2 2 2 1

2 3 3 3 3 3 3 2 2 1

2 2 1 2 2 1

2
2 2 1 3 2 2 2 2 1 2

2
2 2 2

= ( ) ( ) ( )

1
= ( ) ( ( ) sin )

( ( ) sin ) ( ( ) sin )

( ( ) sin )( )

( ( ( )

C C

C C

C

C

U x y z x y z x y z kq

U x y z i g v v v

i g s s s i g w w w

i g x x x x y z q kq

x i g y y

α β γ α β γ α β γ
ξα β γ

β β
ε δ
β β
α β γ
β

βα
β

+ + + − + −

+ − − −

− − − − − −

+ − − − + − −

+ − 2
2 1 3 2 2 1 3

3
3 2 2 2 2 2 2 3 3 3 3 3 3 2 3 3 3 3 3

3 3
2 2 3 3 3 3 2 3 2 3

sin ) ( ( ) sin ))

1
= ( ( ) ( )) ( )( )

1 1
( ) ( ( ) ( ))

C

L L

C L L L

y y i g z z z z

U x y z x y z x x y z

q q q kq x y y z z

γ
β

αα β γ α β γ β γ
β β

β γα
β β β β

− − + − − −

− + + + + − +

− − − + − + −



471
COMPOUND-COMBINATION SYNCHRONIZATION OF CHAOS IN IDENTICAL  

AND DIFFERENT ORDERS CHAOTIC SYSTEMS

	

1 1 2 1 1 1 1 1 1 1 2 1 2 2 2 2 2 2 2 1

2 3 3 3 3 3 3 2 2 1

2 2 1 2 2 1

2
2 2 1 3 2 2 2 2 1 2

2
2 2 2

= ( ) ( ) ( )

1
= ( ) ( ( ) sin )

( ( ) sin ) ( ( ) sin )

( ( ) sin )( )

( ( ( )

C C

C C

C

C

U x y z x y z x y z kq

U x y z i g v v v

i g s s s i g w w w

i g x x x x y z q kq

x i g y y

α β γ α β γ α β γ
ξα β γ

β β
ε δ
β β
α β γ
β

βα
β

+ + + − + −

+ − − −

− − − − − −

+ − − − + − −

+ − 2
2 1 3 2 2 1 3

3
3 2 2 2 2 2 2 3 3 3 3 3 3 2 3 3 3 3 3

3 3
2 2 3 3 3 3 2 3 2 3

sin ) ( ( ) sin ))

1
= ( ( ) ( )) ( )( )

1 1
( ) ( ( ) ( ))

C

L L

C L L L

y y i g z z z z

U x y z x y z x x y z

q q q kq x y y z z

γ
β

αα β γ α β γ β γ
β β

β γα
β β β β

− − + − − −

− + + + + − +

− − − + − + − 	(15)

where 1 1 2 2 3 3= , = , =q e q e q e  and k is the positive feedback gain then, the drive systems 
(6)–(8) and the response systems (9)–(11) will achieve compound-combination synchro-
nization. 

Proof The objective of this paper is find control functions via the active backstepping 
technique that would stabilize the error state dynamics (14) in order for the drive sys-
tems (6)–(8) and the response systems (9)–(11) to achieve compound-combination syn-
chronization. The design procedures include the following steps. 

Step 1: Let 1 1=q e , then we obtain its time derivative as 

	 1 1 2 1 1= =q e e U A+ +  	 (16)

Now to stabilize subsystem (16), let 2 1 1= ( )e qα  be regarded as virtual controller and 
2

1 1

1
=

2
V q  be a Lyapunov function with time derivative is 

	 1 1 1 1 1 1 1 1= = ( ( ) )V q q q q A Uα + +

 	 (17)

Suppose 1 1( ) = 0qα  and the control function 1U  is chosen as 

	 1 1 1= ( )U A kq− + 	 (18)

then, 2
1 1= < 0V kq−  where k  is a positive constant. So, 1V  is negative definite and the 

subsystem 1q  is asymptotically stable. Since, the virtual controller 1 1( )qα  is estimative, 
the error between 2e  and 1 1( )qα  can be denoted by 2 2 1 1= ( )q e qα− . Thus, we have the 
following 1 2( , )q q -subsystems 

	

1 2 1

2 3 2 2

=

1
=

C

q q kq

q e U A
β

−

− + +





	 (19)

Step 2: In order to stabilize subsystem (19) we regard 3 2 1 2= ( , )e q qα  as a virtual con-

troller choose a Lyapunov function 2
2 1 2

1
=

2
V V q+  and obtain its time derivative as
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2
2 1 2 1 2 1 2 2 2

1
= ( ( , ) )

C

V kq q q q q A Uα
β

− + − + + 	 (20)

If 2 1 2( , ) = 0q qα  and the control function 2U  is chosen as 

	 2 2 1 2=U A q kq− − − 	 (21)

then 2 2
2 1 2= < 0V kq kq− −  where k  is a positive constant. Then, 2V  is negative definite 

and the subsystem 1 2( , )q q  in (19) is asymptotically stable. Thus, we have the following 
1 2 3( , , )q q q  subsystems 

	

1 2 1

2 3 1 2

3 2 3 3 3

=

1
=

1
= ( )

C

L

q q kq

q q q kq

q q q A U

β

β

−

− − −

− + +







	 (22)

Step 3: Finally, we stabilize the subsystem 1 2 3( , , )q q q  by choosing an appropriate Lya-
punov function 2

3 2 1

1
=

2
V V q+  and obtain its time derivative as 

	

2 2
2 1 2 3 2 2 3 3 3

1 1
= ( ( ) )

C L

V kq kq q q q q A U
β β

− − + − + − + + 	 (23)

If 

	
3 2 2 3 3 3

1 1
= ( )

C L

U q q q A kq
β β

− − − − 	 (24)

then 2 2 2
3 1 2 3= < 0V kq kq kq− − −  where k  is a  positive constant. Then, 3V  is negative 

definite and the subsystem 1 2 3( , , )q q q  in (22) is asymptotically stable. This shows that 
compound-combination synchronization between the drive systems (6)-(8) and the re-
sponse systems (9)-(11) is achieved. Finally, the full 1 2 3( , , )q q q  is 

	

1 2 1

2 3 1 2

3 2 3

=

1
=

1
=

C

C

q q kq

q q q kq

q q kq

β

β

−

− − −

−







	 (25)

This complete the prove.                                                                                          □
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Several corollaries can be deduced from theorem 1 however, only two corollaries 
related to our investigation shall be considered. Suppose 1 4 7= =u u u , 2 5 8= =u u u  
and 3 6 9= =u u u  in (15) then, we have Corollary 1.

Corollary 1 If the controllers are chosen as 

     

1
1 1 2 1 1 1 1 1 1 1 2 1 2

2 2 2 2 2 2 1

1
2 3 3 3 3 3 3 2 2 1

2 2 1 2 2 1 1 2

2
2 2 1 3 2 2 2

= ( ) ( ( ) ( )

( ) )

1
= ( ) ( ( ) ( ( ) sin )

( ( ) sin ) ( ( ) sin )

( ( ) sin )(

C C

C C

C

u x y z x y z

x y z kq

u x y z i g v v v

i g s s s i g w w w q kq

i g x x x x y z

ξ ε δ α β γ α β γ
α β γ

ξξ ε δ α β γ
β β

ε δ
β β
α β γ
β

−

−

+ + + + +
− + −

+ + + − − −

− − − − − − − −

+ − − − + 2
2 2 2 2 2

2
1 3 2 2 1 3

1
3 2 3 2 2 2 2 2 2 3 3 3 3 3 3

3 3 3
2 3 2 3 3 3 3 3 3 3 2 3 2 3

) ( ( ( )

sin ) ( ( ) sin )))

1 1
= ( ) ( ( ( ) ( )

) ( )( ) ( ( ) ( )))

C

C

C L

L L L

x i g y y

y y i g z z z z

u q kq x y z x y z

q q x x y z x y y z z

βα
β

γ
β

ξ ε δ α β γ α β γ
β β
α β γβ γ α
β β β

−

+ −

− − + − − −

+ + − − + − + +

− + − + + − + −

	(26)

where 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2

3 3 3 3 3 3 3 3 3

= ( ), = ( ),

= ( )

e v s w y z e v s w y z

e v s w y z

ξ ε δ α β γ ξ ε δ α β γ
ξ ε δ α β γ

+ + − + + + − +
+ + − −

 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2

3 3 3 3 3 3 3 3 3

= ( ), = ( ),

= ( )

e v s w y z e v s w y z

e v s w y z

ξ ε δ α β γ ξ ε δ α β γ
ξ ε δ α β γ

+ + − + + + − +
+ + − −  and k is the positive feedback gain. Then, the 

drive systems (6)–(8) will achieve compound-combination synchronization with re-
sponse system (9)–(11). 

Solving the drive system (6)–(8) and the response systems (9)–(11) 
with the controllers defined in (26) using the following initial conditions 

1 2 3 1 2 3 1 2 3 1 2 3( , , ) = (0,0,0),( , , ) = (1,1,1, ), ( , , ) = (2,2,2), ( , , ) = (3,3,3),x x x y y y z z z w w w

1 2 3 1 2 3( , , ) = (4,4,4),( , , ) = (0.5,0.5,0.5)s s s v v v  the numerical results are considered un-
der three special cases. 

1.	Compound-combination projective synchronization: Choosing the scaling pa-
rameter values as 1 2 3 1 2 3 1 2 3= = = = = = = = = 1, = = = 2δ ε ξ γ γ γ β β β α α α  
compound-combination projective synchronization of the drive systems (6)-(8) 
and response systems (9)–(11) is achieved as indicated by the convergence of the 
error state variables to zero and the projection of the state variables of the drive 
Josephson junctions on the response Josephson junctions when the controllers are 
activated for 5t ≥  as shown in Fig. 1 . 
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2.	Compound-combination projective anti-synchronization: Choosing the scaling 
parameter values as 1 2 3 1 2 3 1 2 3= = = = = = = = = 1, = = = 2δ ε ξ γ γ γ β β β α α α −  
compound-combination projective anti-synchronization of the drive systems  
(6)–(8) and response systems (9)–(11) is achieved as indicated by the conver-
gence of the error state variables to zero and the projection of the state variables 
of the drive Josephson junctions on the response Josephson junctions when the 
controllers are activated for 5t ≥  as shown in Fig. 2 . 

3.	Compound-combination hybrid projective synchronization: Choosing the scaling 
parameter values as 1 2 3 1 2 3 1 2 3= = = = = = = = = 1, = 2, = 2, = 2δ ε ξ γ γ γ β β β α α α−  
compound-combination hybrid projective synchronization of the drive systems 
(6)–(8) and response systems (9)–(11) is achieved as indicated by the conver-
gence of the error state variables to zero and the projection of the state variables 
of the drive Josephson junctions on the response Josephson junctions when the 
controllers are activated for 5t ≥  as shown in Fig. 3 . 

Figure 1: Error dynamics among the drive and the response systems (column one) and the corre-
sponding dynamics (time series) of the state variable of the drive (dashed line) and the response (sol-
id line) variables (column two) with controllers deactivated for 0 < < 5t  and activated for 5t ≥  where 

1 1 1 1 1 1 1= ( )e v s w x y z+ + − + , 2 2 2 2 2 2 2= ( )e v s w x y z+ + − + , 3 3 3 3 3 3 3= ( )e v s w x y z+ + − + , 1 1 1 1=r v s w+ + ,  
1 1 1 1= ( )d x y z+ , 2 2 2 2=r v s w+ + , 2 2 2 2= ( )d x y z+  and 3 3 3 3=r v s w+ + , 3 3 3 3= ( )d x y z+
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Figure 2: Error dynamics among the drive and the response systems (column one) and the corre-
sponding dynamics (time series) of the state variable of the drive (dashed line) and the response (sol-
id line) variables (column two) with controllers deactivated for 0 < < 5t  and activated for 5t ≥  where 

1 1 1 1 1 1 1= ( )e v s w x y z+ + + + , 2 2 2 2 2 2 2= ( )e v s w x y z+ + + + , 3 3 3 3 3 3 3= ( )e v s w x y z+ + + + , 1 1 1 1=r v s w+ + ,  
1 1 1 1= ( )d x y z+ , 2 2 2 2=r v s w+ + , 2 2 2 2= ( )d x y z+  and 3 3 3 3=r v s w+ + , 3 3 3 3= ( )d x y z+

Figure 3: Error dynamics among the drive and the response systems (column one) and the corre-
sponding dynamics (time series) of the state variable of the drive (dashed line) and the response (sol-
id line) variables (column two) with controllers deactivated for 0 < < 5t  and activated for 5t ≥  where 

1 1 1 1 1 1 1= ( )e v s w x y z+ + − + , 2 2 2 2 2 2 2= ( )e v s w x y z+ + + + , 3 3 3 3 3 3 3= ( )e v s w x y z+ + − + , 1 1 1 1=r v s w+ + ,  
1 1 1 1= ( )d x y z+ , 2 2 2 2=r v s w+ + , 2 2 2 2= ( )d x y z+  and 3 3 3 3=r v s w+ + , 3 3 3 3= ( )d x y z+
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Suppose 1 4 7= =u u u , 2 5 8= =u u u , 3 6 9= =u u u , = = 0ξ ε  in (15) then, we have the 
following corollary. 

Corollary 2 If the controllers are chosen as 

   

1
1 1 2 1 1 1 1 1 1 1 2 1 2

2 2 2 2 2 2 1

1
2 3 3 3 3 3 3 2 2 1 1 2

2 2
2 2 1 3 2 2 2 2 2 2 2 2

2
1 3 2 2

= ( ) ( ( ) ( )

( ) )

1
= ( ) ( ( ) ( ( ) sin )

( ( ) sin )( ) ( ( ( )

sin ) ( ( ) si

C C

C C

C

u x y z x y z

x y z kq

u x y z i g w w w q kq

i g x x x x y z x i g y y

y y i g z z

δ α β γ α β γ
α β γ

δδ α β γ
β β
α ββ γ α
β β

γ
β

−

−

+ + +
− + −

+ − − − − −

+ − − − + + −

− − + − − 1 3

1
3 2 3 2 2 2 2 2 2 3 3 3 3 3 3

3 3 3
2 3 2 3 3 3 3 3 3 3 2 3 2 3

n )))

1 1
= ( ) ( ( ( ) ( )

) ( )( ) ( ( ) ( )))

C L

L L L

z z

u q kq x y z x y z

q q x x y z x y y z z

δ α β γ α β γ
β β

α β γβ γ α
β β β

−

−

− − + − + +

− + − + + − + −

	(27)

where 1 1 1 1 1 1 1 2 2 2 2 2 2 2 3 3 3 3 3 3 3= ( ), = ( ), = ( )e w y z e w y z e w y zδ α β γ δ α β γ δ α β γ− + − + − −  
and k  is the positive feedback gain. Then, the drive systems (6)-(8) will achieve com-
pound synchronization with response system (9). 

Solving the drive system (6)–(8) and the response system (9) with the controllers 
defined in (27) using the following initial conditions using the initial conditions of the 
drive systems and response systems as

1 2 3 1 2 3 1 2 3 1 2 3( , , ) = (0,0,0),( , , ) = (1,1,1, ), ( , , ) = (2,2,2), ( , , ) = (3,3,3)x x x y y y z z z w w w , 
the numerical results are considered under three special cases. 

1.	Compound projective synchronization: Choosing the scaling parameter val-
ues as 1 2 3 1 3 3 1 2 3= = = = = = = 1, = = = 2δ γ γ γ β β β α α α  compound projec-
tive synchronization of the drive systems (6)–(8) and response system (9) is 
achieved as indicated by the convergence of the error state variables to zero 
and the projection of the state variables of the drive Josephson junctions on the 
response Josephson junctions when the controllers are activated for 5t ≥  as 
shown in Fig. 4 . 

2.	Compound projective anti-synchronization: Choosing the scaling parameter val-
ues as 1 2 3 1 3 3 1 2 3= = = = = = = 1, = = = 2δ γ γ γ β β β α α α −  compound projec-
tive anti-synchronization of the drive systems (6)–(8) and response system (9) is 
achieved as indicated by the convergence of the error state variables to zero and 
the projection of the state variables of the drive Josephson junctions on the re-
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sponse Josephson junctions when the controllers are activated for 5t ≥  as shown 
in Fig. 5 . 

3.	Compound hybrid projective synchronization: Choosing the scaling parameter 
values as 1 2 3 1 3 3 1 2 3= = = = = = = 1, = 2, = 2, = 2δ γ γ γ β β β α α α−  compound hy-
brid projective synchronization of the drive systems (6)-(8) and response system 
(9) is achieved as indicated by the convergence of the error state variables to 
zero and the projection of the state variables of the drive Josephson junctions on 
the response Josephson junctions when the controllers are activated for 5t ≥  as 
shown in Fig. 4. 

Figure 4: Error dynamics among the drive and the response systems (column one) and the corresponding 
dynamics (time series) of the state variable of the drive (dashed line) and the response (solid line) variables 
(column two) with controllers deactivated for 0 < < 5t  and activated for 5t ≥  where 1 1 1 1 1= ( )e w x y z− + , 
 2 2 2 2 2= ( )e w x y z− + , 3 3 3 3 3= ( )e w x y z− + , 1 1=r w , 1 1 1 1= ( )d x y z+ , 2 2=r w , 2 2 2 2= ( )d x y z+  and 3 3=r w ,  

3 3 3 3= ( )d x y z+
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Figure 5: Error dynamics among the drive and the response systems (column one) and the corresponding 
dynamics (time series) of the state variable of the drive (dashed line) and the response (solid line) variables 
(column two) with controllers deactivated for 0 < < 5t  and activated for 5t ≥  where 1 1 1 1 1= ( )e w x y z+ + , 

2 2 2 2 2= ( )e w x y z+ + , 3 3 3 3 3= ( )e w x y z+ + , 1 1=r w , 1 1 1 1= ( )d x y z+ , 2 2=r w , 2 2 2 2= ( )d x y z+  and 3 3=r w ,  

3 3 3 3= ( )d x y z+

Figure 6: Error dynamics among the drive and the response systems (column one) and the corresponding 
dynamics (time series) of the state variable of the drive (dashed line) and the response (solid line) variables 
(column two) with controllers deactivated for 0 < < 5t  and activated for 5t ≥  where 1 1 1 1 1= ( )e w x y z− + , 

2 2 2 2 2= ( )e w x y z+ + , 3 3 3 3 3= ( )e w x y z− + , 1 1=r w , 1 1 1 1= ( )d x y z+ , 2 2=r w , 2 2 2 2= ( )d x y z+  and 3 3=r w ,  

3 3 3 3= ( )d x y z+
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4.  Reduced order compound-combination synchronization of three third 
and three second order chaotic Josephson junctions

In this section, three third order Josephson junctions in (6)–(8) in section 3 are taken 
as the drive systems and three second order Josephson junctions (28)–(30) below are 
taken as the response systems in order to achieve generalized reduced order compound-
combination synchronization among three third order and three second order chaotic 
Josephson junctions: 

	

1 2 1

2 2 1 2

=

= sin sin

w w u

w w w a b t uα ω
+

− − + + +





	 (28)

	

1 2 3

2 2 1 4

=

= sin sin

s s u

s s s a b t uα ω
+

− − + + +





	 (29)

	

1 2 5

2 2 1 6

=

= sin sin

v v u

v v v a b t uα ω
+

− − + + +





	 (30)

where 1 2 3 4 5, , , ,u u u u u  and 6u  are the controllers to be designed. The error variables are 
defined as follows 

	

1 1 1 1 1 1 3 3 1 1 3 3 1 1 3 3

2 2 2 2 2 2 2 2 2 2

= ( )

= ( )

e v s w x x y y z z

e v s w x y z

ξ ε δ α α β β γ γ
ξ ε δ α β γ

+ + − + + + +
+ + − +

	 (31)

From error variables in (31), the error dynamical systems can be obtained as follows 

	

1 1 1 1 1 1 3 3 1 1 3 3 1 1 3 3

1 1 3 3 1 1 3 3 1 1 3 3

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

= ( )

( )

= ( ) ( )

e v s w x x y y z z

x x y y z z

e v s w x y z x y z

ξ ε δ α α β β γ γ
α α β β γ γ

ξ ε δ α β γ α β γ

+ + − + + + +
− + + + +
+ + − + − +

    

    

      

	 (32)

Substituting (6)–(8) and (28)–(30) into (32) yields the error dynamics 

	

1 2 1 1

2 2 2 2

=

=

e e B U

e e B Uα
+ +

− + +





	 (33)

where 

1 2 2 2 2 2 2 1 2 3 3 1 1 3 3 1 1 3 3

3 3 3
1 1 2 3 2 3 2 3 1 2 1 2

5 3 1

2 2 2 2 2 2 2 1

1 1 6 4

= ( ) ( )

( ( ) ( ) ( ) )

= ( ( )) ( sin sin )

( sin sin ) ( sin sin )

L L L

B x y z x x y y z z

x x x y y z z y z

u u u

B a x y z v a b t

s a b t w a b t u u

α β γ α α β β γ γ
α β γα β γ
β β β

ξ ε δ
α β γ ξ ω
ε ω δ ω ξ ε

+ − + + + +

− − + − + − + +

+ + +
− + + − + +

+ − + + + − + + + + 2

2
2 2 1 3 2 2 2 2

2 2
2 2 2 2 1 3 2 2 1 3

1 5 3 1

2 6 4 2

( ( ) sin )( )

( ( ( ) sin ) ( ( ) sin ))

=

=

C

C C

u

i g x x x x y z

x i g y y y y i g z z z z

U u u u

U u u u

δ
α β γ
β

β γα
β β

ξ ε δ
ξ ε δ

+

− − − − +

− − − − + − − −

+ +
+ +
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1 2 2 2 2 2 2 1 2 3 3 1 1 3 3 1 1 3 3

3 3 3
1 1 2 3 2 3 2 3 1 2 1 2

5 3 1

2 2 2 2 2 2 2 1

1 1 6 4

= ( ) ( )

( ( ) ( ) ( ) )

= ( ( )) ( sin sin )

( sin sin ) ( sin sin )

L L L

B x y z x x y y z z

x x x y y z z y z

u u u

B a x y z v a b t

s a b t w a b t u u

α β γ α α β β γ γ
α β γα β γ
β β β

ξ ε δ
α β γ ξ ω
ε ω δ ω ξ ε

+ − + + + +

− − + − + − + +

+ + +
− + + − + +

+ − + + + − + + + + 2

2
2 2 1 3 2 2 2 2

2 2
2 2 2 2 1 3 2 2 1 3

1 5 3 1

2 6 4 2

( ( ) sin )( )

( ( ( ) sin ) ( ( ) sin ))

=

=

C

C C

u

i g x x x x y z

x i g y y y y i g z z z z

U u u u

U u u u

δ
α β γ
β

β γα
β β

ξ ε δ
ξ ε δ

+

− − − − +

− − − − + − − −

+ +
+ +

Then, the following theorem is obtained. 

Theorem 2 If the controllers are chosen as 

	

1 1 2 3 3 1 1 3 3 1 1 3 3 2 2 2 2 2 2 1

3 3 3
1 1 2 3 2 3 2 3 1 2 1 2

2 2 2 2 2 2 2 1 2

1 1

2

= ( ) ( )

( ( ) ( ) ( ) )

= ( ) ( sin sin ) ( )

( sin sin ) ( sin sin )

( (

L L L

C

U x x y y z z x y z kq

x x x y y z z y z

U x y z v a b t k q

s a b t w a b t

i g x

α α β β γ γ α β γ
α β γα β γ
β β β

αα β γ ξ ω α
ε ω δ ω
α
β

+ + + + − + −

+ − + − + − + +

+ − − + + + −
− − + + − − + +

+ − 2 2 1 3 2 2 2 2 1

2 2
2 2 2 2 1 3 2 2 1 3

) sin )( )

( ( ( ) sin ) ( ( ) sin ))
C C

x x x y z q

x i g y y y y i g z z z z

β γ

β γα
β β

− − + −

+ − − − + − − −

	(34)

where 1 1 2 2 3 3= , = , =q e q e q e  and k  is the positive feedback gain then, the drive systems 
(6)–(8) and the response systems (28)–(30) will achieve reduced order compound-com-
bination synchronization. 

Proof The objective of this section is to find control functions via the active backstep-
ping technique that would stabilize the error state dynamics (33) in order for the drive 
systems (6)–(8) and the response systems (28)–(30) to achieve generalized combina-
tion-combination synchronization. The design procedure includes the following steps. 

Step 1
Let 1 1=q e , its time derivative is 

	

1
1 1 2 1 1

2

= =q e e U B
δ
δ

+ +  	 (35)

Where 2 1 1= ( )e qα  can be regarded as virtual controller. In order to stabilize 1q -subsys-
tem, we choose the following Lyapunov function 2

1 1

1
=

2
V q . The time derivative of 1v  is 
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1
1 1 1 1 1 1 1 1

2

= = ( ( ) )V q q q q B U
δ α
δ

+ +

 	 (36)

Suppose 1 1( ) = 0qα  and the control function 1U  is chosen as 

	 1 1 1= ( )U B kq− + 	 (37)

then 2
1 1= < 0V kq−  where k  is positive constant which represents the feedback gain. 

Hence, 1v  is negative definite and the subsystem 1q  is asymptotically stable. Since, the 
virtual controller 1 1( )qα  is estimative, the error between 2e  and 1 1( )qα  can be denoted 
by 2 2 1 1= ( )q e qα− . Thus, the following 1 2( , )q q -subsystems 

	

1
1 2 1

2

2 2 2 2

=

=

q q kq

q q U B

δ
δ
α

−

− + +





	 (38)

Step 2 
In order to stabilize subsystem (38), the following Lyapunov function can be chosen as

2
2 1 2

1
=

2
V V q+ . Its time derivative is 

	

2 1
2 1 2 1 2 2 2

2

= ( )V kq q q q U B
δ α
δ

− + − + + 	 (39)

If the control function 2U  is chosen as 

	

1
2 2 2 2 1

2

=U B kq q q
δα
δ

− − + − 	 (40)

then 2 2
2 1 2= < 0V kq kq− −  where k  is a positive constant. Hence, 2V  is negative definite 

and the subsystem 1 2( , )q q  in (38) is asymptotically stable. This implies that generalized 
compound-combination synchronization of the drive systems (6)–(8) with the response 
system (28)–(30) is achieved. Finally, the subsystem (38) becomes 

	

1
1 2 1

2

1
2 1 2

2

=

=

q q kq

q q kq

δ
δ
δ
δ

−

− −





	 (41)

										               □
This completes the prove. Several Corollaries can be deduced from theorem 9 how-

ever, only two Corollaries related to our investigation shall be considered. 
Suppose 1 3 5= =u u u , 2 4 6= =u u u  in (34) then, we have Corollary 3.
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Corollary 3 If the controllers are chosen as 

   

1 1 2 3 3 1 1 3 3 1 1 3 3 2 2 2 2 2 2 1

3 3 3
1 1 2 3 2 3 2 3 1 2 1 2

2 2 2 2 2 2 2 1 2 2 2 2

2
2 2 1 3

1
= ( ( ) ( )

( )

( ( ) ( ) ( ) ))

1
= ( ( ) ( sin sin ) ( )

( )

( ( ) sin )

L L L

C

u x x y y z z x y z kq

x x x y y z z y z

u x y z w a b t y z

i g x x x x

α α β β γ γ α β γ
δ ε ξ

α β γα β γ
β β β

αα β γ δ ω β γ
δ ε ξ
α α
β

+ + + + − + −
+ +

+ − + − + − + +

+ − − + + + +
+ +

− − − + 2
2 2 2 2 1 3

2
2 2 1 3 1 2 1

1

( ( ( ) sin )

( ( ) sin )) ( sin sin )

( sin sin ))

C

C

x i g y y y y

i g z z z z s a b t kq q

v a b t

β
β

γ ε ω
β
ξ ω

− − −

+ − − − − − + + − −

− − + +

	(42)

where 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2= ( ), = ( )e v s w y z e v s w y zξ ε δ α β γ ξ ε δ α β γ+ + − + + + − +  and  
k is the positive feedback gain. Then, the drive systems (6)–(9) will achieve reduced 
order compound-combination synchronization with response system (28)–(30). 

Solving the drive system (6)-(8) and the response systems (28)–(30) with the con-
trollers defined in (42) using the initial conditions of the drive systems and response sys-
tems as 1 2 3 1 2 3 1 2 3 1 2 1 2 1 2( , , ) = (0,0,0),( , , ) = (1,1,1),( , , ) = (2,2,2),( , ) = (3,3),( , ) = ( 1, 2),( , ) = (0.4,0.1)x x x y y y z z z w w s s v v− − 

1 2 3 1 2 3 1 2 3 1 2 1 2 1 2( , , ) = (0,0,0),( , , ) = (1,1,1),( , , ) = (2,2,2),( , ) = (3,3),( , ) = ( 1, 2),( , ) = (0.4,0.1)x x x y y y z z z w w s s v v− − , the numerical results are considered under three 
special cases. 

1.	Reduced order compound-combination projective synchronization: Choosing 
the scaling parameter values as 1 1 2 1 2= = = = = = 1.0, = 2, = 2.0δ ξ ε γ β β α α  
reduced order compound-combination projective synchronization of the drive 
systems (6)–(8) and response systems (28)–(30) is achieved as indicated by the 
convergence of the error state variables to zero and the projection of the state 
variables of the drive Josephson junctions on the response Josephson junctions 
when the controllers are activated for 5t ≥  as shown in Figure 7 . 

2.	 Reduced order compound-combination projective anti-synchronization: Choosing 
the scaling parameter values as 1 1 2 1 2= = = = = = 1.0, = 2, = 2.0δ ξ ε γ β β α α− −  
reduced order compound-combination projective anti-synchronization of the 
drive systems (6)–(8) and response systems (28)–(30) is achieved as indicated by 
the convergence of the error state variables to zero and the projection of the state 
variables of the drive Josephson junctions on the response Josephson junctions 
when the controllers are activated for 5t ≥  as shown in Figure 8.
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3. 	Reduced order compound-combination hybrid projective synchronization: Choos-
ing the scaling parameter values as 1 1 2 1 2= = = = = = 1.0, = 2, = 2.0δ ξ ε γ β β α α−  
reduced order compound-combination hybrid projective synchronization of the 
drive systems (4)–(8) and response systems (28)–(30) is achieved as indicated by 
the convergence of the error state variables to zero and the projection of the state 
variables of the drive Josephson junctions on the response Josephson junctions 
when the controllers are activated for 5t ≥  as shown in Fig. 9. 

Figure 7: Error dynamics among the drive and the response systems (column one) and the corre-
sponding dynamics (time series) of the state variable of the drive (dashed line) and the response (sol-
id line) variables (column two) with controllers deactivated for 0 < < 5t  and activated for 5t ≥  
where 1 1 1 1 1 3 1 3 1 3= 2 ( )e v s w x x y y z z+ + − + + + + , 2 2 2 2 2 2 2= 2 ( )e v s w x y z+ + − + , 1 1 1 1=r v s w+ + , 

1 1 1 1 3 3 3= ( )d x y z x y z+ + + + , 2 2 2 2=r v s w+ +  and 2 2 2 2= ( )d x y z+
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Figure 8: Error dynamics among the drive and the response systems (column one) and the corre-
sponding dynamics (time series) of the state variable of the drive (dashed line) and the response (sol-
id line) variables (column two) with controllers deactivated for 0 < < 5t  and activated for 5t ≥  
where 1 1 1 1 1 3 1 3 1 3= 2 ( )e v s w x x y y z z+ + + + + + + , 2 2 2 2 2 2 2= 2 ( )e v s w x y z+ + + + , 1 1 1 1=r v s w+ + , 

1 1 1 1 3 3 3= ( )d x y z x y z+ + + + , 2 2 2 2=r v s w+ +  and 2 2 2 2= ( )d x y z+

Figure 9: Error dynamics among the drive and the response systems (column one) and the corre-
sponding dynamics (time series) of the state variable of the drive (dashed line) and the response (sol-
id line) variables (column two) with controllers deactivated for 0 < < 5t  and activated for 5t ≥  
where 1 1 1 1 1 3 1 3 1 3= 2 ( )e v s w x x y y z z+ + − + + + + , 2 2 2 2 2 2 2= 2 ( )e v s w x y z+ + + + , 1 1 1 1=r v s w+ + , 

1 1 1 1 3 3 3= ( )d x y z x y z+ + + + , 2 2 2 2=r v s w+ +  and 2 2 2 2= ( )d x y z+
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Suppose 1 3 5= =u u u , 2 4 6= =u u u , = = 0ξ ε  in (34) then, we have Corollary 18. 

Corollary 4 If the controllers are chosen as 

  

1 2 2 2 2 2 2 1 2 1 1 1 1 1 1 1 2 1 2 1

2 2 2 2 2 2 2 1

2 2 1 2 2 2 2 2 1

2 2 2 2 1 2 2 1

1
= ( ( ) ( ) ( ) )

( )

1
= ( ( ) ( sin sin )

( )

( sin sin )( ) ( )

( ( sin sin ) ( sin sin

u x y z x y z x y z kq

u x y z w a b t

x x a b t y z k q q

x y y a b t z z a b

α β γ α β γ α β γ
δ

αα β γ δ ω
δ

α α ω β γ α
α β α ω γ α

− + + + + + −

+ − − + +

+ − − + + + + − −
+ − − + + + − − + + )))tω

	(43)

where 1 1 1 1 1 1 1 2 2 2 2 2 2 2 3 3 3 3 3 3 3= ( ), = ( ), = ( )e w y z e w y z e w y zδ α β γ δ α β γ δ α β γ− + − + − −  
and k  is the positive feedback gain. Then, the drive systems 6)-(8) will achieve com-
pound synchronization with response system (28). 

Solving the drive system (6)–(8) and the response systems (28) with the controllers 
defined in (43) using the initial conditions of the drive systems and response systems as 

1 2 3 1 2 3 1 2 3 1 2( , , ) = (0,0,0),( , , ) = (1,1,1),( , , ) = (0,0,0),( , ) = (0.4,0.1)x x x y y y z z z w w , the 
numerical results are considered under three special cases. 

1.	Reduced order compound synchronization: Choosing the scaling parameter 
values as 1 1 2 1 2= = = 1.0, = = 1γ β β α α  reduced order compound projective syn-
chronization of the drive systems (6)–(8) and response system (28) is achieved 
as indicated by the convergence of the error state variables to zero and the pro-
jection of the state variables of the drive Josephson junctions on the response 
Josephson junctions when the controllers are activated for 5t ≥  as shown in 
Fig. 10 . 

2.	Reduced order compound anti-synchronization: Chosen the scaling parameter 
values as 1 1 2 1 2= = = 1.0, = = 1γ β β α α −  reduced order compound projective 
anti-synchronization of the drive systems (6)–(8) and response system (28) is 
achieved as indicated by the convergence of the error state variables to zero and 
the projection of the state variables of the drive Josephson junctions on the re-
sponse Josephson junctions when the controllers are activated for 5t ≥  as shown 
in Fig. 11 . 

3.	Reduced order compound hybrid synchronization: Chosen the scaling parameter 
values as 1 1 2 1 2= = = 1.0, = 1, = 1γ β β α α −  reduced order compound hybrid pro-
jective synchronization of the drive systems (6)–(8) and response system (28) is 
achieved as indicated by the convergence of the error state variables to zero and 
the projection of the state variables of the drive Josephson junctions on the re-
sponse Josephson junctions when the controllers are activated for 5t ≥  as shown 
in Fig. 12. 
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Figure 10: Error dynamics among the drive and the response systems (column one) and the corre-
sponding dynamics (time series) of the state variable of the drive (dashed line) and the response (sol-
id line) variables (column two) with controllers deactivated for 0 < < 5t  and activated for 5t ≥  where 

1 1 1 3 1 3 1 3= ( )e w x x y y z z− + + + + , 2 2 2 2 2= ( )e w x y z− + , 1 1=r w , 1 1 1 1 3 3 3= ( )d x y z x y z+ + + + , 2 2=r w  
and 2 2 2 2= ( )d x y z+

Figure 11: Error dynamics among the drive and the response systems (column one) and the corre-
sponding dynamics (time series) of the state variable of the drive (dashed line) and the response (sol-
id line) variables (column two) with controllers deactivated for 0 < < 5t  and activated for 5t ≥  where 

1 1 1 3 1 3 1 3= ( )e w x x y y z z+ + + + + , 2 2 2 2 2= ( )e w x y z+ + , 1 1=r w , 1 1 1 1 3 3 3= ( )d x y z x y z+ + + + , 2 2=r w  and 
2 2 2 2= ( )d x y z+
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Figure 12: Error dynamics among the drive and the response systems (column one) and the corre-
sponding dynamics (time series) of the state variable of the drive (dashed line) and the response (sol-
id line) variables (column two) with controllers deactivated for 0 < < 5t  and activated for 5t ≥  where 

1 1 1 3 1 3 1 3= ( )e w x x y y z z− + + + + , 2 2 2 2 2= ( )e w x y z+ + , 1 1=r w , 1 1 1 1 3 3 3= ( )d x y z x y z+ + + + , 2 2=r w  and 
2 2 2 2= ( )d x y z+

5.  Conclusion

A new synchronization scheme called compound-combination synchronization has 
been proposed and investigated using six chaotic Josephson junctions evolving from 
different initial conditions based on the drive-response configuration (with three as drive 
and three as response systems) via the active backstepping technique. The technique has 
been used to achieve identical and reduced order compound-combination synchroniza-
tion of RCLSJ and RCSJ. The scheme will no doubt improve security of information 
transmission due the complex dynamical structure of the drive systems and also enable 
secure transmission of information to any of the response systems or all the response 
systems at a desired time. The result shows that this scheme could be used to vary the 
junction signal to any desired level and also give a better insight into synchronization in 
biological systems wherein different organs of different dynamical structures and orders 
are involved.
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