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Lyapunov matrices approach to the parametric
optimization of a neutral system

JOZEF DUDA

In the paper a Lyapunov matrices approach to the parametric optimization problem of a
neutral system with a P-controller is presented. The value of integral quadratic performance
index of quality is equal to the value of Lyapunov functional for the initial function of the
neutral system. The Lyapunov functional is determined by means of the Lyapunov matrix.
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1. Introduction

The Lyapunov functionals are used to test the stability of systems, in calculation of
the robustness bounds for uncertain time delay systems, in computation of the exponen-
tial estimates for the solutions of time delay systems. The method of determination of
a Lyapunov functional for a time delay system with one delay was presented by Repin
[15]. Duda [3] used the Repin’s method to determination of a Lyapunov functional for
a system with two delays, for a system with both lumped and distributed delay [5,10],
for a system with time-varying delay [6,8]. In last years a method of determination of a
Lyapunov functional by means of Lyapunov matrices is very popular, see for example
[9,12,13,14,16].

The Lyapunov quadratic functionals are also used to calculation of a value of a
quadratic performance index of quality in the process of the parametric optimization for
time delay systems, see for instance [2,4,7,9]. One constructs a functional for a system
with a time delay with a given time derivative whose is equal to the negatively defined
quadratic form of a system state. The value of that functional at the initial state of a time
delay system is equal to the value of a quadratic performance index of quality. In the
paper a Lyapunov matrices approach to the parametric optimization problem of a neutral
system is presented. This paper extends the results of Duda [9] to a neutral system.
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2. Preliminaries

Let us consider a neutral system{
dx(t)

dt −C dx(t−r)
dt = Ax(t)+Bx(t − r)

x(t0 +θ) = φ(θ)
(1)

for t ­ t0, θ ∈ [−r,0], r > 0, where x(t) ∈ Rn, A, B, C ∈ Rn×n, function φ ∈
PC([−r,0],Rn) - the space of piece-wise continuous vector valued functions defined
on the segment [−r,0] with the uniform norm ∥ φ ∥PC= sup

θ∈[−r,0]
∥ φ(θ) ∥.

Definition 3 The difference equation associated with (1) is given by a term

x(t)−Cx(t − r) = 0 f or t ­ t0 (2)

We assume that the difference x(t)−Cx(t−r) is continuous and differentiable for t ­ t0,
except possibly a countable number of points.

Definition 4 The spectrum σ(C) is a set of complex numbers λ for which a matrix λI−C
is not invertible.

σ(C) = {λ ∈ C : det(λI −C) = 0} (3)

The arbitrary eigenvalue of the matrix C will be denoted as λ(C).

Definition 5 The spectral radius of a matrix C is given by a form

γ(C) = sup{| λ |: λ ∈ σ(C)} (4)

Definition 6 The matrix C is called a Schur stable matrix if the eigenvalues of C lie in
the interior of the unit disk of the complex plane, i.e. if the spectral radius γ(C)< 1.

Let x(t,φ) be the solution of system (1) with the initial function φ for t ­ t0.

Definition 7 The function xt(φ) : [−r,0]→Rn is called a shifted restriction of x(·,φ) to
an interval [t − r, t] and is defined by a formula

xt(φ)(θ) := x(t +θ,φ) (5)

for t ­ t0 and θ ∈ [−r,0].

The initial condition for equation (1) can be written in a form

xt0(φ) = φ (6)
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Definition 8 (Bellman & Cooke [1]). The trivial solution of (1) is said to be stable if for
any ε > 0 there is δ > 0 such that

∥ φ ∥PC¬ δ ⇒∥ x(t,φ) ∥¬ ε

for every t ­ t0.

Definition 9 (Bellman & Cooke [1]). The trivial solution of (1) is said to be asymptoti-
cally stable if it is stable and x(t,φ)→ 0 as t → ∞

Definition 10 (Bellman & Cooke [1]). The trivial solution of (1) is said to be exponen-
tially stable if there exist M ­ 1 and σ > 0 such that for every solution x(t,φ) of the
system with initial function φ ∈ PC([−r,0],Rn), the following condition holds

∥ x(t,φ) ∥¬M ∥ φ ∥PC e−σt

for every t ­ t0.

The eigenvalues of the neutral equation (1) for large modulus are asymptotically
equal to the eigenvalues of the difference equation (2).

According to the Theorem 9.6.1 ( Hale & Verduyn Lunel [11]) the difference equa-
tion (2) is stable when the matrix C is Schur stable.

When the matrix C is Schur stable, then the asymptotic stability of system (1) is
equivalent to the exponential stability of the system (1). We assume that C is not singular
and a Schur stable matrix.

Definition 11 (Bellman & Cooke [1]). K(t) is the fundamental matrix of system (1) if
it satisfies the matrix equation

d
dt

K(t)−C
d
dt

K(t − r) = AK(t)+BK(t − r)

for t ­ 0 and the following conditions

• initial condition: K(0) = In×n and K(t) = 0n×n for t < 0 where In×n is the identity
n×n matrix and 0n×n is the zero n×n matrix,

• sewing condition: K(t)−CK(t − r) is continuous for t > 0.

It follows from the definition that the fundamental matrix K(t) has discontinuity points.
The sewing condition implies the jump equation

△K(t)−C△K(t − r) = 0 (7)

for t ­ 0, where △K(t) = K(t +0)−K(t −0)
To compute the size of the jumps one needs to solve the jump equation (7) at t j = jr,

j = 0,1,2, .., with the initial condition △K(0) = I
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Lemma 1 (Bellman & Cooke [1]). The fundamental matrix K(t) has jumps at points
t j = jr, j = 0,1,2, ...

△K(t) |t=t j= K( jr+0)−K( jr−0) =C j (8)

and K(t) = K(t +0) at the jump points.

Theorem 14 (Bellman & Cooke [1]). Let K(t) be the fundamental matrix of system (1),
then for t ­ t0

x(t,φ) = [K(t − t0)−K(t − t0 − r)]φ(0)+
0∫

−r

K(t − t0 − r−θ)
[

Bφ(θ)+C
d

dθ
φ(θ)

]
dθ

(9)

This expression is called the Cauchy formula for system (1).

Theorem 15 (Bellman & Cooke [1]). The fundamental matrix K(t) of system (1) satis-
fies also the equation

d
dt

K(t)− d
dt

K(t − r)C = K(t)A+K(t − r)B (10)

for t > 0 and t ̸= jr, j = 1,2, ...

3. A Lyapunov-Krasovskii functional

Given a symmetric positive definite matrix W ∈ Rn×n. We are looking for a func-
tional v : PC([−r,0],Rn)→ R such that along the solutions of system (1) the following
equality holds

d
dt

v(xt(φ)) =−xT (t,φ)Wx(t,φ) (11)

for t ­ t0, where x(t,φ) is a solution of system (1), with the initial function φ ∈
PC([−r,0],Rn), given by (9) and xt(φ) is a shifted restriction of x(·,φ) to an interval
[t − r, t], given by (5).

We assume that system (1) is asymptotically stable and integrate both sides of Eq.
(11) from t0 to infinity. We obtain

v(xt0(φ)) =
∞∫

t0

xT (t,φ)Wx(t,φ)dt (12)

Taking into account (9) we calculate the integral of the right-hand side of Eq. (12)
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∞∫
t0

xT (t, t0,φ)Wx(t, t0,φ)dt =

= φT (0)
∞∫

0

KT (t)WK(t)dtφ(0)−φT (0)
∞∫

0

KT (t)WK(t − r)dtCφ(0)+

−φT (0)CT
∞∫

0

KT (t − r)WK(t)dtφ(0)+φT (0)CT
∞∫

0

KT (t − r)WK(t − r)dtCφ(0)+

+2φT (0)
0∫

−r

[

∞∫
0

KT (t)WK(t − r−θ)dt][Bφ(θ)+C
d

dθ
φ(θ)]dθ+

−2φT (0)CT
0∫

−r

[

∞∫
0

KT (t − r)WK(t − r−θ)dt][Bφ(θ)+C
d

dθ
φ(θ)]dθ+

+

0∫
−r

0∫
−r

[φT (θ)BT +
d

dθ
φT (θ)CT ]·

·[
∞∫

0

KT (t − r−θ)WK(t − r−ξ)dt][Bφ(ξ)+C
d
dξ

φ(ξ)]dθdξ (13)

Definition 12 We introduce a Lyapunov matrix

U(ξ) =
∞∫

0

KT (t)WK(t +ξ)dt (14)

Lemma 2 (Rodriguez et al. [16]). Let system (1) be exponentially stable. Then for every
symmetric matrix W ∈ Rn×n, matrix U(ξ) is well defined and satisfies the following
properties:

Dynamic property

d
dξ

U(ξ)− d
dξ

U(ξ− r)C =U(ξ)A+U(ξ− r)B (15)

for ξ­ 0 and ξ ̸= jr, j = 0,1,2, ...



86 J. DUDA

Symmetry property

U(−ξ) =UT (ξ) (16)

for ξ­ 0

Algebraic property

−W = ATU(0)+U(0)A−ATU(−r)C−CTUT (−r)A+BTUT (−r)+
(17)

+U(−r)B−BTU(0)C−CTU(0)B

Using the Lyapunov matrix (14) we attain a formula for the functional v(xt0(φ))

v(xt0(φ)) = φT (0)[U(0)−U(−r)C−CTUT (−r)+CTU(0)C]φ(0)+

+2φT (0)
0∫

−r

[U(−θ− r)−CTU(−θ)][Bφ(θ)+C
d

dθ
φ(θ)]dθ+

+

0∫
−r

0∫
−r

[Bφ(θ)+C
d

dθ
φ(θ)]TU(θ−ξ)[Bφ(ξ)+C

d
dξ

φ(ξ)]dθdξ (18)

Using the symmetry property one can express the formula (18) in a form

v(xt0(φ)) = φT (0)[U(0)−UT (r)C−CTU(r)+CTU(0)C]φ(0)+

+2φT (0)
0∫

−r

[U(θ+ r)−U(θ)C]T [Bφ(θ)+C
d

dθ
φ(θ)]dθ+

+

0∫
−r

0∫
−r

[Bφ(θ)+C
d

dθ
φ(θ)]TU(θ−ξ)[Bφ(ξ)+C

d
dξ

φ(ξ)]dθdξ (19)

Using Eq. (6) one can express a relation (19) more general in a form

v(xt0(φ)) = xt0(φ)
T (0)[U(0)−UT (r)C−CTU(r)+CTU(0)C]xt0(φ)(0)+

+2xT
t0(φ)(0)

0∫
−r

[U(θ+ r)−U(θ)C]T [Bxt0(φ)(θ)+C
d

dθ
xt0(φ)(θ)]dθ+
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+

0∫
−r

0∫
−r

[Bxt0(φ)(θ)+C
d

dθ
xt0(φ)(θ)]

TU(θ−ξ)[Bxt0(φ)(ξ)+C
d
dξ

xt0(φ)(ξ)]dθdξ (20)

Lemma 3 (Rodriguez et al. [16]) The Lyapunov matrix U(ξ) for system (1) is continu-
ously differentiable at ξ ̸= jr, j = 0,1,2, ..., and at ξ = jr matrix d

dξU(ξ) has the jump

d
dξ

U( jr+0)− d
dξ

U( jr−0) =−(Q−W )C j (21)

Here Q is the solution of the matrix equation

Q−CT QC =W (22)

4. A Lyapunov matrix for a neutral system

To obtain a Lyapunov matrix for a neutral system one needs to solve a set of equa-
tions (see Lemma 2)

d
dξ

U(ξ)− d
dξ

U(ξ− r)C =U(ξ)A+U(ξ− r)B (23)

U(−ξ) =UT (ξ) (24)

−W = ATU(0)+U(0)A−ATU(−r)C−CTUT (−r)A+
(25)

+BTUT (−r)+U(−r)B−BTU(0)C−CTU(0)B

Formula (24) implies

U(ξ− r) =UT (−ξ+ r) (26)

and Eq. (23) takes a form

d
dξ

U(ξ)− d
dξ

UT (−ξ+ r)C =U(ξ)A+UT (−ξ+ r)B (27)

We introduce a new variable τ =−ξ+ r . The term (27) for a new variable has a form

d
dτ

UT (−τ+ r)−CT d
dτ

U(τ) =−ATUT (−τ+ r)−BTU(τ) (28)

One obtains a set of equations



88 J. DUDA

{
d
dξU(ξ)− d

dξUT (−ξ+ r)C =U(ξ)A+UT (−ξ+ r)B
d
dξUT (−ξ+ r)−CT d

dξU(ξ) =−ATUT (−ξ+ r)−BTU(ξ)
(29)

We introduce a new function

Z(ξ) =UT (−ξ+ r) (30)

The set of equations (29) can be written in a form{
d
dξU(ξ)− d

dξ Z(ξ)C =U(ξ)A+Z(ξ)B
d
dξ Z(ξ)−CT d

dξU(ξ) =−AT Z(ξ)−BTU(ξ)
(31)

or in a equivalent form

{
d
dξU(ξ)−CT d

dξU(ξ)C =U(ξ)A−BTU(ξ)C+Z(ξ)B−AT Z(ξ)C
d
dξ Z(ξ)−CT d

dξ Z(ξ)C =−BTU(ξ)+CTU(ξ)A−AT Z(ξ)+CT Z(ξ)B
(32)

for ξ ∈ [0,r] with the initial conditions U(0) and Z(0).
The formulas (24) and (30) imply

U(−r) =UT (r) = Z(0) (33)

Taking into account (33) one can write the algebraic property (25) in a form

−W = ATU(0)+U(0)A−AT Z(0)C−CT ZT (0)A+
(34)

+BT ZT (0)+Z(0)B−BTU(0)C−CTU(0)B

Solution of Eq. (32) is given[
U(ξ)
Z(ξ)

]
=

[
Φ11(ξ) Φ12(ξ)
Φ21(ξ) Φ22(ξ)

][
U(0)
Z(0)

]
(35)

where a matrix Φ(ξ) =

[
Φ11(ξ) Φ12(ξ)
Φ21(ξ) Φ22(ξ)

]
is a fundamental matrix of system (32).

We determine the initial conditions U(0), Z(0). The term (30) implies U(r) = ZT (0)
and Z(r) =UT (0) =U(0).
From Eq. (35) we obtain

U(r) = ZT (0) = Φ11(r)U(0)+Φ12(r)Z(0) (36)
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Z(r) =U(0) = Φ21(r)U(0)+Φ22(r)Z(0) (37)

We put (36) into (34) and reshape (37). In this way we attain a set of algebraic equations
which enables us to calculate the initial conditions of Eq. (35).

[AT +BT Φ11(r)]U(0)+U(0)A−CT Φ11(r)U(0)A−BTU(0)C−CTU(0)B+

+BT Φ12(r)Z(0)+Z(0)B−AT Z(0)C−CT Φ12(r)Z(0)A =−W (38)

[Φ21(r)− I]U(0)+Φ22(r)Z(0) = 0 (39)

5. Formulation of the parametric optimization problem

Let us consider a neutral system with a P-controller
dx(t)

dt −C dx(t−r)
dt = Ax(t)+Bu(t − r)

u(t) =−Px(t)
x(t0 +θ) = φ(θ)

(40)

for t ­ t0, θ ∈ [−r,0], where x(t) ∈Rn, u(t) ∈Rp, A,C ∈Rn×n, B ∈Rn×p, P ∈Rp×n is a
P-controller gain, φ ∈ PC([−r,0],Rn)

System (40) can be written in an equivalent form{
dx(t)

dt −C dx(t−r)
dt = Ax(t)−BPx(t − r)

x(t0 +θ) = φ(θ)
(41)

In parametric optimization problem will be used the performance index of quality

J =

∞∫
t0

xT (t,φ)Wx(t,φ)dt (42)

where W ∈ Rn×n is a symmetric positive definite matrix and x(t,φ) is a solution of Eq.
(41) for initial function φ.

Problem Determine the matrix P ∈ Rp×n whose minimize an integral quadratic
performance index of quality (42).

According to Eq. (12) the value of the performance index of quality (42) is equal to the
value of the functional (20) for initial function φ. To calculate the value of the functional
(20) we need a Lyapunov matrix U(ξ). To obtain a Lyapunov matrix U(ξ) we have to
solve a system of Eqs. (15), (16), (17).
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6. Example

Let us consider a neutral system with a P-controller
dx(t)

dt − c dx(t−r)
dt = ax(t)+bu(t − r)

u(t) =−px(t)
x(0) = x0

x(θ) = 0

(43)

t ­ 0, x(t), u(t)∈R, θ∈ [−r,0], r­ 0. The parameter p is a gain of a P-controller, x0 ∈R
is an initial state of a system.

One can reshape Eq. (43) to a form
dx(t)

dt − c dx(t−r)
dt = ax(t)−bpx(t − r)

x(0) = x0

x(θ) = 0
(44)

for t ­ 0 and θ ∈ [−r,0). The initial function φ is given by a term

φ(θ) =

{
x0 f or θ = 0
0 f or θ ∈ [−r,0)

(45)

In parametric optimization problem we use the performance index

J =

∞∫
0

wx2(t,φ)dt (46)

where w > 0 and x(t,φ) is a solution of (44) for initial function (45).
System of equations (32) takes a form[

d
dξU(ξ)
d
dξ Z(ξ)

]
=

[
a+bcp
1−c2 −ac+bp

1−c2

ac+bp
1−c2 −a+bcp

1−c2

][
U(ξ)
Z(ξ)

]
(47)

A fundamental matrix of solutions of Eq. (47) has a form

Φ(ξ) =

[
coshλξ+ a+bcp

λ(1−c2)
sinhλξ − ac+bp

λ(1−c2)
sinhλξ

ac+bp
λ(1−c2)

sinhλξ coshλξ− a+bcp
λ(1−c2)

sinhλξ

]
(48)

where

λ =

√
a2 −b2 p2

1− c2 (49)

Initial conditions of system (47) one obtains solving of the algebraic equation
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[
q11 q12

q21 q22

][
U(0)
Z(0)

]
=

[
−w
0

]
(50)

where
q11 = 2a+2bcp− (ac+bp)(coshλr+ a+bcp

λ(1−c2)
sinhλr)

q12 = (ac+bp)( ac+bp
λ(1−c2)

sinhλr−1)

q21 =
ac+bp

λ(1−c2)
sinhλr−1

q22 = coshλr− a+bcp
λ(1−c2)

sinhλr

Solving Eq. (50) we obtain

U(0) =
w
M

[
−coshλr+

a+bcp
λ(1− c2)

sinhλr
]

(51)

Z(0) =
w
M

[
ac+bp

λ(1− c2)
sinhλr−1

]
(52)

where

M = 2(a+bcp)coshλr−2λ(1− c2)sinhλr−2(ac+bp) (53)

Solution of Eq. (47) has a form

U(ξ) =
w
M

[
−coshλr+

a+bcp
λ(1− c2)

sinhλr
]

coshλξ− w
2λ(1− c2)

sinhλξ (54)

Z(ξ) =
w
M

[
ac+bp

λ(1− c2)
sinhλr−1

]
coshλξ+

(55)
+

w
Mλ(1− c2)

[a+bcp− (ac+bp)coshλr]sinhλξ

The value of the performance index (46) is equal to the value of the functional (20) for
initial function. In this example initial function is given by (45). After calculations one
obtains

J =

wx2
0

2 (2c− (1+ c2)coshλr+ a−bcp
λ sinhλr)

−ac−bp+(a+bcp)coshλr−λ(1− c2)sinhλr
(56)

We search for an optimal gain which minimize the index (56). Optimization results are
given in Table 1. These results are obtained for x0 = 1, w = 1, a = −1, b = 0.5, and
c = −0.6. Critical gain is a maximal admissible gain for system (43). System (43) is
unstable for gains greater then critical gain.
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Table 1. Result of the optimization

Delay r Optimal gain Index value Critical gain
0.5 3.2 0.41 8
1 1.4 0.52 4.5

1.5 0.8 0.55 3.4
2 0.6 0.56 3

2.5 0.45 0.56 2.7



7. Conclusions

In the paper a Lyapunov matrices approach to the parametric optimization problem
of neutral system is presented. The value of integral quadratic performance index of
quality is equal to the value of Lyapunov functional for the initial function of neutral
system. The Lyapunov functional is determined by means of the Lyapunov matrix.
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