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Elman neural network for modeling and predictive
control of delayed dynamic systems

ANTONI WYSOCKI and MACIEJ EAWRYNCZUK

The objective of this paper is to present a modified structure and a training algorithm of
the recurrent Elman neural network which makes it possible to explicitly take into account the
time-delay of the process and a Model Predictive Control (MPC) algorithm for such a network.
In MPC the predicted output trajectory is repeatedly linearized on-line along the future input
trajectory, which leads to a quadratic optimization problem, nonlinear optimization is not neces-
sary. A strongly nonlinear benchmark process (a simulated neutralization reactor) is considered
to show advantages of the modified Elman neural network and the discussed MPC algorithm.
The modified neural model is more precise and has a lower number of parameters in compari-
son with the classical Elman structure. The discussed MPC algorithm with on-line linearization
gives similar trajectories as MPC with nonlinear optimization repeated at each sampling instant.

Key words: dynamic models, process control, model predictive control, neural networks,
Elman neural network, delayed systems.

1. Introduction

Neural networks are often used for modeling dynamic processes [9, 11, 22, 25]. In
most cases the Multi-Layer Perceptron (MLP) network with one hidden layer is used, the
network with Radial Basis Functions (RBF) is used much less frequently. Both MLP and
RBF neural structures are in fact static approximators. When they are used for modeling
of dynamic processes (in the discrete-time domain), the dynamics is introduced into
the static networks by delivering the values of the input and output signals from some
previous sampling instants to the input nodes of the network (by the delay lines). Such
an approach, although very frequently used in practice, e.g. [14, 16], may need relatively
high dynamic order, i.e. the number of input and output signals from previous instants
may be significant [23].

An interesting alternative to static neural approximators with delay lines is to use
recurrent neural networks [11, 21, 25, 26], which are dynamic models by nature. One
well-known example of recurrent neural networks is Elman neural network [5, 21, 25].
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The Elman networks are used in various fields, e.g. they may be used to estimate pilot
workload [8], to monitor condition in nuclear power plant and rotating machinery [29],
to predict geomagnetic storms from solar wind data [31], for electric load forecasting
[32], for short-term temperature forecasting [17], for modeling the flow of passengers in
subway [18] and for identification of the grammatical structure of literary works [19]. A
comparison of MLP, RBF and Elman dynamic models is given in [4].

Because the Elman neural network is capable of precise modeling of dynamic pro-
cesses, it may be used for control purposes. In particular, the Elman network is used in
Model Predictive Control (MPC): e.g. MPC of two benchmark dynamic systems is con-
sidered in [4], air pressure control supplied to the disc drill subway tunnel under a river is
reported in in [34], control of watertanks is described in [28] and control of autonomous
underwater vehicle is demonstrated in [33]. In all the cited works the same approach to
MPC is used, in which a nonlinear optimization routine finds on-line the optimal con-
trol sequence (the Levenberg-Marquardt algorithm is used in the first case, a heuristic
particle swarm optimization technique is used in the second case, a quasi-Newton algo-
rithm is used in the third system and an inefficient steepest-descent method is used in
the last application). Although on-line nonlinear optimization works in simulations, in
real control applications it may cause problems resulted from its inherent computational
difficulty. Furthermore, it is practically impossible to guarantee or even check that the
nonlinear optimization algorithm finds a global solution.

In the classical recurrent Elman neural network [5] there is no extra time-delay,
while many technological dynamic processes, in particular in chemical, petrochemical
and food industries, are characterized by relatively long pure time-delay, which may
result from the time necessary to perform the measurements. Intuitively, in such cases
the use of the classical Elman neural network (i.e. with no delay) may be not the best
solution. One may expect that the classical Elman network needs quite many hidden
nodes (and weights) and its prediction accuracy may be below expectations.

This work:

a) presents a modified structure of the recurrent Elman neural network which makes
it possible to explicitly take into account the pure time-delay of the process and
describes a training algorithm of the modified network,

b) details derivation and implementation of an MPC algorithm in which such a mod-
ified Elman network is used.

In contrast to all cited works concerned with MPC based on the classical ElIman network,
the discussed MPC algorithm does not need computationally demanding and possibly
troublesome on-line nonlinear optimization. Conversely, the predicted output trajectory
is repeatedly linearized on-line along the future input trajectory, which makes to possible
to calculate the optimal control sequence from an easy to solve quadratic optimization
problem. A nonlinear simulated neutralization reactor is considered to show advantages
of the modified Elman neural network and the discussed MPC algorithm. The modified
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neural model is compared with the classical Elman structure in terms of complexity and
accuracy. Furthermore, the discussed MPC algorithm with on-line linearization is com-
pared with the general nonlinear MPC approach with nonlinear optimization repeated at
each sampling instant.

2. Elman neural networks

For simplicity and clarity of presentation single-input single-output dynamic systems
are considered in this work. The input signal is denoted by u, the output signal is denoted
by y. The current sampling instant is denoted by k.

2.1. Classical EIman recurrent neural network

Fig. 1 shows the structure of the classical Elman neural network. The network has
one input associated with the input signal of the process from the previous sampling
instant, i.e. u(k — 1), K hidden neurons with nonlinear transfer function ¢ : R — R, one
neuron (adder) and one output y(k). Output signals of the hidden layer (v (k),...,vk(k))
are entered through single delay blocks to the input nodes of the network, which means
that the network has K + 1 input nodes u(k—1),vi(k—1),...,vg(k—1). The weights of

the second layer of the network are denoted by wfz) fori=0,...,K, the weights of the
first layer of the network w(l-) fori=1,...,K, j=0,...,K+ 1. Both layers have a bias

ia
signal, i.e. an additional unity signal.

2.2. Modified Elman recurrent neural network

Numeous dynamic systems, in particular in chemical, petrochemical and food in-
dustries, are characterized by relatively long pure time-delay, which may result from the
time necessary to perform the measurements. A straightforward way to take into account
that fact is to incorporate the delay into the recurrent Elman neural network. Fig. 2 shows
the structure of the modified Elman neural network. In the modified network the input
signal of the model (u(k — 1)) explicitly takes into account the pure time-delay T whereas
in the classical structure the neural model itself must approximate the delayed nature of
the dynamic system. The weights of the network are denoted in the same way as in the
case of the classical Elman structure. The output of the modified Elman neural network
model is

K
ymoa(k) = wi + Y wihvi(k) (1)
i=0
where v;(k) stands for the output signals of consecutive hidden nodes (i = 1,...,K),

vo(k) = 1. One has
vi(k) = 9(zi(k)) 2)



www.czasopisma.pan.pl P N www.journals.pan.pl
N

120 A. WYSOCKI, M. LAWRYNCZUK

Figure 1. Structure of classical ElIman neural network

where the sum of signals of the i hidden node is

K
zi(k) =wig Fwiute—o+ Y wil) vik—1) 3)
j=1

Combining Egs. (1), (2) and (3), one has

K K
ymoa(k) = w + Y wo (Wﬁfo) e Vutk—)+ Y wi, vk — 1>> @
i=0 j=1

2.3. Gradient-based training of modified recurrent Elman neural networks

Training of the neural network consists in modifying the values of its parameters
(weights) in such a way that the approximation error is acceptable. In the considered
case of identification of dynamic processes, sequences of recorded data of input and out-
put signals are necessary for training. Model error (approximation accuracy) is usually
defined by the sum of squared errors. For some vector of weights w, one has
P
E(W) =Y (ymoa(k) —y(k))* (5)

k=1
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Figure 2. Structure of modified Elman neural network

where ymod(k) is the output of the neural network, y(k) is an output signal of the real
process (the training pattern recorded in the data set), P is the number of data patterns.
The training process consists in minimising the model error function (5). Due to the non-
linear hidden layer transfer function @, this is an unconstrained nonlinear optimization
problem. Because nonlinear optimization may be difficult and give local solutions, train-
ing is usually repeated many times starting with different initial weights (the multi-start
approach).

The general gradient-based training algorithm, leading to minimization of the model
error function (5) may be summarized in the following steps (the consecutive iterations
are denoted by ir = 1,...,it™*):

0. Initialization of the weights w, random values are usually assumed from the range
<—=1,1>.

1. Calculation of the model output signal ymod(k) for all sampling instants (k =
1,...,P) for the current weights. For the modified Elman network Egs. (1), (2),
(3) and (4) are used.

2. Calculation of the model error from Eq. (5).

3. If the model error or a norm of its gradient satisfies a stopping criterion, the algo-
rithm is stopped.
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4. Calculation of the optimization direction p;,.
5. Calculation of the optimal step-length 1;; along the direction p;,.

6. The model weights are updated w;;+| = wi +M; P;, the training algorithm goes to
step 1.

The simplest approach to find the optimization direction is to use the steepest-descent
technique, in which the direction is opposite to the current gradient of the model error
[24], i.e.

_ dE (Wi,)
dw;

Pir =

Due to very slow convergence of the steepest-descent method, a quasi-Newton algo-
rithms [24] are recommended in this work in which the direction is calculated from the
general formula

_1dE(wy)
= _[H(w:,)]™! !
plt [ (wlt)] dwit
where H (w;;) is Hessian matrix of the error function E(w), i.e. H(w;) = dzfvfzw ) Because

analytical calculation of the inverse of the Hessian matrix is quite complex, it is not found
analytically, but approximated. In this work a very efficient Broyden-Fletcher-Goldfarb-
Shanno (BFGS) method is used. In each iteration of the algorithm the inverse Hessian
[H(w;)]~! is approximated by the matrix V;, from the formula

T T
Vo=V S$itS;, Vitflritrl‘tvitfl
i =Vi—1+—F—— 7
S Tit riVi_iry

where the increment of the gradient vector of the weights vector is denoted by r; =
dﬁ&:‘:["’) — disv";"’_’ll) , whereas the increment of the weights vector is §; = w;; —w;;_. The
gradients of the error function are determined analytically at each iteration of the training
algorithm. Differentiating Eq. (5) with respect to the weights of the first and the second

layers, one obtains

dE(w ) k

) 2yl (k) 2t

dw; ; ow;
foralli=1...K, j=0,...,K+1 and

dE(w) 0Ymod (k)

dwgz) = 2(Ymod (k) —y(k)) awgz)

l 1

foralli=0,...,K. Next, differentiating Eq. (4), one has

n

W(l) _n:l aWO)

i,j i,j

aymod(k) _ f (2) avn(k)
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foralli=0...K, j=0...K+ 1. For the second layer

a)}mod (k)
ow?

1

=vi(k)

foralli=0,...,K. Differentiating Eq. (2) gives

(k) do(z,(k)) dz,(k)
ng’lj) © dz(k) awﬁfj)

foralli=1,...,K, j=0,...,K+1, n=1,...,K. Finally, from Eq. (3), one has

K
Z Wy, n,,+p an ) 1) fori=n
9z, (k) p=1 ow;
m ~ K ) v, (k—1) ©
ow; ; Z ”’)lu""pgil) fori#n
p=1 w

L]

foralli=0,...,K, j=0,...,.K+1, n=1,...,K, where

1 for j=0
Xj(k—1)=qu(k—1) forj=1
vilk—1) forl<j<K+1

Calculation of the optimal step-length n;; along the minimization direction p; may be
done by means of many methods, e.g. the golden section approach or the Armijo’s rule
[24].

3. Model Predictive Control based on the modified Elman network

3.1. Mathematical formulation of MPC

The core idea of Model Predictive Control (MPC) algorithms is to use on-line a
dynamic model of the controlled process to calculate some predicted control errors and to
minimise a predefined cost-function which defines the future control quality [2, 20, 30].
In comparison with the classical single-loop PID controller, the MPC algorithms have
the following advantages:

a) the ability to take into account constraints imposed on input and output variables
(or state variables) in a systematic way,

b) the ability to control multi-input multi-output processes,

c¢) very good control quality.
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MPC algorithms have many applications, mainly in process control (e.g. in petrochem-
ical, chemical, food and paper industries) [27], but they are also used in case of less
typical processes, e.g. in medicine for glucose concentration control [12] or in biology
research for control of physiology in a free living cell [1].

From the mathematical point of view, at each consecutive sampling instant k =
1,2,... of the MPC algorithm the following set of future control increments

Au(k) = [Au(klk) ... Au(k+N, —1[k)]" € RM (7)

is calculated, where Au(k+ p|k) = u(k+ p|k) —u(k+ p—1|k), N, is the control horizon,
in such a way that the predicted control errors are minimized over the prediction horizon
N. Typically, the quadratic cost-function is used for optimization

2

Ny—1
Z P(k+plk) —$(k+plk) > +A Y (Au(k+ plk))* (8)
p=1 p=0

where y*P(k 4 p|k) denotes the set-point for the sampling instant k + p known in the
current instant k, §(k+ p|k)) is the prediction of the output signal for the sampling instant
k+ p predicted in the current instant k, A is a weighting factor. Predicted signals y(k +
plk)) are calculated over the prediction horizon, i.e. for p = 1,...,N, from a dynamic
model of the controlled process. Although at each sampling instant the whole vector
(7) of the increments of the manipulated variable is calculated, only its first element is
applied to the process and in the next sampling instant the whole procedure is repeated.

In general, it is possible to take into account some constraints imposed on manipu-
lated and controlled variables. Let #™", 4™, Ay™* define the constraints imposed on
the minimal value, the maximal value and the rate of change of the manipulated variable
and let y™, yM2* define the constraints imposed on the minimal value and maximal val-
ues of the predicted output variable. Using the cost-function (8), the MPC optimization
problem solved at each sampling instant is

N Ny—1
min J(k) = P (k4 plk) — $(k + plk) || + A Au(k+ plk)|]?
Au(klk),...,Au(kJrNulk){ (k) [;Hy (k+ plk) —3(k+ plk)|| p;) | Au(k+plk)]|

subject to

U™ < u(k+ plk) < u™>, for p=0,...,N,—1

— Au™ < Au(k+ plk) < Au™, for p=0,...,Ny,— 1

Y™ < y(k+ plk) < y™, for p=1,...,N )

In the matrix-vector form the optimization problem becomes

fmin, {7(k) = y® (k) = 3(R)|1> + [ Duk) |3 }

subject to
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umin < u(k) < umax
~ AW Au(k) < Aum
Y < I(l) <y (10)

where the vectors of the set-point and the predicted trajectories are

yP(k) = [yP(k) ... yP(K)]T e RV
(k) = Pk +1]k) (k) ... $(k+Nk)(k)]" € RY

the input constraints are defined by the vectors

umin — [umin o umin} T e RN“

u — [umax o umaX]T e RN“

AU = [Au L Au|T e RM

the output constraints are defined by the vectors

ymin — [ymin L ymin]T c RN

max

y _ [ymax o ymax]T e RN

and A = diag(A,...,A) is a matrix of dimensionality N, X Nj,.

The most intuitive approach to nonlinear MPC is to use a nonlinear model of the
process, e.g. the Elman neural network, for calculation of the predicted output signals.
Since the model is nonlinear, future predictions are nonlinear functions of the calculated
control increments (7). As a result, the MPC optimization problem (9) or (10) is in fact a
nonlinear, in general non-convex, task which must be solved in real time on-line at each
sampling instant. Computational complexity of such an approach may be high and the
optimization algorithm may be unable to find the solution within the required time.

3.2. MPC algorithm with nonlinear prediction and linearization along the predicted
trajectory (MPC-NPLPT)

The general idea of a simple method which leads to reduction of computational bur-
den of nonlinear MPC is quite straightforward: at each sampling instant the nonlinear
model of the process is linearized on-line for the current operating conditions of the pro-
cess and the obtained linear approximation (i.e. a linear model with time-varying param-
eters) is used for prediction. Linearization makes it possible to obtain a relatively simple
to solve quadratic optimization problem. Such a simple approach to nonlinear MPC is
effective for the processes with mild nonlinearities whereas for highly nonlinear systems
the simplest solution may be inadequate as demonstrated in [16]. It is because the same
linearized model is used for prediction over the whole prediction horizon. When the
set-point changes significantly, the predictions differ considerably from the real process
output values.
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An alternative approach to nonlinear MPC is to use for prediction not a linear ap-
proximation of the model obtained for the current operating conditions, but to directly
determine a linear approximation of the predicted output trajectory along the future (cal-
culated) input trajectory [16]. Similarly to MPC with simple model linearization, the
MPC algorithm with Nonlinear Prediction and Linearization along the Predicted Trajec-
tory (MPC-NPLPT) also leads to a quadratic optimization problem, on-line nonlinear
optimization is not necessary. In order to increase prediction (and control) accuracy, tra-
jectory linearization and optimization of the future control sequence are repeated a few
times in internal iterations of the algorithm. Let the internal iterations be denoted by

the superscript ¢ (for t = 1,2,3, ..., fmax). Using the Taylor’s series expansion, the linear
approximation of the nonlinear output trajectory ¥’ (u'(k)) is
¥ (k) =3"" (k) +H' (k) (' (k) — '~ (k) (11)

In Eq. (11) the vector u' (k) = [u (k|k) ...u' (k+ N, — 1|k)]" consists of the future control
sequence which is calculated in the current sampling instant k and the current inter-
nal iteration ¢ (i.e. the decision variables of MPC). Linearization is performed along
the known future control sequence most recently calculated, from the previous in-
ternal iteration, i.e. u' ' (k) = [u' =" (k[k)...u' "' (k4 Ny — llk)]T. The predicted future
output trajectory §' ' (k) = [#*1(k+1[k)...9 (k+N \k)]T is calculated from the dy-
namic model of the process for the input trajectory u'~!(k) taking into account that
U~ (k+ plk) = '~ (k+ N, — 1|k) for p=Ny,...,N. The matrix

[ oy (k4 1]k) 0y 1 (k+1]k)
ou'—1 (k|k ou' 1 (k+ N, — 1|k
du(k)|3®=y""(k)  duw'~1(k) : ‘ :
u(k)=u'~" (k) 0y~ (k+ N|k) 0y~ (k+ N|k)
ou—(klk)  u(k+Ny—1[k) ]
(12)

is of dimensionality N x N, and it is calculated at each internal iteration of each sampling
instant independently. The vector ' (k) is determined for each internal iteration from

u' (k) = JAu (k) +u(k—1) (13)

where u(k—1) = [u(k—1)...u(k—1)]" and J is the all ones lower triangular matrix of
dimensionality N, X N,. In the first internal iteration (# = 1) of the MPC-NPLPT algo-
rithm the input trajectory along which the output trajectory is linearized is taken from
the previous sampling instant, i.e. u(k) = [u(k—1)...u(k—1)]". Using Eq. (13), the
linear approximation of the nonlinear predicted output trajectory (11) may be expressed
as a function of the control increments calculated at the current sampling instant k and
the current internal iteration ¢

¥ (k) = H'(k)J D' (k) + 5~ (k) + H' (k) (u(k — 1) — '™ (k) (14)
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Using the obtained linearized prediction equation (14), the optimization problem (10)
becomes the quadratic programming task in vector-matrix notation

Arg}(g){J (k) =

ly*P (k) — H' (k)J L' (k) =3~ (k) — H' (k) (w(k — 1) — a1 (k))||> + | A’ (k)[R )
subject to

wmn < TAW (k) 4 u(k—1) < um

— AU AU (k) < A

YU < H (k)T A (k) + 3 (k) + H (k) (u(k — 1) —u' 1 (k) < y™> (15)

Internal iterations are continued if

No

Zo(ysf’(k—l?)—ﬁ(k—p))z > 8y (16)
frm

where N is a horizon, and a coefficient 8, > 0 is chosen experimentally. If the difference
between the future control increment sequences calculated in two consecutive internal
iterations is small, i.e. when

|Au (k) — Au' ™ (k)| < 8, (17)

the internal iterations are interrupted, wherein the value of a coefficient J,, is also chosen
experimentally.
The steps repeated at each sampling instant k of the MPC-NPLPT algorithm are:

1. The first internal iteration (¢ = 1): the predicted output trajectory jio(k) correspond-
ing to an assumed initial future input trajectory u°(k) is determined from a non-
linear model of the process.

2. The nonlinear model is also used to calculate the linear approximation of the pre-
dicted trajectory 9'(k) along the trajectory u’(k) from Eq. (11) and the matrix
H'(k) from equation (12).

3. The quadratic programming task (15) is solved to find Au' (k).

4. If the condition (16) is satisfied, the internal iterations are continued for ¢t =

2, tmaxe

4.1. The predicted output trajectory 3 ! (k) corresponding to the input trajectory
w' (k) =J w1 (k) +u(k—1) is calculated using the nonlinear model.

4.2. The nonlinear model is also used to determine the linear approximation of
the predicted output trajectory § (k) along the trajectory u/~!(k), i.e. the ma-
trix H' (k) is calculated.
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4.3. The quadratic programming task (15) is solved to find control increments
Au' (k) for the current internal iteration 7 and the sampling instant k.

4.4. If the condition (17) is satisfied or > #i,x, the internal iterations are stopped.
Otherwise, the internal iteration index is increased (f := ¢ + 1) and the algo-
rithm goes to step 4.1.

5. The first element of the calculated vector of future control increments Au' (k) is
applied to the process, i.e. u(k) = u(k— 1) + A (k|k).

6. In the next sampling instant (k = k + 1) the algorithm goes to step 1.

3.3. Implementation of MPC-NPLPT algorithm for the modified ElIman neural network

For the modified Elman neural network, using Eq. (4), the output predicted trajectory
9 (k) corresponding to the input sequence u' (k) is calculated in each internal iteration ¢
of the MPC-NPLPT algorithm as

K
7 (k+plk) = iy + Y wi o (k+plR) +-d k) (18)
i=1
and from Eq. (3) the sum of signals of the i hidden node is

K

1 1 1

Akt pli) = wi +wiud (k= pli)+ Y owl ik —14plk) — 19)
j=1

where from Eq. (2) vi(k+ plk) = @(z}(k + pl|k)). For prediction calculation in Eq. (18)

the unmeasured disturbance acting on the process is assessed as the difference between

the measured output signal of the process, y(k), and the output of the model [30]

v @ [ 0 SR
d(k) =y(k) —wy Y wi '@ wig +wiu(k—1)+ Y w;vi(k—1) (20)
i=1 j=1

It is assumed that the disturbance d(k) is constant over the whole prediction horizon.
A linear approximation of the nonlinear output trajectory (Eq. (14)) is determined by a
matrix H' (k), each element of which is calculated by differentiating the predicted output
trajectory (Eq. (18)) with respect to the future control sequence

9y’ (k+ plk)
ou' (k—t+1+4rlk)

) ovi(k+ plk)
. 21
Vi (k= L+ 1K) @D

I

forp=1,....Nandr=0,...,N, — 1. The partial derivatives in the right side of Eq. (21)
are calculated from
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V! (k+ plk) B o)
o' (k—t+1+r+1lk)
dvi(k+ plk) ou' (k + p|k) 9z; (k + p|k)
dzi(k+plk) \ 9 (k—=t+1+r+1k) = du'(k—T+1+r+1[k)

Calculation of the first derivatives used in the right side of Eq. (22) depends on the type
of the transfer function ¢ used in the hidden layer of the neural network. If the hyperbolic
tangent (@(-) = tanh(-)) is used, one has

dvi(k + plk)

—= 7 — | —tanh® (2} (k+ plk))
dzi(k+ p|k) !

The first partial derivatives are calculated from

wl(k+plk) {w,{n+1 if p=r+1lor(p>r+landr=N,—1)

ou(k—t+1+r+1Jk) 0 in other cases

The second partial derivatives are determined from

9z (k+ p|k) _ L avtj(k—l—kp\k)

oul (k—t+1+r+1]k) _j:zlw"=f+‘auf(k—fc+1+r+l\k)

4. Simulation results

4.1. Benchmark neutralization process

The process under consideration is a neutralization reactor (pH reactor) [7]. This pro-
cess is a well known and frequently used benchmark for comparing different models and
control algorithms, e.g. the Hammerstein and Wiener structures are used to model the
neutralization process in [6, 15], identification of the process using the Takagi-Sugeno
fuzzy model is considered in [3], identification using a dynamic back propagation algo-
rithm is described in [10]. Fuzzy adaptive control applied to the neutralization process is
discussed in [13], MPC algorithms based on neural Wiener models are described in [15].

The neutralization reactor is shown schematically in Fig. 3. In the tank acid HNO3,
base NaOH and buffer NaHCO3 are mixed. pH value of the product is controlled by
manipulating the flowrate g, of acid. From the modeling point of view the process has
one input (g1) and one output (pH). The fundamental model of the process consists of
differential equations [7]

du:;(t) _ (Wm —VWa(l)) a0+ <Waz_VWa(’)> B+ (W) a3
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Figure 3. Neutralization reactor with delayed pH measurement

dug,t(t) _ (Wb1 —VWh(f)) 710+ <W”2_VW”(t)> 4+ (Wb’_vw) 93

and the algebraic equation

142 x 10PH0)-PK:

pH(t)—14 _ 1n—pH(t) =
Wa(1) +10 10 FWolt) T ork—pi0 1 10pHO PK2 =

0 (23)

The sampling time used is 10 seconds. Unlike the cited works concerned with modeling
and control of the neutralization process, in this study it is assumed the value of pH
is measured with a significant delay equal to 10 discrete sampling instants (i.e. 100
seconds).

The nominal operating point and the parameters of the fundamental model of the
reactor are given in Table 2. The discussed neutralization reactor is highly non-linear. In
particular, its static characteristics shown in Fig. 4 is nonlinear.

4.2. Modeling of the neutralization process for MPC

Because the model next used in MPC should have the ability to mimic the real pro-
cess, it is necessary to use the model capable of data generalization, i.e. for different op-
erating conditions the model output must be similar to that of the real process. In order
to do so, for identification of the neural networks three independent data sets (generated
from the open-loop simulations of the fundamental model) are used: the training data
set (Fig. 5), the validation data set (Fig. 6) and the test data set (Fig. 7). The first one is
used only for model training, i.e. the model errors (5) is minimized for this set. Although
the consecutive iterations of the model training (optimization) algorithm always lead
to minimization of the model error, in order to have good generalization and eliminate
overtraining the model error for the validation data set (the validation error) is calculated
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Table 2. Operating point and the parameters of the fundamental model of the reactor

The nominal operating point of the reactor
q1, = 15.55 ml/s pHy=17.0
W, = —4.32x 1074 mol W, = 5.28 x 1074 mol
Parameters of the fundamental model
gq>» = 0.55 ml/s g3 = 16.60 ml/s
pK; =6.35 pK> =10.25
W, =—3.05x 103 mol W, =5x 107> mol
W,, = —3 x 1072 mol W, =3 x 1072 mol
W,, =3 x 1072 mol Wy, = 0 mol
V =2900 ml

12

pH

2
0 5 10 15 20 25 30

q1

Figure 4. Static characteristic of the neutralization reactor

at each iteration of the training algorithm. Training is finished when the validation error
increases, because that is a sign that the model begins to lose its ability to generalize
data. Further learning is likely to give a model with too strict dependence on the training
data set only. The validation data set is also used for model comparison and selection,
the third set is used for final assessment of the chosen model. In order to have data sets
representative enough that the learned neural network could properly model all possible
operating conditions of the real process, all three sets consist of 1200 samples, as the in-
put signal a series of random step changes is used. In order to use inputs of the networks
of a similar order of magnitude, the process variables are scaled: u = (¢1 —¢q1,,)/15 and
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Figure 5. The training data set
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Figure 6. The validation data set

y = (pH — pHp) /4, where q, and pH, denote the nominal operating point specified in
Table 2.

The selection of the best network architecture, i.e. the number of hidden nodes, is
done by training a set of models and comparing their complexity and accuracy (errors).
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Figure 7. The test data set

In each case (i.e. for each model configuration) training is repeated 10 times and the best
results are presented. The classical Elman neural structure with 5, 10, 15, 16, 17, 18 and
19 hidden nodes are considered. Table 3 presents for each model structure the training
and validation errors and the number of model parameters. In the case of the modified
Elman neural structure the networks with 1, 2, 3, 4, 5, 6 and 7 hidden nodes are consid-
ered. Their errors and the number of parameters are compared in Table 4. It is observed
that the classical Elman neural network needs many hidden nodes (and weights), the
errors of the networks with 5 and 10 nodes are comparable with those of the modified
networks containing only 1 or 2 nodes. The classical Elman network with many hidden
nodes must be used whereas the modified structure needs only a few nodes. Considering
the validation error, the classical Elman network with 17 hidden neurons is chosen, be-
cause the models with a lower or higher number of hidden nodes give worse accuracy.
In the case of the modified Elman neural network, the structure with 5 hidden neurons
18 chosen, because for that network the validation error has its lowest value and the error
for the test data set is small enough. It is noteworthy that the modified Elman network
with 3 neurons has a similar validation error to that of the classical Elman structure with
17 neurons, but the error for the test data set is bigger, so it is a better idea to choose the
modified Elman structure since it has a lower number of parameters than the classical
one. It is necessary to point out that although the classical network with 17 hidden nodes
has bigger validation and test errors than those of the modified one, the first network has
as many as 341 weights and the second one has only 41 weights. Fig. 8 compares the val-
idation data set and the output of two models: the classical network with K = 17 nodes
and the modified one with K = 5 nodes are considered. Although numerical values of
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their errors, i.e. for the whole validation set (Tables 3 and 4) are similar, for some sam-
ples the classical network seems to give unwanted approximation of the process output
signal. That observation is true when one considers enlarged fragments of the compari-
son of the validation data set and model outputs shown in Fig. 9. Correlation between the
outputs of the two considered models and the validation data set is depicted in Fig. 10.
Finally, it is interesting to compare the classical and modified networks with only K =5
hidden nodes. Fig. 11 compares the validation data set and model outputs whereas Fig.
12 depicts the correlation between the model output and the validation data set. Such
a comparison demonstrates the great advantage of the modified Elman network, i.e. for
the same model complexity it is much more precise than the classical Elman structure.

Table 3. Comparison of the number of parameters (NP) and accuracy of the classical recurrent Elman
neural network (Eq(w) — error for the training data set, Eyer(w) — error for the validation data set, Eresi(w)
— error for the test data set)

Model NP Ei(w) Eyer(W) Erest (W)
K=5 41 29804x10"" 2.6214 -

K=10 131 7.3093x1072 1.9317 -

K=15 271 3.3227x1072 1.1643 -

K=16 305 3.9353x1073 9.3754x10"' -

K=17 341 3.1126x1073 9.1780x 10~! 9.5342x 107!
K=18 379 2.1590x 1073 9.4753x10~' -

K=19 419 1.5484x1073 9.4631x10°! -

Table 4. Comparison of the number of parameters (NP) and accuracy of the modified recurrent Elman neural
network (Ey(w) — error for the training data set, Eyer (W) — error for the validation data set, Eqegt (W) — error
for the test data set)

Model NP Ey(w) Eyer(w) Eiest(W)
K=1 5 13369x107% 2.3022 -

K=2 11 7.7507x1073 1.7598 -

K=3 19 52788x1073 9.1853x 10" 1.6912
K=4 29 39320x1073 8.8345x10~' 1.1790
K=5 41 1.0173x1073 6.1099 x 10~' 7.3211 x 107!
K=6 55 9.6266x107% 7.4933x107! -

K=7 71 83091x107* 7.2398x10°! -
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Figure 8. Comparison of the validation data set (dashed line) vs. the model output (solid line): the classical

Elman recurrent neural network with K = 17 nodes (left), the modified Elman recurrent neural network with
K = 5 nodes (right)

5. Predictive control of the process

5.1. MPC with nonlinear optimization (MPC-NO) based on classical and modified
Elman neural networks

At first the two considered Elman structures of a similar validation error, i.e. the clas-
sical structure with as many as K = 17 hidden nodes and the modified structure with only
K = 5 nodes, are compared in the MPC algorithm in which the full nonlinear model is
used for prediction and a nonlinear optimization problem (9) is solved at each sampling
instant. If a model is precise enough, such an approach to MPC gives the best possi-
ble control performance, the MPC-NO algorithm may be regarded as the *“ideal” one.
Simulation results are depicted in Fig. 13. Each simulation is performed under the same
conditions, the same values of parameters of the algorithm: prediction horizon (N = 20),
control horizon (N, = 2) and A = 1. Although both models have similar modeling er-
rors (Tables 3 and 4), but the classical network is less capable of modeling the delayed
process (Fig. 9). A direct consequence of this fact is that in the case of the MPC-NO
algorithm based on the classical Elman network there are some vanishing oscillations in
the manipulated and controlled variables. Conversely, in the case of the MPC-NO algo-
rithm based on the modified Elman network, the output trajectory quickly follows the
set-point trajectory.

5.2. Efficiency of the MPC-NPLPT algorithms based on the modified ElIman network

There are three parameters for tuning quality of MPC-NPLPT algorithm, i.e. 3, 0,
and t#,,4x. They determine the number of internal iterations of the algorithm. The lower
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Figure 9. Comparison of two fragments of the validation data set (dashed line) vs. the model output (solid
line) for k = 420, ...,480 and k = 880,...,940: the classical Elman recurrent neural network with K = 17
nodes (left), the modified Elman recurrent neural network with K = 5 nodes (right)

the values of §, and J,, the more internal iterations are necessary and the more internal
iterations, the better the control quality.

Simulation performance of the MPC-NPLPT algorithm with successive on-
linearization and quadratic optimization is evaluated. Fig. 14 compares the trajectories
obtained in MPC-NO and MPC-NPLPT algorithms. Both algorithms use the same mod-
ified Elman neural network and parameters 8, = 1072, o, =5x 1078, tpax = 9. The
comparison clearly indicates that the MPC-NPLPT control strategy gives practically the
same trajectories as the “ideal” MPC-NO approach with on-line nonlinear optimization.

Fig. 15 compares the trajectories obtained in MPC-NO and MPC-NPLPT algorithms
with additional constraints imposed on the rate of change of the manipulated variable,
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Figure 10. The correlation between the model output and the validation data set: the classical Elman re-
current neural network with K = 17 nodes (/eft), the modified Elman recurrent neural network with K =5
nodes (right)
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Figure 11. Comparison of the validation data set (dashed line) vs. the model output (solid line): the classical
Elman recurrent neural network with K = 5 nodes (left), the modified Elman recurrent neural network with
K = 5 nodes (right)

Au™* = 1. Due to the constraints, the obtained trajectories are slower in comparison
with those shown in Fig. 14.
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Figure 12. The correlation between the model output and the validation data set: the classical Elman recur-
rent neural network with K = 5 nodes (/eft), the modified Elman recurrent neural network with K = 5 nodes
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Figure 13. Simulation results of the MPC-NO algorithm based on the classical Elman neural network
(dashed line) and based on the modified Elman neural network (solid line)

6. Summary

The paper describes a modified recurrent neural network of the Elman type. The
modification consists in taking into account the process delay. It is observed that for
significantly delayed systems the classical network needs a huge number of parameters
whereas the modified network requires only a portion of the weights to provide a similar
modeling accuracy. For the considered polymerization reactor the classical network has
as many as 17 hidden nodes and 341 parameters whereas the modified structure of a
similar accuracy has only 5 nodes and 41 weights. Furthermore, it is also observed that
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Figure 14. Simulation results of the MPC-NO algorithm based on the modified Elman neural network
(dashed line) and the MPC-NPLPT algorithm based on the same network (solid line)
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Figure 15. Simulation results of the MPC-NO algorithm based on the modified Elman neural network
(dashed line) and the MPC-NPLPT algorithm based on the same network (solid line) with additional con-
straints imposed on the rate of change of the manipulated variable

the modified network approximates the trajectory of delayed systems in a more natural
way. The introduced modification of the neural network may be also used in the case of
different recurrent neural structures, e.g. in the Real Time Recurrent Network (RTRN)
[11]. Furthermore, it is straightforward to use the discussed modification in Elman and
RTRN networks which are used for modeling of multiple-input multiple-output dynamic
systems.

This paper also describes the application of the modified Elman neural network in
the MPC algorithm with successive on-line linearization of the predicted trajectory. Tra-
jectory linearization makes it possible to obtain a simple quadratic optimization MPC
task. For the considered nonlinear neutralization process, the trajectories obtained in the
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algorithm with on-line linearization are very similar to those possible in the MPC ap-
proach with repetitive nonlinear optimization.
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