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Reachability of standard and fractional
continuous-time systems with constant inputs

KRZYSZTOF ROGOWSKI

The reachability of standard and fractional-order continuous-time systems with constant
inputs is addressed. Positive and non-positive continuous-time linear systems are considered.
Necessary and sufficient conditions for the existence of such constant inputs that steers the
system from zero initial conditions to the given final state in desired time are derived and proved.
As an example of such systems the electrical circuits with DC voltage sources are presented.
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1. Introduction

Reachability is one of the most important structural property of dynamical systems.
It appears in many different areas, such as computational models, celluar automata, Petri
nets, decision procedures, game theory, etc. The problem of reachability of standard
ordinary-order systems has been addressed in [2, 8, 17]. Reachability of linear hybrid
systems described by the general model and their piecewise constant control have been
considered in [15].

Positive systems is a wide class of systems in which inputs, outputs and state vari-
ables take only nonnegative values. Positive behavior occurs in engineering, economics,
social sciences, biology, medicine, etc. An overview of state of the art in positive systems
theory is given in the monographs [5, 10]. Reachability of positive continuous-time and
discrete-time systems has been addressed in [4, 10, 24]. The problem of reachability of
electrical circuits has been solved in [11, 16].

Many physical phenomena have "fractional" nature, i.e. fractional-order differential
or difference equations provides more accurate descriptions than ordinary calculus do
[1, 3, 7, 18]. Fundamentals of fractional calculus are given in monograps [13, 16, 19, 20].
Reachability of fractional systems and electrical circuits have been considered in [12, 14,
21, 22, 23].
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In this paper the problem of existence of constant inputs vector that steers the system
from zero initial conditions to the given final state in desired time t f will be considered.
The following classes of systems will be addressed: standard (non-positive) and positive
ordinary-order and fractional-order continuous-time systems.

To the best knowledge of the author reachability of fractional and positive fractional
continuous-time systems when the input is a constant function has not been considered
yet.

The structure of the paper is following. In section 2 the reachability of standard
continuous-time systems with constant inputs is considered. Necessary and sufficient
conditions for the existence of constant input that steers the systems from zero initial
conditions to the given final states are given. Similar problem will be solved for frac-
tional systems in section 3. In section 4 the reachability of positive standard and positive
fractional-order systems with constant inputs is adressed. Concluding remarks are given
in section 5. The considerations are illustrated by examples of electrical circuits with DC
voltage sources.

The following notation will be used. R is the set of real numbers, Rn×m – the set of
n×m matrices with real entries. Rn×m

+ – the set of n×m matrices with real nonnegative
entries and Rn

+ =Rn×1
+ . The set of n×n Metzler matrices (real matrices with nonnegative

off-diagonal entries) will be denoted by Mn and the identity matrix of size n by In.

2. Reachability of standard continuous-time linear systems with constant inputs

Let us consider the standard continuous-time system described by the state equation
[8, 17]

dx(t)
dt

= Ax(t)+Bu(t), (1)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rm is the input vector of the system for t ­ 0
and matrices A ∈ Rn×n, B ∈ Rn×m.

The solution to the state equation (1) with initial condition x0 = x(0) ∈Rn and input
vector u(t) ∈ Rm for t ­ 0 is given by [8, 17]

x(t) = eAtx0 +

t∫
0

eA(t−τ)Bu(τ)dτ = eAtx0 +

t∫
0

eAτBu(t− τ)dτ. (2)

Now, we will consider the continuous-time system (1) with constant inputs vector
U , i.e.

u(t) =U ∈ Rm for t ­ 0. (3)

Definition 1 The standard continuous-time linear system (1) is called reachable for con-
stant inputs in time t f > 0 if there exists such constant input vector (3), that steers the
system from zero initial conditions x0 = x(0) = 0 to arbitrary final state x f = x(t f ) ∈Rn.
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Let us assume that detA ̸= 0. Then the following theorem holds.

Theorem 1 The system (1) is reachable for constant input in time t f > 0 if and only if
the matrix

Rc = A−1 (eAt f − In
)

B ∈ Rn×m (4)

has n linearly independent columns, i.e.

rankRc = n. (5)

Proof Substituting (3) into (2) for zero initial conditions and t = t f > 0 we obtain

x(t f ) = x f =

t f∫
0

eAτBUdτ =
t f∫

0

eAτdτBU = A−1 (eAt f − In
)

BU, (6)

since [9]

t f∫
0

eAτdτ =A−1 (eAt f − In
)
.

The equation (6) has a solution U for arbitrary final state x f ∈ Rn if and only if
the matrix Rc satisfies the condition (5).

The constant input that steers the system (1) from zero initial state to the final state
x f in time t ∈ [0, t f ] is given by the formula

U = R+
c x f , (7)

where R+
c ∈ Rm×n is the right pseudoinverse of the rectangular matrix RC given by one

of the following formulae [6, 9]

R+
c =RT

c
[
RcRT

c
]−1

+
(
Im−RT

c
[
RcRT

c
]−1

Rc

)
K1 for arbitrary K1 ∈ Rm×n; (8a)

R+
c =K2 [RcK2]

−1 for arbitrary K2 ∈ Rm×n, det [RcK2] ̸= 0. (8b)

Example 1 Consider the electrical circuit shown in Fig. 1 with given resistances R1 =
0.1Ω, R2 = 1Ω, R3 = 2Ω, inductance L = 0.5H and capacitance C = 0.1F.

Using Kirchhoff’s laws we may formulate the state equations (1) of the circuit shown
in Fig. 1

d
dt

[
iL(t)
uC(t)

]
= A

[
iL(t)
uC(t)

]
+B

e1(t)
e2(t)
e3(t)

 , (9a)
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Figure 1. Electrical circuit of Example 1.

where

A =

−R1
L −

R2R3
L(R2+R3)

R2
L(R2+R3)

− R2
C(R2+R3)

− 1
C(R2+R3)

=

[
−1.53 0.67
−3.33 −3.33

]
, (9b)

B =

[
1
L − R3

L(R2+R3)
R2

L(R2+R3)

0 − 1
C(R2+R3)

1
C(R2+R3)

]
=

[
2 −1.33 −0.67
0 −3.33 3.33

]
. (9c)

We will show that the electrical circuit described by the equation (9a) with matrices

(9b) and (9c) is reachable for constant inputs U =
[
E1 E2 E3

]T
in time t f = 5s.

Using Theorem 1 we have

Rc = A−1 (eAt f − In
)

B =

[
0.91 −0.91 0
−0.91 −0.09 1

]
(10)

and the condition (5) is met, since

rankRc = n = 2. (11)

Therefore, there exists constant input vector U that steers the circuit from zero

initial conditions x0 =
[
iL(0) uC(0)

]T
=
[
0 0

]T
to the arbitrary given final state

x f = x(t f ) =
[
iL(t f ) uC(t f )

]T
in desired time t f = 5s.

Let iL(t f ) = iL(5) = 1A, uC(t f ) = uC(5) = 0.5V. Then the constant inputs can be
computed using (7) and (8a) with K1 = 0

U =

E1

E2

E3

= RT
c
[
RcRT

c
]−1

x f =

 0.4 −0.33
−0.7 −0.33
0.3 0.67

[ 1
0.5

]
=

 0.24
−0.87
0.64

 . (12)

The state variables of the electrical circuit shown in Fig. 1 with constant inputs (12)
are shown in Fig. 2.
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Figure 2. State variables of Example 1.

3. Reachability of fractional continuous-time systems
with constant inputs

Let us consider the fractional continuous-time system described by the state equation
[13, 16]

Dαx(t) = Ax(t)+Bu(t), (13)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rm is the input vector of the system for t ­ 0,
matrices A ∈ Rn×n, B ∈ Rn×m and

Dα f (t) =
dα

dtα f (t) =
1

Γ(N−α)

t∫
0

(t− τ)N−α−1 dN f (τ)
dτN dτ (14)

is the α-order (α ∈ R) fractional derivative described by the Caputo operator,
where N−1¬ α < N, N ∈ N and Γ(x) is the Euler gamma function.

The solution to the state equation (13) with initial condition x0 = x(0)∈Rn and input
vector u(t) ∈ Rm for t ­ 0 is given by [13, 16]

x(t) = Φ0(t)x0 +

t∫
0

Φ(t− τ)Bu(τ)dτ = Φ0(t)x0 +

t∫
0

Φ(τ)Bu(t− τ)dτ, (15)

where

Φ0(t) =
∞

∑
k=0

Aktkα

Γ(kα+1)
= Eα(Atα), (16a)
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Φ(t) =
∞

∑
k=0

Akt(k+1)α−1

Γ[(k+1)α]
= tα−1Eα,α(Atα). (16b)

and Eα(x), Eα,β(x) are the one and two parameters Mittag-Leffler functions,
respectively [13, 16].

Now we define the notion of reachability of the system described by the state equa-
tion (13) for constant inputs (3).

Definition 2 The fractional continuous-time system (13) is called reachable in time
t f > 0 if there exists a constant input vector (3) that steers the system from zero ini-
tial conditions x0 = x(0) = 0 to every given final state x f = x(t f ) ∈ Rn.

Theorem 2 The fractional continuous-time system (13) is reachable for constant inputs
in time t f > 0 if and only if the matrix

R f = Eα,α+1(Atα
f )B ∈ Rn×n (17)

has n linearly independent columns, i.e.

rankR f = n. (18)

Proof Substituting (3) and (16b) into (15) for zero initial conditions and t = t f > 0 we
obtain

x(t f ) =x f =

t f∫
0

Φ(τ)BUdτ =
t f∫

0

Φ(τ)dτBU =

t f∫
0

∞

∑
k=0

Akτ(k+1)α−1

Γ[(k+1)α]
dτBU

=
∞

∑
k=0

Ak

Γ[(k+1)α]

t f∫
0

τ(k+1)α−1dτBU =
∞

∑
k=0

Ak

Γ[(k+1)α+1]

[
τ(k+1)α

]t f

0
BU

=
∞

∑
k=0

Ak

Γ[(k+1)α+1]
t(k+1)α

f BU = tα
f Eα,α+1(Atα

f )BU,

(19)

since from the properties of the gamma function we have [(k+1)α]Γ[(k+1)α] = Γ[(k+
1)α+1].

From (19) it follows that the equation

x f = tα
f Eα,α+1(Atα

f )BU (20)

has a solution U for given final state x f and given final time t f > 0 if and only if the
condition (18) is satisfied.

The constant input that steers the system (13) from zero initial state to the final state
x f in time t ∈ [0, t f ] is given by the formula

U = t−α
f R+

f x f , (21)
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where R+
f ∈ Rm×n is the right pseudoinverse of the rectangular matrix R f given by one

of the following equalities [6, 9]

R+
f =RT

f
[
R f RT

f
]−1

+
(
Im−RT

f
[
R f RT

f
]−1

R f

)
K1 for arbitrary K1 ∈ Rm×n; (22a)

R+
f =K2 [R f K2]

−1 for arbitrary K2 ∈ Rm×n, det [R f K2] ̸= 0. (22b)

From Theorems 1 and 2 we have the following corollary.

Corollary 1 The system (1) (or (13)) is unreachable for constant inputs if the number
of inputs is less than the number of state variables, i.e. m < n.

Example 2 Consider the electrical circuit from Example 1 shown in Fig. 1 with α = 0.8.
Using Kirchhoff’s laws for the fractional electrical circuit shown in Fig. 1, it can be

easily shown, that the state equation of this circuit has the form

dα

dtα

[
iL(t)
uC(t)

]
= A

[
iL(t)
uC(t)

]
+B

e1(t)
e2(t)
e3(t)

 (23)

with the matrices given by (9b) and (9c).
We will show that the fractional electrical circuit is reachable for constant input

vector U =
[
E1 E2 E3

]T
in time t f = 5s.

Using Theorem 2 we have

R f = Eα,α+1(Atα
f )B =

[
0.24 −0.24 0
−0.24 −0.034 0.27

]
(24)

and the condition (18) is met, since

rankR f = n = 2. (25)

Therefore, there exists constant input vector U that steers the circuit from zero

initial conditions x0 =
[
iL(0) uC(0)

]T
=
[
0 0

]T
to the arbitrary given final state

x f = x(t f ) =
[
iL(t f ) uC(t f )

]T
in desired time t f = 5s.

Let iL(t f ) = iL(5) = 1A, uC(t f ) = uC(5) = 0.5V. Then the constant inputs can be
computed using (21) and (22a) with K1 = 0

U =

E1

E2

E3

= t−α
f RT

f
[
R f RT

f
]−1

x f = 5−0.8

 1.55 −1.24
−2.62 −1.24
1.05 2.44

[ 1
0.5

]
=

 0.26
−0.89
0.63

 . (26)

The state variables of the fractional electrical circuit with constant voltage sources
(26) are shown in Fig. 3.
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Figure 3. State variables of Example 2.

4. Reachability of positive systems with constant inputs

Definition 3 The system (1) (or fractional system (13) for 0 < α < 1) is called positive
if the state vector x(t) ∈Rn

+, t > 0 for all initial conditions x0 ∈Rn
+ and all nonnegative

inputs u(t) ∈ Rm
+, t ­ 0.

Theorem 3 [5, 13, 16] The continuous-time system (1) (or fractional system (13)
for 0 < α < 1) is positive if and only if

A ∈Mn, B ∈ Rn×m
+ . (27)

Theorem 4 The standard positive continuous-time system (1) is reachable for constant
inputs in time t f > 0 if and only if the matrix A is diagonal and B is monomial.

Proof From (7) it follows that U ∈ Rm
+ if and only if R+

c ∈ Rm×n
+ , since x f ∈ Rn

+.
It is easy to show that the right pseudoinverse has all nonnegative elements if and only if
the matrix Rc has n monomial rows.

From (4), for monomial matrix B, we obtain the necessity of monomiality of the
matrix

A−1 (eAt f − In
)
. (28)

The matrix (28) is monomial if and only if the matrix A is diagonal. More-
over the matrix has all nonnegative elements for arbitrary diagonal entries of matrix
A = diag(a11,a22, . . . ,ann), since

A−1 (eAt f − In
)
= diag

[
a−1

11 (e
a11t f −1),a−1

22 (e
a22t f −1), . . . ,a−1

nn (e
annt f −1)

]
(29)

is nonnegative diagonal matrix for arbitrary a11,a22, . . . ,ann.
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Theorem 5 The fractional positive continuous-time system (13) is reachable for con-
stant inputs in time t f > 0 if and only if the matrix A is diagonal and B is monomial.

The proof of this theorem is similar to the proof of Theorem 4.

Corollary 2 Note that the conditions for reachability for constant inputs of positive
standard and fractional systems are the same as for the reachability for arbitrary (non-
constant) continuous-time inputs (see [16]).

Example 3 Consider the electrical circuit shown in Fig. 4 with given resistances R1 =
0.5Ω, R2 = 1Ω, inductances L1 = 0.5H, L1 = 0.4H and source volages e1, e2.

Figure 4. Electrical circuit of Example 3.

Using Kirchhoffs laws we may formulate the state equations (1) of the circuit shown
in Fig. 4

d
dt

[
iL1(t)
iL2(t)

]
= A

[
iL1(t)
iL2(t)

]
+B

[
e1(t)
e2(t)

]
, (30a)

where

A =

−R1
L1

0

0 −R2
L2

=

[
−1 0
0 −2.5

]
, B =

[
1 0
0 1

]
. (30b)

By Theorem 3, the electrical circuit described by the state equation (30a) with ma-
trices (30b) is positive.

We will show that this electrical circuit is reachable for constant inputs vector

U =
[
E1 E2

]T
in time t f = 3s.

The conditions of Theorem 4 are met. The matrix

Rc = A−1 (eAt f − In
)

B =

[
0.95 0

0 0.4

]
(31)
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has n monomial rows. Therefore, there exists constant input vector U that steers the

circuit from zero initial conditions x0 =
[
iL1(0) iL2(0)

]T
=
[
0 0

]T
to the arbitrary

given final state x f = x(t f ) =
[
iL1(t f ) iL2(t f )

]T
in time t f = 3s.

Let iL1(t f ) = iL1(3) = 1A, iL2(t f ) = iL2(3) = 1.5A. Then the constant nonnegative
inputs vector can be computed using (7)

U =

[
E1

E2

]
= RT

c
[
RcRT

c
]−1

x f =

[
1.05 0

0 2.5

][
1

1.5

]
=

[
1.05
3.75

]
. (32)

The state variables of the electrical circuit shown in Fig. 4 with constant inputs (32)
are shown in Fig. 5.
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Figure 5. State variables of Example 3.

Example 4 Consider the fractional electrical circuit from Example 3 shown in Fig. 4
with α = 0.8.

Using Kirchhoff’s laws for the fractional electrical circuit we may write the state
equation

dα

dtα

[
iL1(t)
iL2(t)

]
= A

[
iL1(t)
iL2(t)

]
+B

[
e1(t)
e2(t)

]
(33)

with the matrices given by (30b).
We will show that the fractional electrical circuit is reachable for constant input

vector U =
[
E1 E2

]T
in time t f = 3s.
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From Theorem 5 follows that the fractional circuit is reachable for constant inputs,
since the matrix A is diagonal matrix and B is monomial.

Using (17) we have

R f = Eα,α+1(Atα
f )B =

[
0.35 0

0 −0.16

]
(34)

and the matrix R f has two monomial rows.
Therefore, there exists nonnegative constant input vector U that steers the fractional

electrical circuit from zero initial conditions x0 =
[
iL1(0) iL1(0)

]T
=
[
0 0

]T
to the

arbitrary given final state x f = x(t f ) =
[
iL1(t f ) iL1(t f )

]T
in desired time t f = 3s.

Let iL1(t f ) = iL1(3) = 1A, iL2(t f ) = iL2(3) = 1.5A. Then the nonnegative constant
inputs can be computed using (21) and (22a) with K1 = 0

U =

[
E1

E2

]
= t−α

f RT
f
[
R f RT

f
]−1

x f = 3−0.8

[
2.86 0

0 6.25

][
1

1.5

]
=

[
1.19
3.89

]
. (35)

The state variables of the fractional electrical circuit shown in Fig. 4 with constant
voltage sources (35) are shown in Fig. 6.
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Figure 6. State variables of Example 4.
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5. Concluding remarks

The reachability of standard (ordinary-order) and fractional-order systems with con-
stant inputs has been considered. Necessary and sufficient conditions for non-positive
and positive continuous-time systems have been established (Theorem 1-5). It has been
shown that the conditions for reachability of nonpositive and positive fractional-order
systems for constant inputs and arbitrary (nonconstant) inputs are the same (Corollary
2). The considerations are illustrated by examples of electrical circuits with DC voltage
sources.
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