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Morphological sharpening of color images

S. SKONECZNY∗
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Abstract. This paper presents a novel approach to morphological contrast sharpening of image using the multilevel toggle operator. The

concept presented here is a generalization of toggle based contrast operator for gray-level images. The multilevel toggle operator is used to

enhance the contrast of multivalued images. In order to perform necessary morphological operations the modified pairwise ordering (MPO)

algorithm is proposed. It gives the total order of color pixels. For comparison four other ordering methods are used. The main advantage of

the proposed sharpener is its significant contrast enhancing ability when using MPO. Theoretical considerations as well as practical results

are shown. Experimental results show its applicability to low-contrast color images.
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1. Introduction

Contrast for monochromatic images is most often defined as

a measure of the variation in intensity of pixels. Analogically

for color images it is possible to formulate a new definition

of variation in at least one of three components: luminance

(intensity), hue or saturation. The area of these variation is

usually a small window, and in such a case the concept of con-

trast is localized. We can formulate, however, another measure

concerning the whole image or at least majority of its pixels

which leads to the notion of global contrast. In normal circum-

stances, however for improving the appearance of color image

the local contrast seems to be a little bit more advantageous

that its global counterpart.

There are lots of pictures suffering from low contrast phe-

nomenon. In many cases this fact reduces the visual quality

of an image which is shown to a human viewer. Sometimes

the image quality is completely unacceptable, in particular,

in pattern recognition applications. There are many examples

of such defocused pictures, especially in the area of old pic-

tures which are important for the cultural heritage of human

beings [1]: like artistic wall-paintings (e.g. old church paint-

ings) or frames taken from old motion pictures etc. In partic-

ular for medical images the increasing of contrast is a very

important factor and it helps significantly in a segmentation

process [2], as well as in motion tracking using optical flow

in 3D image research [3]. The aim of this paper is to general-

ize the toggle based gray-level contrast operator to multilevel

toggle sharpener for enhancing the contrast of color images.

The paper is organized as follows. In Sec. 2 the state of art

is presented. The most important Sec. 3 presents the novel

multistage toggle contrast operator. In Sec. 4 the Classical

as well as Modified Pairwise Ordering (MPO) are described.

Other ordering schemes are given in Sec. 5. Contrast measure

expression for color images is described in Sec. 6. Sections 7

and 8 include respectively experiments and final conclusions.

Section 9 presents the proof that the MPO is the total order.

2. Morphological contrast enhancement

– state of the art

There have been some attempts to enhance the image by in-

creasing its contrast using the tools that offer mathematical

morphology. One of the main improvements of image con-

trasts in the area of mathematical morphology takes advan-

tage of notion of toggle mappings. The fundamental concept

of utilizing the toggle mappings is to compare all pixels in

the original image with a set of patterns and then to select the

nearest value, in the sense of some previously defined dis-

tance, from the patterns with respect to the original image.

The original idea stems from a paper of Kramer and Bruck-

ner [4]. They took a dilation and an erosion, both working

with flat structuring elements, as the set of two patterns or,

in another words, two primitives. Their method requires to

choose one extensive and the other anti-extensive primitive

to construct toggle mapping, which may lead to instability

problems when this transformation is used iteratively. This

means the degradation of a processed image [5]. Meyer and

Serra [6] developed the theory of contrast mappings and they

used morphological idempotent transformations that might be

useful for contrast enhancement. In their paper they demon-

strate two-state and three-state contrast operators for gray level

images. On the other hand, Serra in [5] demonstrated two ex-

amples of idempotent toggle mappings using two and four

primitives respectively. The theory of toggle-like mappings is

nowadays still being developed and applied to image process-

ing – a good example is the conditional toggle mapping [7].

Angulo [8], by the analogy to the two-state contrast opera-

tor for gray-scale imagery, proposed a color contrast mapping,

with ordering based on pixel distances to reference color. The

three-state toggle based contrast operator for color images was

suggested by Skoneczny [9].

Practical experiments however, showed the insufficiency of

applying to color images this two-level contrast operator pro-

posed by Angulo, i.e. using the ordering based on Distance to
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Reference Color (DRC), as well as three-level contrast oper-

ator proposed in [9]. In the first case the output images often

looked too sharp, in the second one the quality of the output

image was not high enough for some color pictures coming

from old movies. Also the details of DRC ordering were not

obvious to be fixed (the choice of the reference color is rather

arbitrary here), which might lead to different results of mor-

phological operations. Those difficulties suggest the need for

more levels in toggle based approach, to increase the con-

trast in blurred images and to reduce the cartoon-like visual

impression of the viewer. In addition to that it is worth empha-

sizing that, the more experiments on the color images were

performed by the author of this paper, using many different

ordering schemes the more obvious conclusion appeared that

a good, automatic, total ordering method ought to be very

useful here.

3. The multistate toggle contrast sharpener

3.1. Classical toggle contrast operator. For gray-level im-

ages the contrast toggle mapping is defined by using two fac-

tors. The first factor is choosing two primitives φ1 and φ2,

which are applied to the initial image. The second factor is a

proper decision rule, which makes at each point x = (x1, x2)
the output of this mapping toggle between two possibilities φ1

and φ2, depending on which is the closest to the input value

of the function f at x [5, 10]. Angulo [8] extended two-level

toggle method for gray-scale image to color image f ) with di-

lation (i.e. φ1(f) = δX(f)) and erosion (i.e. φ2(f) = ǫX(f))
as two primitives and he proposed the contrast operator with

X-ordering applied to the image f at point x = (x1, x2) (pixel

coordinates in image) as:

κ
δ,ǫ
X (f)(x) =



















δX(f)(x) if

||f(x) − δX(f)(x)|| ≤ ||f(x) − ǫX(f)(x)||

ǫX(f)(x) if

||f(x) − δX(f)(x)|| > ||f(x) − ǫX(f)(x)||.
(1)

3.2. Contrast sharpener with odd number of levels. This

approach is a generalization of method from [6] (gray-scale

images) and Angulo’s approach, who proposed a two-state

toggle operator for color images. It leads to the toggle con-

trast operators of any number of levels (called multistate op-

erators). Two-state contrast operation sometimes gives very

rough image, so it seems reasonable for each pixel to have the

possibility of choosing more levels of colors resulting from

the application of different morphological operations.

Suppose we have a color image f . We have also a set

of extensive morphological operators Φi
X , and a set of anti-

extensive morphological operators Γi
X , where i = 1, . . . k.

Assume that we use a total ordering of color pixels and let us

denote it by X . Now we can define the special ratio:

ρ2k,2k+1(f) =

∥

∥

∥

∥

k
∑

i=1

[

Φi
X(f) − f

]

∥

∥

∥

∥

2
∥

∥

∥

∥

k
∑

i=1

[

Φi
X(f) − Γi

X(f)
]

∥

∥

∥

∥

2

. (2)

We denote the four most often used morphological operations

in the following way: δX -dilation, ǫX -erosion, γX -opening,

φX -closing. Two lower indices are useful because the same

formula (2) can be used to build two different contrast en-

hancing operators. The first one has the odd number of toggle

states, the second one the even number of toggle states.

For example (if k = 1 or k = 2) we may have:

ρ2,3(f) =
||δX(f) − f ||2

||δX(f) − ǫX(f)||2
,

ρ4,5(f) =
||δX(f) + φX(f) − 2 · f ||2

||δX(f) + φX(f) − γX(f) − ǫX(f)||2
.

(3)

The general equation for M -state contrast, where M is an odd

number, i.e. M = 2k + 1 is:

κM
X (f)(x) =







































































































Φ1
X(f)(x) if 0 ≤ ρ(f)(x) < 1

(2k+1)

Φ2
X(f)(x) if 1

(2k+1) ≤ ρ(f)(x) < 2
(2k+1)

...............................................................

Φl
X(f)(x) if l−1

(2k+1) ≤ ρ(f)(x) < l
(2k+1)

...............................................................

Φk
X(f)(x) if k−1

(2k+1) ≤ ρ(f)(x) < k
(2k+1)

f(x) if k
(2k+1) ≤ ρ(f)(x) < k+1

(2k+1)

Γ1
X(f)(x) if k+1

(2k+1) ≤ ρ(f)(x) < k+2
(2k+1)

Γ2
X(f)(x) if k+2

(2k+1) ≤ ρ(f)(x) < k+3
(2k+1)

...............................................................

Γk
X(f)(x) if 2k

(2k+1) ≤ ρ(f)(x) < 1.

(4)

For example for 7-state contrast enhancing operator (i.e.

k = 3) we have:

κ7
X(f)(x) =







































































Φ1
X(f)(x) if 0 ≤ ρ(f)(x) < 1

7

Φ2
X(f)(x) if 1

7 ≤ ρ(f)(x) < 2
7

Φ3
X(f)(x) if 2

7 ≤ ρ(f)(x) < 3
7

f(x) if 3
7 ≤ ρ(f)(x) < 4

7

Γ1
X(f)(x) if 4

7 ≤ ρ(f)(x) < 5
7

Γ2
X(f)(x) if 5

7 ≤ ρ(f)(x) < 6
7

Γ3
X(f)(x) if 6

7 ≤ ρ(f)(x) < 1.

(5)

In this particular case the Φi
X ’s and Γi

X ’s must be chosen in

such way that the following relation holds:

Γ3
X(f) ≺ Γ2

X(f) ≺ Γ1
X(f) ≺ f

≺ Φ3
X(f) ≺ Φ2

X(f) ≺ Φ1
X(f),

(6)

where ≺ – means the ordering relation “less or equal” for

multivariate data according to the ordering method X .

A good choice seems to be the following set of morpho-

logical operations: Φ1
X(f) = δX(f) – color dilation according

to the order X , Φ2
X(f) = φX(f) – color closing according to

the order X , Φ3
X(f) = φXγXφX(f) – color close-open-close

filter accord. to the order X , Γ1
X(f) = γXφXγX(f) – color
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open-close-open filter accord. to the order X , Γ2
X(f) = γX(f)

– color opening according to the order X , Γ3
X(f) = ǫX(f) –

color erosion according to the order X .

3.3. Choosing increasing and decreasing operators for

multistage toggle contrast. For 3-stage or 5–stage toggle

contrast the most natural choice is to take from the set of

basic operations: erosion – ǫX (anti-extensive), dilation – δX

(extensive), opening – γX (anti-extensive), closing – φX (ex-

tensive) and identity operator I . For more states than five the

problem is more complicated. We know from the morpholog-

ical theory for gray-level images that the composition of basic

morphological ordered filters i.e. opening – γ and closing –

φ lead to new morphological filters γφ, φγ, γφγ, φγφ. For

a gray-level case the following ordering relations are always

satisfied [11]:

ǫ ≤ γ ≤ γφγ ≤ γφ, φγ ≤ φγφ ≤ φ ≤ δ.

Although open-close γφ and close open φγ filters give al-

most the same filtering results they are not equivalent. More-

over, there exists no ordering between γφ and φγ, nor between

γφ and I , nor between φγ and I [11]. So we cannot use these

filters, i.e. γXφX , φXγX , for a color case of multilevel toggle

contrast. If we denote by ≺ the relation “less or equal” for

multivariate data then for the total order X in color images

the following relations exist:

ǫX ≺ γX ≺ γXφXγX ≺ γXφX ,

φXγX ≺ φXγXφX ≺ φX ≺ δX ,

where ǫX , δX , γX , φX are erosion, dilation, opening and clos-

ing respectively, according to the chosen ordering of pixels X .

So for multistage toggle based contrast of color images we can

use, for example, the set Sbasic1 consisting of the following

morphological operations:

Sbasic1 = {ǫX , γX , γXφXγX , φXγXφX , φX , δX}.

We can write down the formula of the general set SGen

built of extensive morphological operators: Φi
X , where i =

1, . . .m, and anti-extensive morphological operators Γj
X ,

where j = 1, . . . , n, as well as the identity operator I as

follows:

SGen = {Γm
X , . . . , Γ2

X , Γ1
X , I, Φn

X , . . . , Φ2
X , Φ1

X},

where

Γm
X ≺ . . . ≺ Γ2

X ≺ Γ1
X ≺ I ≺ Φn

X ≺ . . . ≺ Φ2
X ≺ Φ1

X ,

which means that SGen is an ordered set of operators,

arranged in ascending order. By using this basic set of or-

dered operators Sbasic1 we can construct some new sets. The

elements of all these sets are arranged in ascending order. We

can take advantage of these new sets while designing the mor-

phological multilevel toggle based contrast sharpening filters.

For instance, if we want to build the contrast of four or five

states, we may use the following ascendingly ordered set:

S
4,5
A = {ǫX , γX , I, φX , , δX}.

On the other hand, if we prefer to have more-valued con-

trast sharpening filters, e.g. of six or seven levels we may use

another set of operators, for example:

S
6,7
A = {ǫX , γX , γXφXγX , I, φXγXφX , φX , δX}.

There are many other possibilities of building the sets for

operations suited to the multistage toggle contrast. The gen-

eral rule is that first “half” of the set should consist of anti-

extensive operators and the second “half” should consist of

extensive ones plus identity operator in the middle of the set.

3.4. Contrast sharpener with even number of levels. The

general equation for N -state contrast, where N = 2k, is as

follows:

κN
X(f)(x)=























































































Φ1
X(f)(x) if 0 ≤ ρ(f)(x) < 1

2k

Φ2
X(f)(x) if 1

2k ≤ ρ(f)(x) < 2
2k

........................................................

Φl
X(f)(x) if l−1

2k ≤ ρ(f)(x) < l
2k

........................................................

Φk
X(f)(x) if k−1

2k ≤ ρ(f)(x) < k
2k

Γ1
X(f)(x) if k

2k ≤ ρ(f)(x) < k+1
2k

Γ2
X(f)(x) if k+1

2k ≤ ρ(f)(x) < k+2
2k

........................................................

Γk
X(f)(x) if 2k−1

2k ≤ ρ(f)(x) < 1.

(7)

For instance the 6-state contrast operator (i.e. k = 3) can be

defined as:

κ6
X(f)(x) =























































Φ1
X(f)(x) if 0 ≤ ρ(f)(x) < 1

6

Φ2
X(f)(x) if 1

6 ≤ ρ(f)(x) < 2
6

Φ3
X(f)(x) if 2

6 ≤ ρ(f)(x) < 3
6

Γ1
X(f)(x) if 3

6 ≤ ρ(f)(x) < 4
6

Γ2
X(f)(x) if 4

6 ≤ ρ(f)(x) < 5
6

Γ3
X(f)(x) if 5

6 ≤ ρ(f)(x) < 1.

(8)

In the latter case we can choose the same set of operations as

before, i.e. for odd number of levels contrast operator, or for

example the other one like: Φ1
X(f) = δX(f) – color dilation

according to the order X , Φ2
X(f) = φX(f) - color closing ac-

cording to the order X , Φ3
X(f) = φXγXφX(f) – color close-

open-close filter according to order X , Γ1
X(f) = γXφXγX(f)

– color open-close-open filter according to the order X ,

Γ2
X(f) = γX(f) – color opening according to the order X ,

Γ3
X(f) = ǫX(f) – color erosion according to the order X .

We can see that the basic sets of proper morphological

operations are constructed in the same way as in the previ-

ous subsection of this paper but without using the identity

operator.

4. Pairwise vector ordering

4.1. Classical Pairwise vector ordering. The Pairwise Vec-

tor Ordering (PVO) proposed in [12] has two stages and is

a combination of partial ordering and reduced ordering. The
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first step in this approach requires finding the distance de-

fined as:

d0 = max (||xi − xj)||p)
i,j∈{1,2,...,n}

. (9)

This pair consists of the maximum and minimum col-

or pixels, although no pixel can unambiguously be identified

as either. In the second step these two pixels are removed

and once again we search for the maximum distance of two

vectors from the set of color pixels, which is, say d1. The

process is repeated and it results in an ordered set of dis-

tances: d0 ≥ d1 ≥ . . . ≥ d(n/2)−1. These two stages induce,

according to Evans, “full ordering”. It is not clear whether

he meant total ordering, however it is not difficult to show

that the order induced by Pairwise Vector Approach is not a

total one but only a pre-ordering! It can be easily demonstrat-

ed by the following example. Suppose we use the RGB cube

[0, . . . , 255] × [0, . . . , 255] × [0, . . . , 255] , i.e. the maximal

value for each coordinate is 255. Assume we have the mor-

phological 3 × 3 flat structuring element, or a mask. Under

this mask we have 9 pixels with the following R,G,B coor-

dinates presented in Table 1. The graphical presentation of

these color pixels is shown in Fig. 1.

Table 1

Pixels (R,G,B triplets) from the image under the structuring element

x1 x2 x3 (255,0,0) (0,255,0) ( 0,0,255)

x4 x5 x6 = (0,255,0) (153,51,17) (204,51,51)

x7 x8 x9 (85,15,153) (15,153,102) (153,85,102)

a)

b)

Fig. 1. a) Original 9 pixels, b) two pairs of max. distance – all four

pixels have the same distance to the origin of the RGB cube dR0 =

dG0 = dB0 =255

The first impression might be to solve the situation when

the order of two pairs is undecided by using the distance of

the pixels in these pairs from the origin of RGB system for

ordering the pairs. But, as we can see in this example, all

four pixels in these two pairs have the same distance to the

origin of the RGB system! We can check it by computing

their distances from the origin of the RGB cube: dist(x1,orig)

= distR0 = 255, dist(x2,orig) = distG0 = 255, dist(x3,orig) =

distB0 =255, dist(x4,orig) = distG0 =255.

All these four pixels are on the same sphere of radius

255 and its center is the origin of the RGB system! There-

fore all these four points are equidistant to the origin. So we

cannot just use the simple distance of pixels to the origin as

the next step in ordering method. We need the additional step

in ordering algorithm and this step should be different from

computing another distance. The concept proposed by Evans

(PVO) simply does not work here! That is why the MPO –

the Modified Pairwise Ordering is proposed in this paper. Of

course it is not the only one possibility. But we have a real

total ordering of pixels.

The mutual Euclidean distances of all nine color pixels are

given in Table 2. We have two pairs of maximal distances: dis-

tRG = distBG = 360.6. The first pair includes the perfect Red

pixel x1 = [255,0,0] and the perfect Green one x2 = [0,255,0].

The second pair includes the perfect Blue pixel x3 = [0,0,255]

and the perfect Green pixel x4 = [0,255,0]. According to the

Pairwise Vector Ordering proposed by Evans we should use

the pair of maximal distance that includes the minimal and

maximal pixel i.e. – erosion and dilation. First of all we have

ambiguity here. There are two such pairs of pixels. Which one

should we use? In order to overcome this important difficulty

the MPO method is proposed. It is presented in details in the

next subsection of this paper.

Table 2

The matrix D of mutual distances of pixels under structuring mask e.g.

D(x1,x2) =
√

2552 + 2552 + 02 = 255
√

2 = 360.6

x1 x2 x3 x4 x5 x6 x7 x8 x9

x1 0 360.6 360.6 360.6 115.3 88.3 229.2 302.3 167.4

x2 360.6 0 360.6 0 255.6 293.0 297.0 145.0 250.4

x3 360.6 360.6 0 360.6 287.5 293.0 133.6 216.9 232.5

x4 360.6 0 360.6 0 255.6 293.0 297.0 145.0 250.4

x5 115.3 255.6 287.5 255.6 0 61.3 156.3 191.5 91.6

x6 88.3 293.0 293.0 293.0 61.3 0 160.8 220.7 79.7

x7 229.2 297.0 134.0 297.0 156.3 160.8 0 162.9 110.1

x8 302.3 145.0 217.0 145.0 191.5 220.7 162.9 0 153.8

x9 167.4 250.4 232.5 250.4 91.6 79.7 110.1 153.8 0

4.2. The Modified Pairwise Ordering. In order to achieve

the total ordering utilizing the concept of Pairwise Vector

Ordering we propose some modifications. For our purpose

we would like to find only the maximum and minimum of

this totally ordered set of color pixels. For full 3-D case (i.e.

xi = (ri, gi, bi), xj = (rj , gj, bj)) the new proposed algo-

rithm (called Modified Pairwise Ordering – (MPO)) is as fol-

lows:

1) Find d0 defined by Eq. (9).
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2A) If this is a unique solution (i.e. there is only one pair

of maximal distance) then compute the magnitude of both

vectors xm, xn.

3a) If ||xm||2 6= ||xn||2
ǫ = xi, {xi : ||xi||2 = min(||xm||2, ||xn||2)};

δ = xj, {xj : ||xj||2 = max(||xm||2, ||xn||2)}
end

3b) If ||xm||2 = ||xn||2
If xm <CLO xn (see Eq. (12))

ǫ = xm, δ = xn

else

ǫ = xn, δ = xm

end

end

END

2B) If there is no unique solution ( which means that two

or more distinct pairs within the mask have equal maximal

distances between two vectors included in each pair) – let

us assume that there are K such pairs. Then the procedure

should be as follows:

2B1) Build a new set AK from all the vectors of these K

pairs. So now we have:

AK = {xi1 ,xj1 ,xi2 ,xj2 , . . . ,xiK
,xjK

} (10)

2B2) Re-numerate the indices of the vectors in this set ac-

cording the following rules

x2l−1 = xil
, x2l = xjl

, l = 1, . . . , K (11)

2B3) Arrange the set AK by applying the Classical Lexico-

graphical Ordering (CLO) method:

xm <CLO xn⇐⇒











rm < rn or

rm = rn & gm < gn or

rm = rn & gm = gn & bm < bn

(12)

where {m, n} = 1, 2, . . . , 2K

2B4) If (xm <CLO xn) ǫ = xm, δ = xn

else

ǫ = xn, δ = xm

end

END

Suppose that Sn is a subset of the RGB color space, which

includes n vectors x1(r1, g1, b1), . . . ,xn(rn, gn, bn), where n

is the number of pixels under the morphological flat structur-

ing element.

If AK is still the set of K pairs of pixels of maximal dis-

tance – for the case of one such pair only i.e. K = 1 we have

the set A1 – then using the MPO method we can define the

infimum (∧) and supremum (∨) operators in Sn as:

xlow(rlow , glow, blow) = ∧Sn = ǫ = ∧AK ,

xup(rup, gup, bup) = ∨Sn = δ = ∨AK .

Properties of the MPO are mostly classical ones. However at-

tention should be paid to the fact that, the opening performed

with this ordering method of color pixels is not idempotent

nor is closing. Therefore more correctly these types of mor-

phological operations should be called pseudo-opening and

pseudo-closing respectively.

5. Other ordering schemes used for comparison

There are several types of ordering of multivariate data. One

of the first papers presenting ordering taxonomy was writ-

ten by Barnet [13]. Many different methods of color pixel

ordering for using morphological operations have been de-

scribed [14–17]. In this paper one main ordering scheme –

the Modified Pairwise Ordering algorithm – is used for ob-

taining morphological operations. However, for comparison a

few other arbitrarily chosen ordering methods are also applied.

5.1. Classical Lexicographical Ordering (CLO) with the

V → S → H hierarchy. Lexicographical ordering [18] is

especially suitable for arranging pixels (vectors) in the con-

text of color Mathematical Morphology, in combination with

image data where a natural or artificial priority order exists

among the different bands. The lexicographical ordering pre-

serves the input vectors.

In this paper for HSV color space the model with the hi-

erarchy of importance proposed in [19] is used. We define the

following ordering relation as:

Ω = {|| · ||HSV
△ , V ↑→ S ↑→ H ↑},

where ↑ means increasing order (e.g. V ↑ means that V -values

are ordered from the smallest one up to the greatest one). The

relation Ω is actually the Classical Lexicographical Ordering

(CLO).

Two color pixels xi and xi can be ordered according the

following rule:

xi <Ω xj ⇐⇒



















xV
i < xV

j or

xV
i = xV

j & xS
i < xS

j or

xV
i = xV

j & xS
i = xS

j &

d(xH
i , Hr) < d(xH

j , Hr),

(13)

where the pixel hue distance to the reference hue d(xH
i , Hr)

is given by Eq. (15).

5.2. Hexcone ordering (HO) based on physical meaning of

mixing colors with black and white. Although the Hexcone

Ordering (HO) is actually a lexicographic ordering in HVS

space using V , 1 − S and H , this approach is used here due

to the interesting idea it is based on – namely the physical

meaning of mixing colors with white and black and taking

into account the amount of the two last factors [20]. This

type of ordering has quite simple physical interpretation: the

darker a color the smaller it is considered regardless the hue.

The most important component in the HSV color space is

the value (luminance) V . Now we can define the following

ordering relation as:

Λ = {|| · ||HSV
△ , V ↑→ S ↓→ H ↑},

where △ is the color distance, ↑ means an increasing order.

Two color pixels xi and xj can be ordered according the

following rule [20]:
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xi <Λ xj ⇐⇒



















xV
i < xV

j or

xV
i = xV

j & xS
i > xS

j or

xV
i = xV

j & xS
i = xS

j &

d(xH
i , Hr) < d(xH

i , Hr),

(14)

where pixel hue distance to the reference hue can be ex-

pressed as:

d(xH
i , Href ) =

{

|xH
i − Hr| if |xH

i − Hr| ≤ π

2π − |xH
i − Hr| if |xH

i − Hr| > π.

(15)

5.3. α-trimmed lexicographical extrema. Suppose we are

given a vector x ∈ Rn, that contains the sorted gray lev-

el pixels under the filtering window. The α-trimmed method

suggests us to compute the mean of these pixels by rejecting

the 2α-extreme points:

αMF (x) =
1

n − 2α

n−α
∑

i=α+1

xi. (16)

In the case of multidimensional vectors we can use this ap-

proach in a very similar manner by applying it to each dimen-

sion in an iterative mode [18]. Having a set X of k vectors

and wishing to find the maximum of it, we can start from

the first dimension, sorting according to this dimension in an

increasing order and then the [α×k] greatest vectors are kept

(α ∈ (0, 1]) and considered as the new set X . If we repeat

this process for each dimension, at each step the initial set of

vectors becomes smaller. If more than one vector remain at

the end of this procedure, we use the last dimension for ob-

taining the sought extreme. If we search for a minimum, we

can use the same formula but with sorting in a decreasing or-

der. This methodology of finding a “collective” extreme does

not constitute an ordering and leads to pseudo-morphological

operators.

5.4. Ordering associated with a distance to the reference

color. Anugulo in [8] proposes color morphological operators

for which he defines the reference color, which is analogous to

the maximum gray level in gray-scale morphology. Here color

dilation tends to move toward this chosen reference color and

color erosion tends to move away from it. It can be shown

that the reference color must have maximum luminance and

maximum saturation to enable ordering of color pixels. We

apply this approach to color images in the RGB space. The

reference color x0 is chosen as well as the color distance △.

We implemented a version suggested by Angulo in [8],

who proposes to complete this primary reduced ordering with

a lexicographical cascade. If we define this ordering scheme

associated with a reference color and completed with a lexi-

cographical cascade as:

Γ = {|| · ||RGB
△ ,x0 = (xR

0 , xG
0 , xB

0 ); R ↑→ G ↑→ B ↑},

where ↑ means increasing order, then two color pixels xi and

xj can be ordered according the following rule:

xi <Γ xj ⇔































||xi − x0||
RGB
△ > ||xj − x0||

RGB
△ or

||xi − x0||
RGB
△ = ||xj − x0||

RGB
△ and











xR
i < xR

j or

xR
i = xR

j & xG
i < xG

j

xR
i = xR

j & xG
i = xG

j & xB
i , < xB

j .

(17)

6. Contrast measure for color image

There exists some useful local contrast measure in image

processing literature. Dhawan et al. [21] define the local con-

trast for gray level image associated with a pixel at (i, j) and

having gray value x(i, j) as:

C(i, j) =
|p(i, j) − a(i, j)|

|p(i, j) + a(i, j)|
, (18)

where

p(i, j) =
∑

(i,j)∈N1(i,j)

x(i, j)

m2
,

a(i, j) =
∑

(i,j)∈N2(i,j)

x(i, j)

8m2
,

(19)

where N1(i, j) is an m × m neighborhood of (i, j) and

N2(i, j) is 3m × 3m neighborhood of (i, j) which excludes

N1(i, j).
For a color image in RGB space we can define:

CRGB(i, j) =
√

[CR(i, j)]2 + CG(i, j)]2 + CB(i, j)]2,

(20)

where

Cl(i, j) =
|pl(i, j) − al(i, j)|

|pl(i, j) + al(i, j)|
; l = {R, G, B}, (21)

pl(i, j) =
∑

(i,j)∈N1(i,j)

xl(i, j)

m2
; l = {R, G, B}, (22)

and

al(i, j) =
∑

(i,j)∈N2(i,j)

xl(i, j)

8m2
; l = {R, G, B}. (23)

Finally, we can write the mean contrast measure for the whole

color image in the RGB coordinates as:

MCM =
1

KL





K
∑

i=1

L
∑

j=1

CRGB(i, j)



 . (24)

where K , L are dimensions of the processed image.

7. Experiments

Experiments were performed with 15 different color images.

They are presented in Fig. 2. Among them there were: blurred

images taken from old movies, other images of rather bad con-

trast: e.g. church painting image with low contrast, as well as

images that were blurred artificially from original pictures of

relatively good visual quality. Eight different contrast sharpen-

ing operators based on toggle mappings, including multilevel
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toggles of different numbers of levels varying from 2 to 7,

were used. They were: K2DE, K2CO, K3DIE, K3CIO, K4,

K5, K6, K7. Each of them is described in details further in

this section in terms of morphological operations it uses.

Fig. 2. The whole set of testing blurred images of low contrast

Five different ordering methods were used to arrange col-

or pixels. The first one was the Modified Pairwise Ordering

(MPO) in the RGB space. All the contrasted images present-

ed in this section of the paper were obtained by using this

method. The second method was the approach based on the

Distance to the Reference Color (DRC). Next two different

ordering methods in HSV were applied: the Classical Lexico-

graphic Ordering (CLO) with hierarchy of importance: V,S,H,

and the Hexcone Ordering (HO) with V,1-S,H hierarchy. Fi-

nally the α-trimmed method was used. A flat color morpho-

logical structuring element of 5 × 5 pixels was used.

Most of the proposed contrast enhancing operators in-

crease the mean contrast measure used in this paper taken

from the literature [21, 22]. Although the mean of all local

contrast measures calculated for the whole image is not a

uniquely decisive parameter for estimating the overall con-

trast of the image, it should be seriously taken into account

in the process of estimating the quality of contrasted images.

In most cases the increase of the contrast measure taken from

literature for all images subjected to the two-state operators

(erosion and dilation) ∆K2DE – an increase of the average

contrast measure - is the highest one for all five types of or-

derings (MPO, DRC, CLO, α-trimmed, HO). The set of all

images sharpened by KON2DE is presented in Fig. 3. The

advantage of KON2DE sharpening is illustrated graphically

by the highest bars in Fig. 4. However, the images obtained

by application of K2DE, i.e. two-state contrast with dilation

and erosion as basic operations, sometimes look a little bit

unnatural, like cartoon images rather than realistic ones. We

can see it in Fig. 5 – it concerns in particular the woman

driving a car.

Fig. 3. The whole set of images after sharpening by K2DE operator

Fig. 4. Bars showing the percentage increase of averaged contrast

measure MCM
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Fig. 5. Images sharpened: by K2DE (right image in the upper row)

and by K2CO (right image in the lower row). Blurred images are in

the left column

On the other hand, another two-state contrast operator

K2OC based on two primitives – opening and closing for

the flat structuring element increases the contrast measure in-

sufficiently.

Both the original image and the image sharpened by

K2CO are practically visually the same and we can see it

in Fig. 5. We need at least 10% of contrast increase to use

K2CO effectively. The results of sharpening images by two-

state contrast operators, i.e. by KON2DE and KON2CO, are

presented in Fig. 5. In Table 3 we can see the MCM coef-

ficients for these operators. As concerns the three state oper-

ator for contrast enhancement with three chosen operations:

erosion, dilation and identity transformation, K3DIE gives the

promising results. The average increase of contrast coefficients

here was high enough – over 20%.

Table 3

MCM increase for sharpening by K2DE and K2CO

Order
of pixels

Low
MCM

High
MCM

Average
MCM

K2DE

MPO 29.14 62.93 47.95

DRC 27.18 62.77 47.29

CLO 23.13 58.65 43.02

α − trim 18.24 46.84 34.65

HO 23.76 61.61 44.11

K2CO

MPO 1.28 10.34 4.73

DRC −0.13 4.90 1.21

CLO −0.16 3.92 0.71

α − trim −6.94 −1.81 −4.18

HO 0.13 4.71 3.48

The contours of all objects are satisfactory sharp – the blur

is practically invisible. The image sharpened by K3DIE looks

more natural and it is visually acceptable. It is also quite obvi-

ous that for an image sharpened by K3DIE the mean contrast

measure is generally smaller than the measure for the same

image sharpened by K2DE. The reason is that in the first case

we sometimes used original blurred pixels by using identity

operations. For images sharpened by K3CIO (closing, open-

ing and identity operators) we can see that the sharpening

improvements are not large enough to be applied in practice.

Again the increases of MCM for all 5 types of pixel orderings

are smaller than 10%. This is definitely too less to use this

operator in practice for image processing purposes. As we can

clearly observe here opening and closing were not successful

in two- nor three-level contrast operator for all five types of

applied ordering. We can see the visual results of applying

two three state operators in Fig. 6. All the numerical results

showing the MCM coefficient increases for both three state

contrast sharpening operators KON3DIE and KON3CIO are

presented in Table 4.

Fig. 6. Images sharpened: by K3DIE (right image in the upper row)

and by K3CIO (right image in the lower row). Blurred images are

in the left column

Table 4

MCM increase for sharpening by K3DIE and K3CIO

Order
of pixels

Low
MCM

High
MCM

Average
MCM

K3DIE

MPO 14.70 27.84 23.21

DRC 12.57 27.68 22.68

CLO 13.74 25.54 20.02

α − trim 9.10 20.03 15.63

HO 11.52 27.18 21.34

K3CIO

MPO 1.07 8.07 3.81

DRC −0.33 0.80 3.33

CLO −0.13 0.28 2.55

α − trim −5.54 −1.30 −3.05

HO −0.07 3.85 0.77

In designing the four-state operator K4 for contrast en-

hancement the following operations are used: dilation, ero-

sion, closing and opening. The results for K4 operator, in

terms of percentage contrast increase, are quite impressive,

and again the leader is MPO based sharpener (Avg. MPO –

18.78% vs. DRC – 17.87%. The image quality is quite high,

with clear details presented in Fig. 7.

110 Bull. Pol. Ac.: Tech. 64(1) 2016



Morphological sharpening of color images

Fig. 7. Images sharpened: by K4 (right image in the upper row) and

by K5 (right image in the lower row). Blurred images are in the left

column

We can say that this four state contrast sharpening opera-

tor seems to be good enough to be applied to full spectrum of

color images of weak contrast. For five – state contrast sharp-

ener K5 in addition to the same set of transformations like

for K4 (i.e. dilation, erosion, closing and opening) the identi-

ty operation (I) is utilized. The numerical coefficients for K4

and K5 (MCM ) are presented in tables shown in Table 5.

In this case the improvement in visual quality of the blurred

image after applying K5 operator was acceptable. The visual

impression of contrast improvement by K5 is quite clear (see

Fig. 7).

Table 5

MCM increase for sharpening by K4 and K5

Order
of pixels

Low
MCM

High
MCM

Average
MCM

K4

MPO 12.89 26.49 18.78

DRC 8.25 22.66 17.87

CLO 7.26 19.91 15.93

α − trim 4.12 16.72 12.92

HO 7.85 19.77 16.95

K5

MPO 7.85 16.67 12.39

DRC 5.04 16.86 12.11

CLO 4.19 13.51 10.48

α − trim 5.19 12.60 9.22

HO 4.78 14.71 11.36

In the case of six-level contrast operator K6 each pixel can

achieve one of the values which are the result of one of the six

morphological operations: erosion, opening, opening followed

by closing then opening again, closing, closing followed by

opening then closing again and dilation.

For contrast enhancement by the seven – state contrast

sharpener K7 each pixel in the output sharpened image can

achieve one of the values which are the result of the iden-

tity transformation performed on the input image, which is

the pixel of the original image or the result of one of the six

morphological operations: erosion, opening, opening followed

by closing then opening again, closing, closing followed by

opening then closing again and dilation. Both sharpening op-

erators: K6 – applied to the image of an old church painting

and K7 – applied to blurred fish image give the results pre-

sented in Fig. 8. Details of the contrasted image are sharper

than those of the original one. All the numerical results of

MCM coefficient increases for K6 and K7 can be seen in

Table 6.

Fig. 8. Images sharpened: by K6 (right image in the upper row) and

by K7 (right image in the lower row). Blurred images are in the left

column

Table 6

MCM increase for sharpening by K6 and K7

Order
of pixels

Low
MCM

High
MCM

Average
MCM

K6

MPO 11.66 32.29 19.59

DRC 7.53 18.12 13.91

CLO 6.81 16.84 13.06

α − trim 1.13 16.29 9.31

HO 7.26 17.42 13.56

K7

MPO 9.33 24.68 15.64

DRC 5.82 15.53 11.58

CLO 5.24 13.51 10.76

α − trim −1.83 11.45 7.17

HO 5.56 14.69 10.96

In the cases of six-state and seven-state contrast operators

the numerical results were surprisingly good. The domination

of MPO – based K6 and K7 image sharpening operators over

operators based on other ordering methods is exceptionally

clear in this case. For example let us consider here the fol-

lowing results:

K6: (Avg. MPO – 19.59% vs. DRC – 13.91%);

K7: (Avg. MPO – 15.64% vs. DRC – 11.58%).

The visual quality of both images is quite sufficiently im-

proved from the point of view of human viewer.
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8. Conclusions

In this paper the multilevel toggle based contrast sharpen-

er operator has been proposed to enhance the contrast of

multivalued images. The effects of its use have been illus-

trated by many examples of sharpened color images as well

as in many tables of contrast coefficients. As concerns the

generalized (i.e. multilevel) toggle contrast for colors it of-

fers a wide spectrum of image sharpening possibilities. We

have quite large flexibility both in choosing the number of

levels as well in building the basic sets of morphological

operators that can be used here. It is possible to sharp-

en many different images to a variable extent, according to

need.

The contrast increasing ability, in the sense of their con-

trast measures of the sharpeners of odd – number of levels are

a little bit smaller than of those with even – number of lev-

els. As it was already mentioned there is at least one simple

explanation of this phenomenon. These are blurred original

pixels – being the result of the identity operator application

to the original blurred image. We can also observe the supe-

riority of MPO based sharpeners to their counterparts based

on DRC, CLO, HO and α-trimmed methods. It is small for

K2DE (0.7% more than for DRC), medium for K2CO (3%

more than for DRC), small for K3DIE (about 0.6% more than

for DRC), small for: K3CIO (0.5%), K4 (0.9%), K5 (0.3%),

high for K6 (+5.5%) and K7 (4%).

As the final remark we can say that the MPO algorithm

was the most successful approach as concerns the numerical

increase of contrast measures comparing with DRC, CLO,

HO and α-trimmed.

The final recommendation for an image processing engi-

neer who wants to use the multistage toggle contrast in order

to enhance images he processes can be expressed as follows.

As concerns the pixel ordering problem, four methods are rec-

ommended namely: MPO, DRC, CLO and HO. The first two

approaches are slightly better than the two last methods. But

still CLO and HO lead to acceptable results. So these four

methods of pixel ordering can be applied to practical prob-

lems. The alpha-trimmed ordering is the worst one (signifi-

cantly worse than others) and should be rejected. The K2DE

operator gives the highest increase of the MCM (over 40%),

but it is responsibility of the image processing engineer to

judge its visual quality, sometimes a little bit unnatural. The

author of this paper prefers K3DIE, K4, and K6. For them

practically for all tested images results are quite satisfactory.

K5 and K7 are often acceptable but sometimes the contrast is

still visually too low.

9. Proof that the MPO is a total order

We show that the MPO is a total ordering of color pixels. But

before that we need to explain some notations that are used

further.

d1,k = d(x1,xk) – is the greatest possible distance of

pixel x1 from all the pixels in the set A (in this case this

distance is to pixel xk ∈ A).

d2,l = d(x2,xl) – is the greatest possible distance of pixel

x2 from all the pixels in the set A (in this case this distance

is to pixel xl ∈ A).

d3,m = d(x3,xm) – is the greatest possible distance of

pixel x3 from all the pixels in the set A (in this case this

distance is to pixel xm ∈ A).

1) First we check reflexivity:

x1 ≤MPO x1 ⇔ (d1,k < d1,k) ∨ [(d1,k = d1,k)

∧(x1≤lexx1)] ⇔ x1 =lex x1,

which is true. Therefore, the MPO relation is reflexive.

2) Next we check if this ordering relation is antisymmet-

ric:

x1 ≤MPO x2 ⇔ (d1,k < d2,l) ∨ [(d1,k = d2,l)

∧(x1≤lexx2)],

x2 ≤MPO x1 ⇔ (d2,l < d1,k) ∨ [(d2,l = d1,k)

∧(x2≤lexx1)].

So if

{x1 ≤MPO x2} ∧ {x2 ≤MPO x1} ⇔

{(d1,k < d2,l) ∨ [(d1,k = d2,l) ∧ (x1≤lexx2)]}∧

{(d2,l < d1,k) ∨ [(d2,l = d1,k) ∧ (x2≤lexx1)]} ⇔

(d1,k < d2,l) ∧ {(d2,l < d1,k) ∨ [(d2,l = d1,k)∧

(x2≤lexx1)]} ∨ [(d1,k = d2,l) ∧ (x1≤lexx2)]∧

{(d2,l < d1,k) ∨ [(d2,l = d1,k) ∧ (x2≤lexx1)]} ⇔

{[(d1,k < d2,l) ∧ (d2,l < d1,k)] ∨ [(d1,k < d2,l)∧

(d1,k = d2,l) ∧ (x1≤lexx2)]}

∨{[(d1,k = d2,l) ∧ (x1≤lexx2) ∧ (d2,l < d1,k)]∨

[(d1,k = d2,l) ∧ (x1≤lexx2)∧

(d2,l = d1,k) ∧ (x2≤lexx1)]}

= 0 ∨ 0 ∨ 0 ∨ [(d1,k = d2,l) ∧ (x1≤lexx2) ∧ (x2≤lexx1)]

= [(d1,k = d2,l) ∧ (x1 =lex x2)] ⇔ x1 =MPO x2.

Therefore the MPO relation is antisymmetric.

3) Finally, we show the property of transitivity:

{(x1≤MPOx2)} ∧ {x2 ≤MPO x3} ⇔

{(d1,k < d2,l) ∨ [(d1,k = d2,l) ∧ (x1≤lexx2)]}∧

{(d2,l < d3,m) ∨ [(d2,l = d3,m) ∧ (x2≤lexx3)]} ⇔

{(d1,k < d2,l) ∧ (d2,l < d3,m)} ∨ {[(d1,k = d2,l)∧

(x1≤lexx2)] ∧ (d2,l < d3,m)} ∨ {(d1,k < d2,l)∧

[(d2,l = d3,m) ∧ (x2≤lexx3)]} ∨ {[(d1,k = d2,l)∧

(x1≤lexx2)] ∧ [(d2,l = d3,m) ∧ (x2≤lexx3)]} ⇔

(d1,k < d3,m) ∨ [(d1,k < d3,m)∧

(x1≤lexx2)] ∨ [(d1,k < d3,m)∧

(x2≤lexx3)] ∨ [(d1,k = d3,m) ∧ (x1≤lexx3)]

= (By redundancy law) (d1,k < d3,m)∨

[(d1,k = d3,m) ∧ (x1≤lexx3)] ⇐⇒

x1 ≤MPO x3.

Therefore the MPO relation is transitive.

So we can say that the MPO is a total order.
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