
T H E A R C H I V E O F M E C H A N I C A L E N G I N E E R I N G

VOL. LVIII 2011 Number 1

10.2478/v10180-011-0001-y
Key words: soaring flight, minimum-time problem, pseudospectral Chebyshev’s method

KRZYSZTOF ROGOWSKI ∗, RYSZARD MAROŃSKI ∗∗

OPTIMIZATION OF GLIDER’S TRAJECTORY FOR GIVEN
THERMAL CONDITIONS

The minimum-time problem for a glider flying in the vertical plane is consid-
ered. The glider is regarded as a particle moving in the atmosphere in given thermal
conditions. The problem is formulated in optimal control and solved using direct
pseudospectral Chebysev’s method. The data are taken for the Word Class Glider
PW-5 “Smyk”. Computed optimum results are compared with glider’s trajectories
from the Second Domestic Glider Championship 2006, Suwałki, Poland.

NOMENCLATURE

Cx – drag coefficient,
Cz – lift coefficient,
h – altitude of flight [m],
g – gravitational acceleration [m/s2],
J – performance index [s],
m – mass of the glider [kg],
Px – drag [N],
Pz – lift [N],
S – wing area [m2],
t – time [s], independent variable,
u – horizontal air velocity (wind velocity) [m/s],
V – airspeed [m/s],
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Vg – ground velocity [m/s],
v – vertical air velocity [m/s],
x – horizontal coordinate [m],
α – angle of attack [rad],
γ – flight path angle [rad],
ε – angle [rad],
ρ – air density [kg/m3],
τ – independent variable,
(.)0 – initial point,
(.) f – final point.

1. Introduction

Application of calculus of variations to the dynamics of atmospheric
flight extends to early fifties when the minimum-time-to-climb problem was
considered (Rutowski, 1954; Clancy, 1975). The piston-engine aircraft having
greater altitude had an advantage over the enemy up to the end of the World
War the Second. Introduction high-performance jet-propulsion aircraft, that
took place just after the 2nd world war, showed that not only the potential
energy of the aircraft should be considered, but also the total energy inclu-
ding the kinetic one (the so-called energy height method). The spectacular
result of this approach is, as indicated there, that the fighter should rapidly
dive through the transonic region, and subsequently zoom to the ceiling.
During such a maneuver, the fighter operates using its maximum thrust. That
analysis assumes that the kinetic and potential energy can be interchanged
instantaneously without losses of energy. The next impulse for development
of these methods in dynamics of atmospheric flight was the first fuel crisis
from the beginning of the seventies. The minimum-fuel problem was consi-
dered (Maroński, Łucjanek, 1979). In this problem, the thrust is an additional
control variable and it is not maximum during the whole maneuver. Two the-
oretical difficulties appear: the optimum thrust may be of “chattering” type,
where the average values of the thrust are not optimal, or the controllers
are on the so-called singular arcs, where the thrust attains a value lower
than the maximum one, but classical necessary conditions of optimality do
not hold (Maroński, 1988). The effectiveness of the computational methods
is important for practical applications. For several years, the attention was
focused on the indirect numerical methods basing, for example, on Pontrya-
gin’s maximum principle. In the opinion of the authors of the paper, this
group of methods is often ineffective – they are ill-conditioned. Moreover, it
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is difficult to consider inequality constrains imposed onto the state variables.
Over the last decades, the progress in development of direct methods hap-
pened. These methods employs polynomial approximation for the state and
control variables and the optimal control problem has been converted into
a nonlinear programming one. The paper by Panasz and Maroński (2005)
shows that such an approach is effective for commercial aircraft trajectory
optimization, as it minimizes the direct operating costs. The present paper
presents the extension of previous author’s experience for the case of optimal
soaring flight where the thrust disappears, however, where there are relatively
rapid variations of wind and air-current patterns.

2. Problem formulation

The winner in a soaring event is the pilot covering the given distance in
minimum time. The performance index is in the form that is minimized

J =

t f∫

0

1 dt = t f ⇒ MIN. (1)

Fundamental assumptions of the model are:

1. The glider is regarded as a particle. Its dimensions are negligible in
comparison with the covered distance.

2. The motion is in the vertical plane. The circulations in thermals are not
considered.

3. The Earth is regarded as an inertial system. It is flat and gravitational
acceleration is constant.

4. The gliders velocities are low compared with Mach number, the flow is
regarded as incompressible.

5. The air density varies with altitude according to the Standard Atmosphere.
6. The vertical and horizontal air velocities are considered. They are given

and they may vary with the distance and altitude.
7. The glider is controlled via variations of its angle of attack. The equi-

librium of moments about the axis perpendicular to the plane of motion
is automatically satisfied. The ballast is not dropped during the flight.
Different masses may be considered, however.

The equations of motion of the sailplane resulting from the Newton’s
second law in natural coordinate system are as follows (Maroński and Łuc-
janek, 1979; Panasz and Maroński, 2005):

m
dVg

dt
= −Px cos ε − Pz sin ε − m g sin γ, (2)
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Fig. 1. Forces exerted on the glider

Fig. 2. Wind model

m Vg
dγ
dt

= Pz cos ε − Px sin ε − m g cos γ. (3)

They should be supplemented by kinematical relations:

dx
dt

= Vg cos γ, (4)

dh
dt

= Vg sin γ, (5)

where the aerodynamic forces are:

Px = 0.5 ρ(h) V 2 S Cx(α) , Pz = 0.5 ρ(h) V 2 S Cz(α) ,

and the geometrical relations resulting from Fig. 2 are:

V 2 = V 2
g − 2Vg (u cos γ + v sin γ) + u2 + v2,
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ε = sin−1
[
1
V

(u sin γ − v cos γ)
]
.

The air density ρ is a given function of altitude h, and aerodynamic
coefficients Cx, Cz of angle of attack α.

As we use the nomenclature known in optimal control, the equations
(2)-(5) are the state equations, Vg, γ, x, h are the state variables. The control
variable is the angle of attack α that is an unknown function of time (or
covered distance) and it is optimized.

The state equations should be supplemented by boundary conditions re-
presenting the state of the system at the beginning and at the end of the
event:

Vg(0) = Vg0, h(0) = h0, x(0) = x0, (6)

Vg(t f ) = Vg f , h(t f ) = h f , x(t f ) = x f . (7)

These values are given. The boundary conditions are not imposed onto the
flight path angle γ, because the authors have no records of these values from
the event. These conditions are free and they follow from optimization pro-
cedure. The computational code is very flexible, therefore different problem
formulations are possible.

The problem is stated as follows. Find the angle of attack α as a function
of time to minimize the time of the event t f given by the functional (1). The
value of α should be lower than its maximum value – the stalling angle.
The state equations (2)-(5) with the boundary conditions (6), (7) should be
satisfied. The inequality is also imposed onto the altitude h that should be
positive.

3. Method

The problem formulated above is a typical problem of optimal control:
find the control function vector u(τ) and the corresponding state trajecto-
ry vector x(τ) minimizing the performance index (cost function, objective
function) described by Bolza

J[x(·), u(·), τ f ] = M[x(τ f ), τ f ] +

τ f∫

τ0

L[x(τ), u(τ), τ]dτ. (8)

In the presented approach, the dynamic constraints are given in the form of
differential inclusions (Fahroo and Ross, 2002; Rogowski, 2007)

fl ≤ f [ẋ(τ), x(τ), u(τ), τ] ≤ fu, τ ∈
〈
τ0, τ f

〉
. (9)



16 KRZYSZTOF ROGOWSKI, RYSZARD MAROŃSKI

This is a generalized formulation, therefore, if we set the lower fl and upper
fu bounds equal to zero, we obtain differential algebraic equations

f [ẋ(τ), x(τ), u(τ), τ] = 0, τ ∈
〈
τ0, τ f

〉
. (10)

Furthermore, if we assume that the Jacobian ∂ f /∂ẋ is nonsingular, the equa-
tion (10) may by transformed into the ordinary differential equation

ẋ(τ) = f [x(τ), u(τ), τ], τ ∈
〈
τ0, τ f

〉
. (11)

Moreover, the boundary conditions may be considered in the form

ψl ≤ ψ[x (τ0) , x
(
τ f

)
,
(
τ f − τ0

)
] ≤ ψu, (12)

where ψl and ψu are constant vectors representing the lower and upper bounds
of inequalities. The state and control constraints are formulated in the form

gl ≤ g[x (τ) , u (τ) , τ] ≤ gu. (13)

As above, in the case of equality constraints, the lower and upper bounds
must equal.

The Chebyshev pseudospectral method is applied in this paper. It is
a particular case of a more general class of spectral methods. These
methods involve two steps: in the first one we choose a finite-dimensional
space from which an approximation to the solution of the differential equation
is made, and in the next one we select a projection operator, that imposes the
differential equation in a finite-dimensional space. In spectral methods, the
underlying polynomial space is spanned by orthogonal polynomials, which
are infinitely differentiable global functions. Legendre and Chebyshev poly-
nomials are examples of these orthogonal polynomials, which are orthogonal
on the interval [-1,1]. The functions are expanded in terms of interpolating
polynomials, thus the expansion coefficients are the values of the function at
the node points. Because an arbitrary choice of node points can give very
poor results in interpolation, different Gauss quadrature points are chosen
to improve the accuracy in interpolation of a function. The derivatives of
interpolating polynomials at node points are given by a differentiation matrix.

In the applied method, the interpolation points are in the form

tk = cos (πk/N) , k = 0......,N. (14)

These points belong to the interval [-1,1] and they are the extrema of the
Nth-order Chebyschev polynomial TN (t). The jth-order Chebyshev polyno-
mial is as follows

T j(t) = cos ( j arccos t) , j = 0......,N, (15)
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which yields
T j(tk) = cos (πk j/N) .

State and control variables are approximated by polynomials

xN (t) =

N∑

j=0

x jφ j(t), (16)

uN (t) =

N∑

j=0

u jφ j(t), (17)

where

φ j(t) =
(−1) j+1(1 − t2)ṪN (t)

N2c j(t − t j)
, j = 0,1.........N,

are the Lagrange interpolating polynomials of order N, with

c j =


2 j = 0,N
1 1 ≤ j ≤ N − 1

.

The Lagrange polynomials satisfy the condition

φ j(tk) =


1 if j = k
0 if j , k

.

Therefore, it follows that

xN (tk) = xk , and uN (tk) = uk . (18)

It means that the node points are the interpolating points.
Because the node points lie in the computational interval [-1, 1], the

problem should be transformed into this interval by the linear transformation
for t ∈ [t0, tN ] = [−1, 1]

τ = [(τ f − τ0)t + (τ f + τ0)]/2.

Further details of how to express the derivative ẋN (t) in terms of xN (t) at the
node points tk and on the cost function discretization using Clenshaw-Curtis
quadrature scheme one can find in Fahroo and Ross (2002).

Summing up, the optimal control problem described by relations (8, 9,
12, 13) is approximated by the following nonlinear optimization problem:
find coefficients X = (x0, x1, ..., xN ),U = (u0, u1, ..., uN ), and final time τ f to
minimize performance index (8). For solution of the minimum-time soaring
problem, this method has been implemented in MATLAB employing a se-
quential quadratic programming algorithm (MATLAB Optimization Toolbox,
2000; Trefethen, 2000; Zalewski and Cegieła, 2002).
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4. Results

All computations refer to the Word Class Glider PW5 “Smyk”. The
data are as follows (Instrukcja użytkowania w locie szybowca PW-5 „Smyk”,
2001; Obciążenia struktury szybowca PW-5 “Smyk”, 1993): wing area
10.16 m2, mass of the glider 230 kg, lift curve slope dCz/dα=5.8490, stalling
angle αcr=12 deg. The polar curve of the glider is depicted in Fig. 3.

Fig. 3. The polar curve of the Word Class Glider PW-5 “Smyk”

The number of nodes influences the accuracy of computations on the
one hand, and the computing time on the other hand. During preliminary
computations, the optimal results have been compared one to another for
different node numbers N=8, 11, 14, 17, 20, 60. In author’s opinion, the
node number N=25 is a rational compromise between the computing time
and the accuracy. For PC Pentium 4 class (3.08 GHz, RAM 1 GB) the
computations for N=8 take a few minutes, for N=20 a dozen or so minutes,
and for N=60 some hours.

The optimal flight trajectory has been compared to the real trajectory
covered by the pilot Marek N. during the Second Domestic Glider Cham- pio-
nships, Suwałki, Poland 30.06-09.07.2006 (http://zawody.aeroklub.suwalki.pl
/kzs2006/wyniki.php). The computed optimum velocity is greater than the
real one. The real thermal conditions have not been known, however. The
diagram of the real altitude versus distance (Fig. 7) suggests that there was
a thermal near the final point.
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Fig. 4. Optimum altitude h versus covered distance x for different node number N. Still

conditions

Fig. 5. Optimum glider’s ground velocity Vg versus covered distance x for different node number

N. Still conditions
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Fig. 6. Optimum time t f (in seconds) of covering the distance x f =10000 m (values of the

performance index) versus node number N. Still conditions

Fig. 7. Altitude h versus covered distance x for real (solid line) and computed trajectories

(dashed line)
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Fig. 8. Velocity Vg versus covered distance x for real (solid line) and computed trajectories

(dashed line)

To analyze the influence of wind and current patterns on the glider’s
trajectory, we should consider different conditions. As an example, the tra-
jectories for different values of horizontal component of the wind are given
in Fig. 9 and Fig. 10. The greater average glider’s velocities are obtained due
to the tail wind.

Fig. 9. Optimum altitude of flight h for different values of horizontal component of the air

velocity u (u=0, u=±3 m/s)
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Fig. 10. Optimum glider’s ground velocities Vg for different values of horizontal component of

the air velocity u (u=0, u=±3 m/s)

The presented approach confirms the well-known fact that the appearance
of the climbing component of air velocity v is advantageous, and it gives a
shorter time of covering the distance (Fig. 11, Fig. 12).

Fig. 11. Optimum altitude of flight h for different values of vertical component of air velocity v

(v=0, v=±0.1 m/s)
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Fig. 12. Optimum ground velocity Vg for different values of vertical component of air velocity v

(v=0, v=±0.1 m/s)

Fig. 13. Optimum altitude h versus the distance x for the thermal in the middle

In previous examples, the air components u and v are constant and don’t
depend on the distance. The method makes it possible to consider the local
variations of wind conditions. Let’s consider for example the descending
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component of air velocity v that has the same value over the distance except
of the middle segment, where one encounters a climbing component repre-
senting the thermal (right hand scale in Fig. 13 and Fig. 14). The altitude h
and the ground velocity Vg versus the distance x are given in Fig. 13 and
Fig. 14.

Fig. 14. Optimum ground velocity Vg versus the distance for the thermal in the middle

5. Conclusions

In this paper, we considered the minimum-time problem for the glider
that moves in the vertical plane. Different wind and air current patterns were
taken into account. The glider was regarded as a particle that moves under
gravitational and aerodynamic forces. The problem has been solved using di-
rect pseudospectral Chebyshev’s method. The method is effective and flexi-
ble, which means that one can consider different constraints, including in-
equality ones, imposed onto the state variables. The method was implemented
on a personal computer. The approach may be employed for evaluation of
different glider’s performances after variations of the input data, for example
for examining the influence of variations of the mass of the glider on the
time of covering the distance (Rogowski, 2007). The presented method is
much more sophisticated than the classical one where the quasi-static model
of glider’s motion is considered, and the accelerations appearing on the left-
hand sides of equations (2), (3) are neglected (Mozdyniewicz, 1976). In our
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approach, the potential energy of the glider may be converted into the kinetic
one and vice versa.
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REFERENCES

[1] Clancy L.J.: Aerodynamics, Pitman Publishing, 1975, London.
[2] Fahroo F., Ross M.: Direct Trajectory Optimization by a Chebyshev Pseudospectral Method,

Journal of Guidance, Control, and Dynamics, 25, 1, 2002, pp. 160-166.
[3] http://zawody.aeroklub.suwalki.pl/kzs2006/wyniki.php (in Polish).
[4] Instrukcja użytkowania w locie szybowca PW-5 „Smyk”, Doświadczalne Warsztaty Lot-

niczych Konstrukcji Kompozytowych, B1-PW-5/IWL/I/2001, Warszawa (in Polish).
[5] Maroński R., Łucjanek W.: Optymalizacja trajektorii samolotu w locie na zadaną odległość,

Archiwum Budowy Maszyn, 2, 1979, pp. 239-256 (in Polish).
[6] Maroński R.: Minimalizacja zużycia paliwa w locie na zadaną odległość, Mechanika Teore-

tyczna i Stosowana, 26, 3, 1988, pp. 541-556 (in Polish).
[7] MATLAB Optimization Toolbox. User’s Guide, 2000, MathWorks.
[8] Mozdyniewicz W.: Loty falowe, WKŁ, 1976, Warszawa (in Polish).
[9] Obciążenia struktury szybowca PW-5 „Smyk”, Zespół Naukowo-Badawczy Lotniczych Kon-

strukcji Kompozytowych, Instytut Techniki Lotniczej i Mechaniki Stosowanej, Politechnika
Warszawska, PW-5/0/II/93, 1993, Warszawa (in Polish).

[10] Panasz P., Maroński R.: Commercial aircraft trajectory optimization by a Chebyshev’s
pseudospectral method, The Archive of Mechanical Engineering, LII, 1, 2005, pp. 5-19.

[11] Rogowski K.: Optymalizacja trajektorii szybowca przy zadanym rozkładzie noszeń, Praca
Dyplomowa Magisterska na Wydziale Mechanicznym Energetyki i Lotnictwa Politechniki
Warszawskiej, 2007, Warszawa (unpublished).

[12] Rutowski E.S.: Energy approach to the general aircraft performance problem, Journal of
Aeronautical Sciences, March 1954.

[13] Trefethen L.N.: Spectral methods in Mathlab, Society for Industrial and Applied Mathematics,
2000, Philadelphia.

[14] Zalewski A., Cegieła R.: Matlab – obliczenia numeryczne i ich zastosowania, NAKOM, 2002,
Poznań (in Polish).

Optymalizacja trajektorii szybowca dla zadanych warunków termicznych

S t r e s z c z e n i e

Rozważono zagadnienie minimalno-czasowe ruchu szybowca w płaszczyźnie pionowej. Szy-
bowiec jest modelowany jak uskrzydlony punkt materialny poruszający się w atmosferze przy
zadanych warunkach termicznych. Zagadnienie zostało sformułowane za pomocą formalizmu teorii
sterowania optymalnego. Rozwiązano je bezpośrednią pseudospektralną metodą Czebyszewa. Wyko-
rzystano dane dla szybowca Klasy Światowej PW-5 „Smyk”. Wyznaczone trajektorie optymalne
porównano z trajektoriami uzyskanymi w czasie Drugich Krajowych Zawodów Szybowcowych
w Suwałkach w 2006 roku.


