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Green’s function approach to frequency analysis
of thin circular plates
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Abstract. The free vibration analysis of homogeneous and isotropic circular thin plates by using the Green’s functions is considered. The
formulae for construction of the influence function for all nodal diameters are presented in a closed form. The limited independent solutions
of differential Euler equations were expanded in the Neumann power series using the method of successive approximation. This approach
allows to obtain the analytical frequency equations as power series rapidly convergent to exact eigenvalues for different number of nodal
diameters. The first ten dimensionless frequencies for eight different natural modes of circular plates are calculated. A part of obtained
results have not been presented yet in open literature for thin circular plates. The results of investigation are in good agreement with selected

results obtained by other methods presented in literature.
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1. Introduction

In recent years, lightweight plate structures have been used in
many engineering applications. Components of circular plates
are commonly used in aerospace industries and aviation as
well as in marine and civil engineering applications. Circular
plates are the most critical structural elements in high speed
rotating engineering systems such as circular saws, rotors, tur-
bine flywheels, etc. The natural frequencies of the plates have
been studied extensively for more than a century, if only be-
cause the frequency of an external load matches the natural
frequency of the plate, destruction may occur.

Researchers have used various methods of analysis of dy-
namic behavior of plates with different boundary conditions.
The work of Leissa [1] is an excellent source of information
about methods used for free vibration analysis of plates. The
free vibration analysis has been carried out by using a va-
riety of weighting function methods [1] such as the Ritz
method, the Galerkin method or the finite element method.
In many works [1, 2] natural frequencies of circular plates
are expressed in terms of the Bessel functions. Chakraver-
ty et al. [3, 4] have studied the free vibration analysis of
plates of various geometries by using two-dimensional bound-
ary characteristic orthogonal polynomials in the Rayleigh-Ritz
method. Wu and Liu [5, 6] proposed the generalized differ-
ential quadrature rule (GDQR) to a free vibration analysis of
circular thin plates. Jaroszewicz and Zoryj [7] have studied
free vibration of circular thin plates of constant and linearly
variable thickness using the method of partial discretization
(MPD). Ebrahimi and Rastgo [8] investigated the natural vi-
bration behavior of circular functionally graded plates with
clamped edges based on classical plate theory. Yalcin et al. [9]
have studied free vibration of circular plates by using differ-
ential transformation method (DTM). Zhou et al. [10] applied
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the Hamiltonian approach to a solution of the free vibration
problem of circular and annular thin plates. Kukla and Szew-
czyk [11] applied the Green’s functions (influence function)
and Bessel functions to the solution eigenvalue problem of
annular thin plates with discrete elements such as oscillators.
Similarly, Sorokin and Peake [12] have studied the free vi-
bration analysis of sandwich plates with concentrated springs
and mass by using Green’s functions. An area of application
of Green’s functions in a free vibration analysis of isotropic
beams and plates with constant and variable distribution of
parameters is presented in the monograph of Kukla [13]. The
application of Green’s functions in free axisymmetric vibra-
tion of circular thin plates with clamped edges is presented in
the book of Jaroszewicz and Zoryj [14].

In the present study, Green’s functions are used to ob-
tain ten lower natural frequencies for eight different natural
modes of circular plates with different boundary conditions.
A formula of construction of influence functions for different
modes of uniform circular thin plates is obtained in closed
form. The characteristic equations for different boundary con-
ditions and different number of nodal lines of thin circular
plates are defined. The numerical results of investigation are
compared with results presented in literature.

2. Statement of the problem

Consider an isotropic, homogeneous circular thin plate of con-
stant thickness h in cylindrical coordinate (r,6,z) with the
z-axis along the longitudinal direction. Geometry and coor-
dinate system of considering plate as shown in Fig. 1. The
partial differential equation for free vibration of thin plates
has following form

ph O?*W
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where p is the mass density, D = Eh3/12(1 —v?) is the flex-  Free:
ural rigidity, £ is Young’s modulus, v is the Poisson ratio, M (w)]¢=1 =0, (8a)
, 0% 10 107 . . .
V*® = 5 +——+— - is the Laplacian and W(r,0,t) is
or?  rdr 1200 ) . 3 1d2 1+2n2 —wn?) ¢
the small deflection compared with the thickness h of plate. V(w)|e=y = w 4= @aw n no|aw
N dg3 & dg? £ dg
(8b)
3n? — vn?
+|—F—|w =0.
¢ -
Sliding supports:
dw
— =0, (9a)
dS ¢4
V(w)le=1 = 0. (9b)

Fig. 1. Geometry and coordinate system of the circular plate

The deflection of a circular plate may be expressed as
follows _
W (r,0,t) = w(r) cos(nd)e™?, )

where n is the integer number of diagonal nodal lines, w(r) is
the radial mode function, w is natural frequency, and 72 = —1.
Substituting Eq. (2) into Eq. (1) using the dimensionless co-
ordinate { = r/R the governing differential equation of the
circular plate becomes:

L(w) — Nw =0, (3)
where
_dw 2d%w (14 2n?) dPw
gt e e
(142n?) dw  (n* — 4n?)
g & @ "

is differential operator and

A= wR?*\/ph/D (%)

is dimensionless frequency of vibration.

The boundary conditions at the outer edge (£ = 1) of the
circular plate may be one of the following: clamped, simply
supported, free, sliding supports and elastic supports. These
conditions may be written in terms of the radial mode function
w(§) in the following form:

Clamped:
w(§)|§:1 =0, (6a)
dw
— =0. 6b
il (6b)
Simple supports:
w(§)|g:1 =0, (7)
d>w  vdw vn?
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Elastic supports:

dw vn

2 2
<1>(w)|g=1=Ki%wdg g—zw)mi—?]&l:o, (10a)

3 2
U(w)|ey = [(% n % + (vn?— 202 — 1)
; (10b)
w
=+ (3n® —vn? )—M = 0.
s (3n® —vn)w wEZ1

M(w) and V(w) are the normalized radial bending mo-
ment and the normalized effective shear force, respectively.
¢ = KyR/D and ¢ = K, R®/D are normalized parameters
of elastic supports. Ky and K, are rotational and translational
spring constants (Fig. 2), respectively.

Ky
Ky
rersre 77777
Fig. 2. The cross-section of uniform circular plate with elastic sup-

ports

3. Mathematical background

The formula of construction of the Green’s function (general
solution) for homogeneous differential equations

n
dk
1@052}M@£%=Q a<z<b (1)
k=0
has following form
n
K(z,0) =Y Ciy(x), (12)
k=1

where coeflicients py () are continuous functions, p, () # 0
for x € [ab] and « is a position where all discrete elements
could be mounted [11, 14].
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Constants C, have form [13]

1 n+k
Pn (@) Wy ()
Y1 () Yr—1(a) Yrt1() Yn (@)
yi(a) Ye1(@)  yppa(a) o yp(a)
e ) B Gy (0 B S () NP G (0
k=1,2,...,n,
(13)
where W,, is Wronskian
Wi (z) = ‘y}j*’(x)‘ (14)

1<i, k<n

and yi(x) are linear independent solutions of Eq. (1), then
Wronskian satisfies condition W, () # 0.

The other formula of construction of the Green’s function
for homogeneous differential equations has form [14]

Al

K (z,a) = W’ (15)
where
y1( Yy2(a) Yn(a
1 () ya () Yn(a)
Al = : : L] ae)
D) () ' (o)
y1(z) ya(z Yn ()
yl(Oé) y2(04 yn(Oé)
W(a)= 91@) yzfa | ynFa) an
W@ @) ()

Additionally, the functions K (x,«) must satisfy conditions
presented in the following form [13]

OR@a)|l o _01...n-2 (I8
axl r=«
O 1K (z, ) 1
g Ay = 18b
Ozn—1 R (€Y (18b)

4. Green’s function

The characteristic equation of homogeneous differential Euler
equation

dw  2d° 1+ 2n?) d?
L(w)z_%__;v_ﬁizw_w
det & dg £ dg?
2 4 2 (19)
(1+2n )d—w+ (n* —4n )w:O
& dg ¢
has following form
st — 483 + (4 —2n?)s? +4n®s —n?(4 —n?) =0. (20)
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The roots of Eq. (20) have form

s1=mn, Sgo=-n, S3=2-—-n, S3=24+n. (21
The linear independent solutions of Eq. (15) are
wl(f) =", w2(§) =&,
(22)
w3(€) = €77, wa(€) = .

The Green’s function (solution of homogeneous Euler equa-

tion L(K (£, «)) = 0) for different nodal diameters may be

received from Eq. (15) presented in the following form
|An|

where p,, (o) = 1 is coeflicient placed on before highest order

of derivative of Euler differential Eq. (19) and

K, (& a)= (23)

a™ a~" a27n a2+n
dla™) d(a™™) d(*™)  d(a*t?)
A = da da da da 4
d2(an) d2(a—n) d2(a2—n) d2(a2+n)
da? do? da? do?
€n g—n 62—71 §2+n
a™ a~ " a2—n O524—71
d(a") da™") d(@* ") de*™)
do do da da
W(a)n= . (25
(Oé) dQ(Oén) d2(a—n) d2(a2—n) d2(a2+n) ( )
da? da? da? da?
ds(an) dB(afn) dB(a2fn) d3(a2+n)
da’ da’ da’ da?

After calculations, the Green’s function (GF) for different
number nodal diameters n has following form

an+1£7n+2 _ gnafnJrB

8n2 — 8n

(26)
+a7n+1£n+2 _ gfnanJrB
8n2 + 8n ’

and satisfies conditions from Eq. (18)

0K, )
Ko (na) = —af Y oo

n>2

(27a)
?Kn(€ )
=g e =0
PKn(§, a)
g3
The function K, (, «) is indeterminate forn = 0 and n = 1,
then the Green’s functions for this values have following form

le—a = 1. (27b)

lm Ko (60) = & [a2— 21 (@1 a2nl],  8)
n—0 4 «
_ ¢ — ot +482a%Ing

%:Hll K, (& a) = T6¢ . (29)
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In Table 1 the examples of formulas of Green’s function for

seven nodal diameters are presented.

Table 1
The formulas of Green’s functions for the different number of nodal
diameters
n K n (57 CV)
P> 2 2 2y, €
0 Ko(é,a)=z af =&+ (€ +Ol)lng

&t —at -l—4§2o¢2lng
Kl(£7a) = §

16¢
2 Ka(€,a) = (5248;;1:)3
3 Ks(a) = & o;li(ji +a?)

)

5. Solution

The ordinary differential equations with constant or variable
coefficients can be transformed to the Fredholm or the Volter-
ra integral equations using e.g. Fubini’s method [17]. The
solutions of this equations are solutions of the transformed
ordinary differential equation. If the Green’s function (kernel
of integral equation) is well known, the linear independent so-
lutions can be expanded in the Neumann power series rapidly
convergent to eigenvalues (spectrum of integral kernel) based
on the method of successive approximations [18].

The limited (for £ = 0) independent solutions of Eq. (19)
are wi(€) = £" and wy(€) = €2, This solutions were ex-
panded in the Neumann power series in the following form

n
Kn(&N), =€"+ > Ki(§), -\, AeR"™  (30a)

=1

n
Kn(ga )‘)U = §n+2 + Z KZ(S)U ' >‘2ia

i=1
where K;(€),, and K;(§), are iterated kernels [18] presented
in the following form

(30b)

3
Ki(§), = /Kn(gaa)Ki—l(Oé)udOé, (31a)
0
£
Ki(§), = /Kn(gaa)Kifl(a),UdOé (31b)
0

and 7 is the degree of approximations.
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Ko(a), and Ko(a), are the limited independent solu-
tions depending on number of nodal lines presented in the
following form
(32a)

Ko(a), = a2, (32b)

The characteristic equations A, = 0 for different boundary
conditions and different values of parameter n are obtained
from well known the characteristic determinants given by:
Clamped:

K, N), Kn&A),
Ap(N) = akgfg,x))u akgfg,x))v ; (33)
og o¢ £=1
Simply supported:
— K’Vl(g’)‘) K’VL(€7)‘)
A,(N) = “ v ;o (34
W= wikaeng mimaen, | Y
Free:
M[Kn(&,A),] M [Kn(S,A),]
A, () = U v ; 35)
W vikiend vikien |t
Sliding supports:
OKn (&N, OKn(£,2),
A\ = o¢ o ;o (36)
VK&, VI, |
Elastic supports:
_ | PER(EN), ] PIKA(SA),]
A,(N) = “ v 37
V= i) vk, | 7

For all boundary conditions formula of A,, has following form

n

Ap=ag+ Y (1) 'a\*, (38)
i=1

where ag, a1, ...,a, are coefficients of characteristic equa-

tions depending on boundary conditions and number of nodal

lines n.

6. Numerical results

The numerical results for the first ten dimensionless frequen-
cies for different boundary conditions are presented in Ta-
bles 2—8. The nodal diameters are considered for the values
between 0 and 7. The Neumann power series Eq. (30) were ex-
panded only for n = 25. Poisson ratio is taken as v = 0.3 for
all considered cases. The numerical results for free, clamped
and simply supported circular plates are presented in Tables
2—-4 with comparison to Refs. [1, 6, 9, 10, 16]. The numerical
results for plates with sliding supports are shown in Table 5
with comparison to Refs. [6, 15]. The eigenvalues for plates
with elastic supports and different values of elastic parameters
on the edges are presented in Tables 6-8 with comparison to
Refs. [6, 15].

Bull. Pol. Ac.: Tech. 64(1) 2016
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Table 2

Dimensionless The number of nodal diameters, n

frequency, A4 0 1 2 3 4 5 6 7

Ao GF 10.216  21.260 34.877 51.030  69.665 90.739 114.213 140.056
Ref. [1] 10.215  21.260 34.88 51.04 69.665  90.739  114.212 140.056
Ref. [6] 10.216  21.260  34.877 51.030  69.666  90.739 - -
Ref. [9] 10.215  21.260  34.877 51.03 69.665  90.738 - -
Ref.[16] 10.215  21.260  34.877 - - - - -

A GF 39.771  60.828  84.582 111.021 140.108 171.803 206.071 242.878
Ref. [1]  39.771 60.82 84.58 111.01  140.107 171.802 206.070 242.878
Ref. [6]  39.771 60.829  84.583 111.021 140.108 171.803 - -
Ref. [9]  39.771 60.828  84.582 111.021 140.107 171.802 - -
Ref. [16]  39.771 60.828  84.582 - - - - -

A GF 89.104  120.079 153.815 190.304 229.519 271.428 316.002 363.210
Ref. [1]  89.104  120.08 153.81 190.30 229.518 271.428 316.001 363.209
Ref. [6]  89.104 120.079 153.815 190.304 229.519 271.428 - -
Ref. [9]  89.104 120.079 153.815 190.303 229.518 271.428 - -
Ref. [16]  89.104 120.079 153.815 - - - - -

A3 GF 158.184 199.053 242.721 289.180 338.411 390.389 445.089 502.483
Ref. [1] 158.183 199.06 24271  289.17 338.411 390.389 - -
Ref. [6] 158.184 199.053 242.721 289.180 338.411 390.389 - -
Ref. [9] 158.184 199.053 242.720 289.179 338.411 390.389 - -
Ref. [16] 158.184 199.053 242.721 - - - - -

A4 GF 247.006 297.760 351.336 407.730 466.925 528.902 593.639 661.112
Ref. [1] 247.005 297.77 351.38  407.72 - - - -
Ref. [6] 247.006 297.760 351.336 407.730 466.925 528.902 - -
Ref. [9] 247.006 297.76 351.335 407.729 466.925 528.902 - -
Ref. [16] 247.007 297.761 351.337 - - - - -

A5 GF 355.569 416203 479.675 545983 615.114 687.051 761.776 839.268
Ref. [1] 355.568 41620  479.65 54597 - - - -
Ref. [6] 355.569 416.203 479.675 545983 615.114 687.051 - -

A GF 483.872 554.382 627.744 703.955 783.004 864.877 949.558 1037.03
Ref. [1] 483.872 55437  627.75  703.95 - - - -

A5 GF 631.915 712300 795.546 881.652 970.607 1062.40 1157.02 125445
Ref. [1] 631914 71230  795.52  881.67 - - - -

Ag GF 799.697 889.956 983.084 1079.08 1177.93 1279.64 1384.18 1491.55
Ref. [1]  799.762 889.95  983.07 1079.0 - - - -

Ao GF 987.219 1087.35 1190.36 1296.24 140498 1516.52 1629.73 1734.10
Ref. [1] 987.216 10874 11904  1296.2 - - - -

The first ten

lower dimensionless

Table 3
frequencies A of free vibration of free circular plates

Dimensionless The number of nodal diameters, n

frequency, 4 0 1 2 3 4 5 6 7

Ao GF 9.003 20.474 5.358 12.439  21.835 33494 47378  63.455
Ref. [1] 9.084 20.52 5.253 12.23 21.6 33.1 46.2 -
Ref. [6] 9.003 20.475 5.358 12439  21.835  33.495 - -
Ref. [9] 9.003 20.474 5.358 12.439  21.835 33.494 - -
Ref. [16]  9.003 20.474 5.358 - - - - -

A GF 38443  59.811 35260 53.007 73.542  96.755  122.57 150.928
Ref. [1] 38.55 59.86 35.25 5291 73.1 95.8 121.0 -
Ref. [6] 38443  59.812 35260 53.008 73.543  96.755 - -
Ref. [9] 38443 59811 35260 53.007 73.542  96.755 - -
Ref. [16] 38.443  59.812  35.260 - - - - -

Ay GF 87.750  118.957 84.366 111.945 142.431 175735 211.789 250.535
Ref. [1] 87.80 119.0 83.9 111.3 142.8 175.0 210.3 -
Ref. [6] 87.750 118.957 84366 111.945 142.431 175.735 - -
Ref.[9] 87.750 118957 84366 111.945 142431 175.735 - -
Ref. [16] 87.753 118.961  84.361 - - - - -

A3 GF 156.818 197.872 153.306 190.692 231.03 274.252 320.299 369.121
Ref. [1] 157.0 198.2 154.0 192.1 2323 274.6 319.7 -
Ref. [6] 156.818 197.872 153.306 190.692 231.03 274.252 - -
Ref. [9] 156.818 197.871 153.306 190.692 231.03 274.252 - -
Ref. [16] 156.826 197.883 153.310 - - - - -

A4 GF 245.634  296.54 242.036 289.238 339.413 392.505 448.467 507.254
Ref. [1] 245.9 296.9 242.7 290.7 340.4 3924 4473 -
Ref. [6] 245.634 296.540 242.036 289.238 339.413 392.505 - -
Ref. [9] 245633 296.54 242.036 289.238 339.413 392.505 - -
Ref. [16] 245.651 296.564 242.049 - - - - -

As GF 354.192 414956 350.534 407.562 467.573 530.521 596.365 665.069
Ref. [1] 354.6 4153 350.8 408.4 467.9 529.5 593.9 -
Ref. [6] - - 350.534 407.562 467.573 530.521 - -

A GF 482.491 553.115 47879 545.651 615.501 688.3  764.014 842.609
Ref. [1] 483.1 553.0 479.2 546.2 615.0 686.4 760.1 -

A5 GF 630.532  711.017 626.795 703.497 783.189 865.835 951.398 1039.89
Ref. [1] 631.0 711.3 627.0 703.3 781.8 864.4 9523 -

Ag GF 798312 888.664 794.551 881.105 970.627 10632 1159.11 1257.52
Ref. [1] 798.6 888.6 794.7 880.3 968.5 1061.0  1158.7 -

Ay GF 985.823 1086.19 981.983 1078.4 1178.33 12789 137323 1471.19
Ref. [1] 986.0 1086.0 981.6 1076.0  1175.0 1277.0  1384.0 -
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Table 4
The first ten lower dimensionless frequencies A of free vibration of simply supported circular plates
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Dimensionless

The number of nodal diameters, n

frequency, A 0 1 2 3 4 5 6 7
Ao GF 4.935 13.898 25.613 39.957  56.841 76.203 97.944  122.179
Ref. [6] 4.935 13.898 25.613 39.957 56.842 76.203 - -
Ref. [9] 4.935 13.898 25.613 39.957  56.841 76.203 - -
Ref. [10] 4.935 13.898 25.614 39.957 56.842 76.203 - -
Ref. [16] 4.935 13.898 25.613 - - - - -
A GF 29.72 48.478 70.117 94.549 121.702  151.518 183.948 218.951
Ref. [6] 29.720 48.479 70.117 94.549 121.702  151.518 - -
Ref. [9] 29.72 48.478 70.117 94.549 121.702  151.518 - -
Ref. [10] 29.71 48.478 70.116 94.549 121.702  151.518 - -
Ref. [16] 29.72 48.478 70.117 - - - - -
A GF 74.156 102.773 134298  168.675 205851 245778 288.414 333.721
Ref. [6] 74.156 102.772 134298  168.675 205.851 245.778 - -
Ref. [9] 74.156 102.773 134297 168.675 205.851 245.778 - -
Ref. [10] 74.15 102.773 134297 168.674 205.852 245.778 - -
Ref. [16] 74.155 102.773 134.297 - - - - -
A3 GF 138318  176.801  218.203  262.485 309.607 359.532 412221 467.644
Ref. [6] 138.318 176.801 218.203  262.485 309.607 359.532 - -
Ref. [9] 138.318 176.801 218202  262.484 309.607 359.532 - -
Ref. [10] 138.320 176.801 218.202  262.485 309.607 359.535 - -
Ref. [16] 138.317 176.800 218.202 - - - - -
Ay GF 222215 270.566 321.841 376.012 433.049 492919 555592  621.04
Ref. [6] 222215 270.566 321.841 376.012 433.049 492919 - -
Ref. [9] 222215 270.566  321.840 376.012 433.049 492919 - -
Ref. [10] 222215 270.567 321.841 376.012 433.048 4920918 - -
Ref [16] 222213  270.564  321.838 - - - - -
A5 GF 325.849 384.069 445215 509.268 576.203 645.992 718.611 794.034
Ref. [6] 325.849  384.069 445216 509268 576.203  645.992 - -
A6 GF 449.222 517.31 588.328  662.258 739.081 818.774 901.312 986.672
A5 GF 592.333 670.29 751.18 834.984 921.690 1011.28 1103.81 1199.27
g GF 755.182  843.008  933.744  1027.46 112398 1223.59 1324.62 1427.13
Ao GF 937.764 1035.54 1136.62  1238.65 1346.82 1450.60 1560.95 1742.34
Table 5

The first ten lower dimensionless frequencies A of free vibration of circular plates

Dimensionless

The number of nodal diameters, n

frequency, A 0 1 2 3 4 5 6 7
Ao GF 14.682 3.082 8.784 16.902  27.343 40.055 55.003 72.160
Ref. [6] 14.682 3.082 8.785 16.902  27.343 40.056 - -
Ref[15]  14.682 - 8.785 - - - - -
A GF 49.218 28.398 44904 64.130 86.004 110.464 137.462 166.958
Ref. [6] 49.218 28.399 44904 64.130 86.004 110.464 - -
Ref. [15] 49.218  28.399  44.904 - - - - -
Ay GF 103.499 72.859 99361 128.677 160.754 195.539 232.990 273.067
Ref. [6] 103.499 72.859 99361 128.677 160.754 195.539 - -
Ref. [15] 103.500 72.860  99.359 - - - - -
A3 GF 177.521 137.025 173.442 212716 254.806 299.671 347.273 397.579
Ref. [6] 177.521 137.025 173.442 212.716 254.806 299.671 - -
Ref. [15] - 137.009 173.564 - - - - -
Ay GF 271.282 220.923 267.231 316.419 368.456 423308 480.944 541.333
Ref. [6] 271.282 220.923 267.231 316.419 368.456 423.308 - -
A5 GF 384.782 324.577 380.746 439.830 501.783 566.578 634.188 704.587
Ref. [6] - 324.577 380.746 439.830 501.783 566.578 - -
g GF 518.021 447.929 513.995 582.965 654.818 729.532 807.082 887.445
A5 GF 671.0  591.039 666.980 745.830 827.573 912.191 999.671 1090.01
g GF 843.718 753.888 839.699 928.440 1020.12 1114.57 1212.05 1312.14
Ao GF 1036.21 936.488 103224 1130.51 1231.13 1338.58 1435.74 1534.41
Table 6

with sliding edge

The first ten lower dimensionless frequencies A of free vibration of circular plates with elastic supports (¢ = 0.1; ¢ = 100)

Dimensionless The number of nodal diameters, n

frequency, 4 0 1 2 3 4 5 6 7

Ao GF 4.854 12.139 19.079 25.685 33.427 43.294 55.625 70.451
Ref. [6] 4.854 12.140 19.080 25.686 33.427 43.295 - -
Ref[15]  4.854 12.140  19.080 - - - - -

A GF 22.097 31.019 42420 57.965 77227 99.656 12495 152939
Ref. [6] 22.098 31.020 42421 57.965 77.227  99.657 - -
Ref. [15]  22.098 31.020 42.420 - - - - -

A, GF 44.938 63.924 87.285 114.196 144263 177.279 213.124 251.717
Ref. [6] 44.938 63.925 87.285 114.196 144263 177.279 - -
Ref. [15] 44938 63.925 87.285 - - - - -

A3 GF 90.469 120973 154912 192.032 232.184 275.267 321.207 369.944
Ref. [6] 90.469 120973 154912 192.032 232.184 275.267 - -

As GF 158.359 199.127 243.102 290.168 340.243 393.257 449.155 507.890
Ref. [6] 158.359 199.127 243.102 290.168 340.243 393.257 - -

s GF 246.673 297.434 351324 408.273 468.222 531.121 596.924 665.594
Ref. [6] 246.673 297.434 351.324 408273 468222 531.121 - -

e GF 354.968 415.648 479.418 546.229 616.038 688.804 764.490 843.059

y= GF 483.113 553.683 627.321 703.989 783.653 866.277 951.818 1040.36

g GF 631.051 711.503 795.003 881.537 971.030 1063.60 1159.48 1255.58

Ao GF 798.765 889.108 982.443 1078.60 1178.52 1278.32 1373.61 1799.22
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Table 7
The first ten lower dimensionless frequencies A of free vibration of circular plates with elastic supports (¢ = 10; ¢» = 100)

Dimensionless

The number of nodal diameters, »

frequency, 4 0 1 2 3 4 5 6 7

Ao GF 7.790 13.845 19352 25740  34.090 44.808 57.962  73.504
Ref. [6] 7.790 13.845  19.352  25.741  34.090  44.809 - -
Ref.[15]  7.790 13.845 19352 - - - - -

A GF 22.128  32.098 45801 63.015 83282 106.348 132.075 160.377
Ref. [6] 22.128 32.098 45802 63.016 83.282 106.348 - -
Ref. [15] 22.128  32.098  45.802 - - - - -

Az GF 49.253 70468  95.064 122728 153.294 186.663 222.764 261.542
Ref. [6] 49254 70468 95.065 122.728 153.294 186.663 - -
Ref. [15] 49.254  70.468  95.064 - - - - -

A3 GF 98.741  130.265 164.874 202.466 242.962 286.302 332.436 381.320
Ref. [6]  98.741 130.265 164.874 202.466 242.962 286.302 - -

Ay GF 168.599 210.017 254.463 301.883 352.226 405.447 461.505 520.364
Ref. [6] 168.599 210.017 254.463 301.883 352.226 405.447 - -

As GF 258213  309.453 363.707 420.938 481.108 544.179 610.119 678.895
Ref. [6] 258.213 309.453 363.707 420.938 481.108 544.180 - -

Ae GF 367.477 428.531 492.594 559.638 629.632 702.545 778.349 857.013

A GF 496.382 567.255 641.135 717.998 797.818 880.574 966.209 1054.78

Ag GF 644.938 725.639 809.342 896.037 985.712 1078.17 117470 1272.15

Ao GF 813.16  903.712 997277 1093.80 1193.01 1300.43 1379.91 1497.66

Table 8

The first ten lower dimensionless frequencies A of free vibration of circular plates with elastic supports (¢ = 1000; ¥ = 100)

Dimensionless

The number of nodal diameters, n

frequency, A 0 1 2 3 4 5 6 7

Ao GF 8.809 14.552 19.475 25.769 34.480 45.828 59.746 76.123
Ref. [6] 8.809 14.552 19.475 25.769 34.481 45.828 - -
Ref[15] 8.809 14552  19.475 . - - - -

A4 GF 22.142 32.628 47.554 65.992 87.405 111.561 138.339 167.666
Ref. [6] 22.143 32.629 47.554 65.993 87.406 111.561 - -
Ref. [15] 22.142 32.629 47.554 - - - - -

Ay GF 51.441 74280 100.364 129.418 161.309 195.953 233.288 273.267
Ref. [6] 51.442 74.281 100.364 129.418 161.309 195.953 - -
Ref. [15]  51.442 74280 100.366 - - - - -

Az GF 104.413 137.654 173.880 213.012 254988 299.755 347.270 397.496
Ref. [6] 104.413 137.654 173.880 213.012 254.988 299.755 - -

Ay GF 177.926 221.172 267.357 316.442 368.387 423.155 480.711 541.024
Ref. [6] 177.926 221.172 267.357 316.442 368.387 423.155 - -

As GF 271.391 324.553 380.643 439.636 501.504 566.217 633.747 704.066
Ref. [6] 271.391 324.553 380.643 439.636 501.504 566.217 - -

A6 GF 384.668 447.716 513.690 582.572 654.339 728.968 806.434 886.713

Ay GF 517.708 590.630 666.479 745238 826.891 911.421 998.782 1089.06

g GF 670.492 753.282 838.999 927.644 1019.22 1113.55 1211.74 1310.34

Ao GF 843.007 935.670 1031.21 1129.53 1229.99 133724 142449 1540.84

7. Conclusions REFERENCES

In this paper, the Green’s functions have been employed to
solve natural vibration of circular thin plates with different
boundary conditions. The universal Green’s function for dif-
ferent nodal diameters is defined in a closed form. The ten
lower natural frequencies are calculated for eight different nat-
ural modes. The limited independent solutions of differential
Euler equations were expanded into the Neumann power se-
ries using the method of successive approximation. This ap-
proach allows to obtain the analytical frequency equations as
power series rapidly convergent to exact eigenvalues for a dif-
ferent number of nodal diameters. The obtained results are
in good agreement with results obtained by other methods
presented in literature. The obtained numerical results can be
used to validate the accuracy of other numerical methods as
benchmark values. The calculations are evaluated with the
help of Mathematica v10, which is a symbolic calculation
software.
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