
BULLETIN OF THE POLISH ACADEMY OF SCIENCES
TECHNICAL SCIENCES, Vol. 64, No. 1, 2016
DOI: 10.1515/bpasts-2016-0020

Green’s function approach to frequency analysis

of thin circular plates

K.K. ŻUR∗

Faculty of Management, Bialystok University of Technology, 2 Ojca Stefana Tarasiuka St., 16-001 Kleosin, Poland

Abstract. The free vibration analysis of homogeneous and isotropic circular thin plates by using the Green’s functions is considered. The
formulae for construction of the influence function for all nodal diameters are presented in a closed form. The limited independent solutions
of differential Euler equations were expanded in the Neumann power series using the method of successive approximation. This approach
allows to obtain the analytical frequency equations as power series rapidly convergent to exact eigenvalues for different number of nodal
diameters. The first ten dimensionless frequencies for eight different natural modes of circular plates are calculated. A part of obtained
results have not been presented yet in open literature for thin circular plates. The results of investigation are in good agreement with selected
results obtained by other methods presented in literature.
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1. Introduction

In recent years, lightweight plate structures have been used in
many engineering applications. Components of circular plates
are commonly used in aerospace industries and aviation as
well as in marine and civil engineering applications. Circular
plates are the most critical structural elements in high speed
rotating engineering systems such as circular saws, rotors, tur-
bine flywheels, etc. The natural frequencies of the plates have
been studied extensively for more than a century, if only be-
cause the frequency of an external load matches the natural
frequency of the plate, destruction may occur.

Researchers have used various methods of analysis of dy-
namic behavior of plates with different boundary conditions.
The work of Leissa [1] is an excellent source of information
about methods used for free vibration analysis of plates. The
free vibration analysis has been carried out by using a va-
riety of weighting function methods [1] such as the Ritz
method, the Galerkin method or the finite element method.
In many works [1, 2] natural frequencies of circular plates
are expressed in terms of the Bessel functions. Chakraver-
ty et al. [3, 4] have studied the free vibration analysis of
plates of various geometries by using two-dimensional bound-
ary characteristic orthogonal polynomials in the Rayleigh-Ritz
method. Wu and Liu [5, 6] proposed the generalized differ-
ential quadrature rule (GDQR) to a free vibration analysis of
circular thin plates. Jaroszewicz and Zoryj [7] have studied
free vibration of circular thin plates of constant and linearly
variable thickness using the method of partial discretization
(MPD). Ebrahimi and Rastgo [8] investigated the natural vi-
bration behavior of circular functionally graded plates with
clamped edges based on classical plate theory. Yalcin et al. [9]
have studied free vibration of circular plates by using differ-
ential transformation method (DTM). Zhou et al. [10] applied

the Hamiltonian approach to a solution of the free vibration
problem of circular and annular thin plates. Kukla and Szew-
czyk [11] applied the Green’s functions (influence function)
and Bessel functions to the solution eigenvalue problem of
annular thin plates with discrete elements such as oscillators.
Similarly, Sorokin and Peake [12] have studied the free vi-
bration analysis of sandwich plates with concentrated springs
and mass by using Green’s functions. An area of application
of Green’s functions in a free vibration analysis of isotropic
beams and plates with constant and variable distribution of
parameters is presented in the monograph of Kukla [13]. The
application of Green’s functions in free axisymmetric vibra-
tion of circular thin plates with clamped edges is presented in
the book of Jaroszewicz and Zoryj [14].

In the present study, Green’s functions are used to ob-
tain ten lower natural frequencies for eight different natural
modes of circular plates with different boundary conditions.
A formula of construction of influence functions for different
modes of uniform circular thin plates is obtained in closed
form. The characteristic equations for different boundary con-
ditions and different number of nodal lines of thin circular
plates are defined. The numerical results of investigation are
compared with results presented in literature.

2. Statement of the problem

Consider an isotropic, homogeneous circular thin plate of con-
stant thickness h in cylindrical coordinate (r, θ, z) with the
z-axis along the longitudinal direction. Geometry and coor-
dinate system of considering plate as shown in Fig. 1. The
partial differential equation for free vibration of thin plates
has following form

∇4W +
ρh

D

∂2W

∂t2
= 0, (1)
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where ρ is the mass density, D = Eh3/12(1−ν2) is the flex-
ural rigidity, E is Young’s modulus, ν is the Poisson ratio,

∇2 =
∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂θ2
is the Laplacian and W (r, θ, t) is

the small deflection compared with the thickness h of plate.

Fig. 1. Geometry and coordinate system of the circular plate

The deflection of a circular plate may be expressed as
follows

W (r, θ, t) = w(r) cos(nθ)eiωt, (2)

where n is the integer number of diagonal nodal lines, w(r) is
the radial mode function, ω is natural frequency, and i2 = −1.
Substituting Eq. (2) into Eq. (1) using the dimensionless co-
ordinate ξ = r/R the governing differential equation of the
circular plate becomes:

L(w) − λ2w = 0, (3)

where

L(w) ≡
d4w

dξ4
+

2

ξ

d3w

dξ3
−

(1 + 2n2)

ξ2
d2w

dξ2

+
(1 + 2n2)

ξ3
dw

dξ
+

(n4 − 4n2)

ξ4
w

(4)

is differential operator and

λ = ωR2
√

ρh/D (5)

is dimensionless frequency of vibration.
The boundary conditions at the outer edge (ξ = 1) of the

circular plate may be one of the following: clamped, simply
supported, free, sliding supports and elastic supports. These
conditions may be written in terms of the radial mode function
w(ξ) in the following form:
Clamped:

w(ξ)|ξ=1 = 0, (6a)

dw

dξ

∣

∣

∣

∣

ξ=1

= 0. (6b)

Simple supports:
w(ξ)|ξ=1 = 0, (7a)

M(w)|ξ=1 =

[

d2w

dξ2
+
ν

ξ

dw

dξ
−
νn2

ξ2
w

]

ξ=1

= 0. (7b)

Free:

M(w)|ξ=1 = 0, (8a)

V (w)|ξ=1 =

[

d3w

dξ3
+

1

ξ

d2w

dξ2
−

(

1 + 2n2 − νn
2

ξ2

)

dw

dξ

+

(

3n2 − νn2

ξ3

)

w

]

ξ=1

= 0.

(8b)

Sliding supports:

dw

dξ

∣

∣

∣

∣

ξ=1

= 0, (9a)

V (w)|ξ=1 = 0. (9b)

Elastic supports:

Φ(w)|ξ=1 =

[(

d2w

dξ2
+ν

dw

dξ
−
νn2

ξ2
w

)

+φ
dw

dξ

]

ξ=1

=0, (10a)

Ψ(w)|ξ=1 =

[(

d3w

dξ3
+
d2w

dξ2
+ (νn2 − 2n2 − 1)

·
dw

dξ
+ (3n2 − νn2)w

)

− ψw

]

ξ=1

= 0.

(10b)

M(w) and V (w) are the normalized radial bending mo-
ment and the normalized effective shear force, respectively.
φ = KφR/D and ψ = KψR

3/D are normalized parameters
of elastic supports.Kφ andKψ are rotational and translational
spring constants (Fig. 2), respectively.

Fig. 2. The cross-section of uniform circular plate with elastic sup-
ports

3. Mathematical background

The formula of construction of the Green’s function (general
solution) for homogeneous differential equations

L(y) ≡

n
∑

k=0

pk(x)
dky

dxk
= 0, a < x < b (11)

has following form

K(x, α) =

n
∑

k=1

C′
kyk(x), (12)

where coefficients pk(x) are continuous functions, pn(x) 6= 0
for x ∈ [ab] and α is a position where all discrete elements
could be mounted [11, 14].
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Constants C′
k have form [13]

C′
k =

(−1)
n+k

pn (α)Wn(α)

·

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

y1(α) · · · yk−1(α)

y′1(α) · · · y′k−1(α)
...

y
(n−2)
1 (α)

· · ·

· · ·

...

y
(n−2)
k−1 (α)

yk+1(α)

y′k+1(α)
...

y
(n−2)
k+1 (α)

· · ·

· · ·
...

. . .

yn(α)

y′n(α)
...

y
(n−2)
n (α)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

,

k = 1, 2, . . . , n,
(13)

where Wn is Wronskian

Wn(x) =
∣

∣

∣
y
(i−1)
k (x)

∣

∣

∣

1≤i, k≤n
(14)

and yk(x) are linear independent solutions of Eq. (1), then
Wronskian satisfies condition Wn(α) 6= 0.

The other formula of construction of the Green’s function
for homogeneous differential equations has form [14]

K (x, α) =
|A|

W (α)pn (α)
, (15)

where

|A| =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

y1(α) y2(α) . . .

y′1(α) y′2(α) · · ·
...

y
(n−2)
1 (α)

y1(x)

...

y
(n−2)
2 (α)

y2(x)

. . .

. . .

. . .

yn(α)

y′n(α)
...

y
(n−2)
n (α)

yn(x)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

, (16)

W (α)=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

y1(α) y2(α) . . .

y′1(α) y′2(α) · · ·
...

y
(n−1)
1 (α)

...

y
(n−1)
2 (α)

...

. . .

yn(α)

y′n(α)
...

y
(n−1)
n (α)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

. (17)

Additionally, the functions K(x, α) must satisfy conditions
presented in the following form [13]

∂iK(x, α)

∂xi

∣

∣

∣

∣

x=α

= 0, i = 0, 1, . . . , n− 2, (18a)

∂n−1K(x, α)

∂xn−1

∣

∣

∣

∣

x=α

=
1

pn(α)
. (18b)

4. Green’s function

The characteristic equation of homogeneous differential Euler
equation

L(w) ≡
d4w

dξ4
+

2

ξ

d3w

dξ3
−

(1 + 2n2)

ξ2
d2w

dξ2

+
(1 + 2n2)

ξ3
dw

dξ
+

(n4 − 4n2)

ξ4
w = 0

(19)

has following form

s4 − 4s3 + (4 − 2n2)s2 + 4n2s− n2(4 − n2) = 0. (20)

The roots of Eq. (20) have form

s1 = n, s2 = −n, s3 = 2 − n, s4 = 2 + n. (21)

The linear independent solutions of Eq. (15) are

w1(ξ) = ξn, w2(ξ) = ξ−n,

w3(ξ) = ξ2−n, w4(ξ) = ξ2+n.
(22)

The Green’s function (solution of homogeneous Euler equa-
tion L(K(ξ, α)) = 0) for different nodal diameters may be
received from Eq. (15) presented in the following form

Kn(ξ, α) =
|An|

W (α)npn(α)
, (23)

where pn(α) = 1 is coefficient placed on before highest order
of derivative of Euler differential Eq. (19) and

|An|=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

αn α−n α2−n α2+n

d(αn)

dα

d(α−n)

dα

d(α2−n)

dα

d(α2+n)

dα

d2(αn)

dα2

d2(α−n)

dα2

d2(α2−n)

dα2

d2(α2+n)

dα2

ξn ξ−n ξ2−n ξ2+n

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

, (24)

W (α)n=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

αn α−n α2−n α2+n

d(αn)

dα

d(α−n)

dα

d(α2−n)

dα

d(α2+n)

dα

d2(αn)

dα2

d2(α−n)

dα2

d2(α2−n)

dα2

d2(α2+n)

dα2

d3(αn)

dα3

d3(α−n)

dα3

d3(α2−n)

dα3

d3(α2+n)

dα3

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

, (25)

After calculations, the Green’s function (GF) for different
number nodal diameters n has following form

Kn(ξ, α) =
αn+1ξ−n+2 − ξnα−n+3

8n2 − 8n

+
α−n+1ξn+2 − ξ−nαn+3

8n2 + 8n
, n ≥ 2

(26)

and satisfies conditions from Eq. (18)

Kn(α, α) =
∂Kn(ξ, α)

∂ξ
|ξ=α

=
∂2Kn(ξ, α)

∂ξ2
|ξ=α = 0,

(27a)

∂3Kn(ξ, α)

∂ξ3
|ξ=α = 1. (27b)

The function Kn(ξ, α) is indeterminate for n = 0 and n = 1,
then the Green’s functions for this values have following form

lim
n→0

Kn(ξ, α) =
α

4

[

α2 − ξ2 + (ξ2 + α2)ln
ξ

α

]

, (28)

lim
n→1

Kn(ξ, α) =
ξ4 − α4 + 4ξ2α2lnα

ξ

16ξ
. (29)
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In Table 1 the examples of formulas of Green’s function for
seven nodal diameters are presented.

Table 1
The formulas of Green’s functions for the different number of nodal

diameters

n Kn(ξ, α)

0 K0(ξ, α) =
α

4

�
α2

− ξ2 + (ξ2 + α2)ln
ξ

α

�
1

K1(ξ, α) =

ξ4 − α4 + 4ξ2α2ln
α

ξ

16ξ

2 K2(ξ, α) =
(ξ2 − α2)

3

48ξ2α

3 K3(ξ, α) =
(ξ2 − α2)

3
(ξ2 + α2)

96ξ3α2

4 K4(ξ, α) =
1

96

�
α5

ξ2
−

ξ4

α

�
+

1

160

�
ξ6

α3
−

α7

ξ4

�
5 K5(ξ, α) =

1

160

�
α6

ξ3
−

ξ5

α2

�
+

1

240

�
ξ7

α4
−

α8

ξ5

�
6 K6 (ξ, α) = 1

240

�
α7

ξ4
−

ξ6

α3

�
+

1

336

�
ξ8

α5
−

α9

ξ6

�
7 K7(ξ, α) = 1

336

�
α8

ξ5
−

ξ7

α4

�
+

1

448

�
ξ9

α6
−

α10

ξ7

�
5. Solution

The ordinary differential equations with constant or variable
coefficients can be transformed to the Fredholm or the Volter-
ra integral equations using e.g. Fubini’s method [17]. The
solutions of this equations are solutions of the transformed
ordinary differential equation. If the Green’s function (kernel
of integral equation) is well known, the linear independent so-
lutions can be expanded in the Neumann power series rapidly
convergent to eigenvalues (spectrum of integral kernel) based
on the method of successive approximations [18].

The limited (for ξ = 0) independent solutions of Eq. (19)
are w1(ξ) = ξn and w2(ξ) = ξn+2. This solutions were ex-
panded in the Neumann power series in the following form

Kn(ξ, λ)u = ξn +

η
∑

i=1

Ki(ξ)u · λ
2i, λ ∈ R+ (30a)

Kn(ξ, λ)v = ξn+2 +

η
∑

i=1

Ki(ξ)v · λ
2i, (30b)

where Ki(ξ)u and Ki(ξ)v are iterated kernels [18] presented
in the following form

Ki(ξ)u =

ξ
∫

0

Kn(ξ, α)Ki−1(α)udα, (31a)

Ki(ξ)v =

ξ
∫

0

Kn(ξ, α)Ki−1(α)vdα (31b)

and η is the degree of approximations.

K0(α)u and K0(α)v are the limited independent solu-
tions depending on number of nodal lines presented in the
following form

K0(α)u = αn, (32a)

K0(α)v = αn+2. (32b)

The characteristic equations ∆n = 0 for different boundary
conditions and different values of parameter n are obtained
from well known the characteristic determinants given by:
Clamped:

∆n(λ) ≡

∣

∣

∣

∣

∣

Kn(ξ, λ)u Kn(ξ, λ)v
∂Kn(ξ,λ)

u

∂ξ

∂Kn(ξ,λ)
v

∂ξ

∣

∣

∣

∣

∣

ξ=1

; (33)

Simply supported:

∆n(λ) ≡

∣

∣

∣

∣

∣

Kn(ξ, λ)u Kn(ξ, λ)v
M [Kn(ξ, λ)u] M [Kn(ξ, λ)v]

∣

∣

∣

∣

∣

ξ=1

; (34)

Free:

∆n(λ) ≡

∣

∣

∣

∣

∣

M [Kn(ξ, λ)u] M [Kn(ξ, λ)v]

V [Kn(ξ, λ)u] V [Kn(ξ, λ)v]

∣

∣

∣

∣

∣

ξ=1

; (35)

Sliding supports:

∆n(λ) ≡

∣

∣

∣

∣

∣

∂Kn(ξ,λ)
u

∂ξ

∂Kn(ξ,λ)
v

∂ξ

V [Kn(ξ, λ)u] V [Kn(ξ, λ)v]

∣

∣

∣

∣

∣

ξ=1

; (36)

Elastic supports:

∆n(λ) ≡

∣

∣

∣

∣

∣

Φ[Kn(ξ, λ)u] Φ[Kn(ξ, λ)v]

Ψ[Kn(ξ, λ)u] Ψ[Kn(ξ, λ)v]

∣

∣

∣

∣

∣

ξ=1

. (37)

For all boundary conditions formula of ∆n has following form

∆n = a0 +

η
∑

i=1

(−1)iaiλ
2i, (38)

where a0, a1, . . . , aη are coefficients of characteristic equa-
tions depending on boundary conditions and number of nodal
lines n.

6. Numerical results

The numerical results for the first ten dimensionless frequen-
cies for different boundary conditions are presented in Ta-
bles 2–8. The nodal diameters are considered for the values
between 0 and 7. The Neumann power series Eq. (30) were ex-
panded only for η = 25. Poisson ratio is taken as ν = 0.3 for
all considered cases. The numerical results for free, clamped
and simply supported circular plates are presented in Tables
2–4 with comparison to Refs. [1, 6, 9, 10, 16]. The numerical
results for plates with sliding supports are shown in Table 5
with comparison to Refs. [6, 15]. The eigenvalues for plates
with elastic supports and different values of elastic parameters
on the edges are presented in Tables 6–8 with comparison to
Refs. [6, 15].
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Table 2
The first ten lower dimensionless frequencies λ of free vibration of clamped circular plates

Table 3
The first ten lower dimensionless frequencies λ of free vibration of free circular plates
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Table 4
The first ten lower dimensionless frequencies λ of free vibration of simply supported circular plates

Table 5
The first ten lower dimensionless frequencies λ of free vibration of circular plates with sliding edge

Table 6
The first ten lower dimensionless frequencies λ of free vibration of circular plates with elastic supports (ϕ = 0.1; ψ = 100)
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Table 7
The first ten lower dimensionless frequencies λ of free vibration of circular plates with elastic supports (ϕ = 10; ψ = 100)

Table 8
The first ten lower dimensionless frequencies λ of free vibration of circular plates with elastic supports (ϕ = 1000; ψ = 100)

7. Conclusions

In this paper, the Green’s functions have been employed to
solve natural vibration of circular thin plates with different
boundary conditions. The universal Green’s function for dif-
ferent nodal diameters is defined in a closed form. The ten
lower natural frequencies are calculated for eight different nat-
ural modes. The limited independent solutions of differential
Euler equations were expanded into the Neumann power se-
ries using the method of successive approximation. This ap-
proach allows to obtain the analytical frequency equations as
power series rapidly convergent to exact eigenvalues for a dif-
ferent number of nodal diameters. The obtained results are
in good agreement with results obtained by other methods
presented in literature. The obtained numerical results can be
used to validate the accuracy of other numerical methods as
benchmark values. The calculations are evaluated with the
help of Mathematica v10, which is a symbolic calculation
software.
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