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AN EFFICIENT UNIFIED METHOD FOR THE COMBINED
SIMULATION OF MULTIBODY AND HYDRAULIC DYNAMICS:

COMPARISON WITH SIMPLIFIED AND CO-INTEGRATION
APPROACHES

A formulation developed at the Laboratory of Mechanical Engineering allows
robust and efficient simulation of large and complex multibody systems. Simulators
of cars, excavators and other systems have been developed showing that real-time
simulations are possible even when facing demanding manoeuvres.

Hydraulic actuators are present in many industrial applications of multibody
systems, like in the case of the heavy machinery field. When simulating the dynamics
of this kind of problems that combine multibody dynamics and hydraulics, two
different approaches are common: to resort to kinematically guide the variable length
of the actuator, thus avoiding the need to consider the dynamics of the hydraulic
system; or to perform a multi-rate integration of both subsystems if a more detailed
description of the problem is required, for example, when the objective of the study
is to optimize the pump control.

This work addresses the inclusion of hydraulic actuators dynamics in the above-
mentioned self-developed multibody formulation, thus leading to a unified approach.
An academic example serves to compare the efficiency, accuracy and ease of imple-
mentation of the simplified (kinematic guidance), multi-rate and unified approaches.
Such a comparison is the main contribution of the paper, as it may serve to provide
guidelines on which approach to select depending on the problem characteristics.

1. Introduction

Several years ago, the authors proposed a method for the efficient sim-
ulation of the dynamics of multibody systems [1]: the modeling of the sys-
tem was carried out in natural or fully-Cartesian coordinates, the equations
of motion were stated as an index-3 augmented Lagrangian formulation,
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the numerical integration was performed through Newmark-type algorithms,
and the resulting velocities and accelerations were projected into their cor-
responding constraint manifolds. The formalism showed to be robust and
efficient: it worked properly in mechanisms with singular configurations or
changing topologies, and provided successful results for large and complex
industrial problems, like the detailed models of cars and excavators, allowing
integration time steps as large as 10 ms. Some years later, the method was
extended [2] so as to consider the modeling in joint coordinates (dependent
and relative coordinates), taking advantage of the recursive kinematics and
dynamics allowed for such an approach, which led to a method with improved
efficiency for large systems.

Fig. 1. Diagram of a hydraulic cylinder and valve

Hydraulic actuators play a relevant role in many industrial fields, like
for example in most heavy machinery systems [3, 4]. The dynamics of such
devices are usually modeled in terms of the orifice equations, volumes and
pressure areas, as depicted in Fig. 1. Pressure rates for the volumes on both
sides of the cylinder piston are derived from fluid continuity and compress-
ibility considerations [5] as

ṗA =
βA

VA

(
−V̇A + QPA + QTA + QBA

)
(1)

ṗB =
βB

VB

(
−V̇B + QPB + QTB + QBA

)
(2)

where VA and VB are the volumes at each side of the cylinder and V̇A, V̇B are
their speeds of variation. QPA, QPB represent the flow incoming to chamber
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A or B from the pump, QTA, QTB are the flows to the tank from chamber
A or B, while QBA constitutes the leakage flow and is commonly neglected.
The bulk modulus at each side of the cylinder, βi, is obtained as a function
of the pressures as

βi =
1 + api + bp2

i

a + 2bpi
(3)

with aand b being known constants for the fluid. The flow across each orifice
area, Aor f , in a hydraulic valve is given by

Q = Aor fCd

√
2 (pin − pout)

ρ
sign (pin − pout) (4)

where pin and pout are the pressures at both sides of the orifice and Cd is
the flow discharge coefficient for a sharp orifice opening area.

In the valve, there are four orifice areas which are a nonlinear function of
the spool displacement, κ, corresponding to APA (κ), ATA (κ), APB (κ), ATB (κ).
The displacement of the spool includes some dead zones to minimize leak-
age [6]. The variation of the pressure provided by the pump is a nonlinear
function of the speed, the flow, the leakages and the geometry of the pump,
but this is not taken into account in this work.

A common simplified technique to include the behavior of hydraulic
actuators within simulations of multibody dynamics consists of kinemati-
cally guiding the variable length corresponding to the distance between the
ends of the hydraulic actuator [7]. The guidance law, which provides the
actuator length as function of the driving inputs (provided, for instance, by
the machine operator), may be just a linear mapping, or may account for
force or speed limitations and other characteristics of the real power system.

However, for some applications, e.g. when optimization of the pump
control is sought, a more detailed modeling is required, and the dynamics of
hydraulic actuators should be taken into account. Some attempts have been
presented in the literature in this direction [8, 9]. From the integration point
of view, two different approaches have been followed, namely, the unified
approach, and the co-integration.

The first one combines the hydraulic and multibody equations, thus yield-
ing a single system [10, 11] that is then integrated in time.

In the second approach, one problem leads the solution process and,
usually, its integration time-step size is larger. Therefore, both problems are
integrated separately, but information is exchanged between them at every
integration time step of the main process. This is known as multi-rate in-
tegration, and can be carried out by either employing a different software
for each problem (co-simulation) [9, 12] or a single environment where both
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problems are integrated separately (co-integration) [13,14]. Hydraulic devices
are easily modeled by a few first-order nonlinear differential equations, but
it is a numerically stiff set of equations due to the high “stiffness” of the
hydraulic fluid, which is characterized by a bulk modulus that may raise to
700 MPa. This problem may be overcome by using a very small time-step
size for the integration that ranges, typically between 10−6 s and 10−4 s [15].
Consequently, the multibody integration leads the process, and the hydraulic
problem is solved with a smaller time-step size.

In this work, the first approach from those that take the hydraulic dy-
namics into account is addressed: both hydraulic and multibody dynamic
equations are combined within the formalism mentioned at the beginning of
the Section in a unified approach. The efficiency of this scheme is tested by
comparison with the kinematic guidance of hydraulic actuators. The accuracy
of the solution is contrasted with that of a co-integration scheme. The com-
parison of the three approaches may be considered as the main contribution
of the paper, as it aims to provide guidelines that help to find out which is
the most suitable approach depending on the problem characteristics.

The organization of the paper is as follows: the original method for
multibody dynamics is briefly exposed in Section 2; the inclusion of the
hydraulic dynamic equations is addressed in Section 3, and the resulting
formalism is obtained; an academic example aimed to test the behavior of
the proposed scheme is presented in Section 4, while in Section 5 the results
coming from the simulation of the example are discussed and compared with
those of the other approaches mentioned above; finally, the conclusions are
summarized in Section 6.

2. The original multibody method

The original method for the dynamics of multibody systems is described
in [1], but a brief overview is presented in this Section. The modeling is
carried out in dependent fully-Cartesian coordinates, also known as natural
coordinates. Further explanation about these coordinates and the constraints
they lead to can be found in [16].

The equations of motion of the whole multibody system are given by an
index-3 augmented Lagrangian formulation in the form

Mq̈ + ΦT
qαΦ + ΦT

qλ
∗ = Q (5)

where M is the mass matrix, q̈ the accelerations vector, Φq the Jacobian
matrix of the constraint equations, α the penalty factor, Φ the constraints
vector, λ∗ the Lagrange multipliers and Q the vector of applied and velocity
dependent inertia forces. The Lagrange multipliers are obtained from the
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following iteration process (given by sub-index i, while sub-index n stands
for the time step),

λ∗i+1 = λ∗i + αΦi+1 i = 0, 1, 2, ... (6)

where the value of λ∗o is taken equal to the λ∗ obtained in the previous time
step.

As integration scheme, the implicit single-step trapezoidal rule is adopt-
ed. The corresponding difference equations in velocities and accelerations
are:

q̇n+1 =
2
∆t

qn+1 + ˆ̇qn

q̈n+1 =
4

∆t2
qn+1 + ˆ̈qn

(7)

with,

ˆ̇qn = −
(

2
∆t

qn + q̇n

)

ˆ̈qn = −
(

4
∆t2

qn +
4
∆t

q̇n + q̈n

) (8)

Dynamic equilibrium can be established at time step n+1 by introducing the
difference equations (6) and (7) into the equations of motion (4), leading to

4
∆t2

Mqn+1 + ΦT
qn+1 (αΦn+1 + λn+1) −Qn+1 + Mˆ̈qn = 0 (9)

For numerical reasons, the scaling of Eq. (8) by a factor of ∆t2/4 seems to
be advisable, thus yielding

Mqn+1 +
∆t2

4
ΦT

qn+1 (αΦn+1 + λn+1) − ∆t2

4
Qn+1 +

∆t2

4
Mˆ̈qn = 0 (10)

or, symbolically f (qn+1) = 0.
In order to obtain the solution of this nonlinear system, the widely used

iterative Newton-Raphson method is applied
[
∂f (q)
∂q

]

i
∆qi+1 = − [

f (q)
]
i (11)

being the residual vector,

[
f (q)

]
=

∆t2

4

(
Mq̈ + ΦT

qαΦ + ΦT
qλ
∗ −Q

)
(12)
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and the approximated tangent matrix,
[
∂f (q)
∂q

]
= M +

∆t
2

C +
∆t2

4

(
ΦT

qαΦq + K
)

(13)

where C and K represent the contribution of damping and elastic forces of
the system provided they exist.

The procedure explained above yields a set of positions qn+1 that not only
satisfies the equations of motion (5), but also the constraint conditions Φ = 0.
However, it is not expected that the corresponding sets of velocities and ac-
celerations satisfy Φ̇ = 0 and Φ̈ = 0, because these conditions have not been
imposed in the solution process. To overcome this difficulty, velocities and
accelerations are projected into their corresponding constraint manifolds. The
projection leading matrix is the same tangent matrix of Eq. (13). Therefore,
triangularization is avoided and projections in velocities and accelerations
are carried out with just forward reductions and back substitutions.

If q̇∗ and q̈∗ are the velocities and accelerations obtained after conver-
gence has been achieved within the Newton-Raphson iteration, their projected
counterparts q̇ and q̈ are calculated from

[
W +

∆t2

4
ΦT

qαΦq

]
q̇ = Wq̇∗ − ∆t2

4
ΦT

qαΦt (14)

for the velocities, and
[
W +

∆t2

4
ΦT

qαΦq

]
q̈ = Wq̈∗ − ∆t2

4
ΦT

qα
(
Φ̇qq̇ + Φ̇t

)
(15)

for the accelerations, being,

W = M +
∆t
2

C +
∆t2

4
K (16)

3. The proposed method for multibody and hydraulic dynamics

The method described in the previous Section is extended to also con-
sider the hydraulic dynamic equations. The index-3 augmented Lagrangian
formulation is incremented with the pressure variation equations, leading to
the following combined system of equations:

Mq̈ + ΦT
qαΦ + ΦT

qλ
∗ = Q(q, q̇,p)

ṗ = h (p, q, q̇)
(17)
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where vector p contains the pressures of the chambers (two for each hy-
draulic cylinder). The dependency of both the applied forces vector Q and
the function h with respect to positions q, velocities q̇ and pressures p is
considered to be known. The Lagrange multipliers are obtained from the
same iteration process already described in the previous Section.

Again, the implicit single-step trapezoidal rule is adopted as integration
scheme. The corresponding difference equations in velocities, accelerations
and pressure derivatives are,

q̇n+1 =
2
∆t

qn+1 + ˆ̇qn

q̈n+1 =
4

∆t2
qn+1 + ˆ̈qn

ṗn+1 =
2
∆t

pn+1 + ˆ̇pn

(18)

being,
ˆ̇qn = −

(
2
∆t

qn + q̇n

)

ˆ̈qn = −
(

4
∆t2

qn +
4
∆t

q̇n + q̈n

)

ˆ̇pn = −
(

2
∆t

pn + ṗn

)
(19)

that is, the pressure derivatives use the same integration scheme as do the
velocities.

If dynamic equilibrium is established at time step n+1 by introducing the
difference equations (18-19) into the differential equations (17), the following
result is obtained,

4
∆t2

Mqn+1 + ΦT
qn+1 (αΦn+1 + λn+1) −Qn+1 + Mˆ̈qn = 0 (20)

2
∆t

pn+1 − hn+1 + ˆ̇pn = 0 (21)

The scaling of Eq. (20-21) by a factor of ∆t2/4 is now performed, as it was
done in the previous Section for the multibody problem, thus yielding

Mqn+1 +
∆t2

4
ΦT

qn+1 (αΦn+1 + λn+1) − ∆t2

4
Qn+1 +

∆t2

4
Mˆ̈qn = 0 (22)

∆t
2

pn+1 − ∆t2

4
hn+1 +

∆t2

4
ˆ̇pn = 0 (23)

or, symbolically f (xn+1) = 0, with xT =
{

qT pT
}
.
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In order to obtain the solution of this nonlinear system, the iterative
Newton-Raphson method is used,

[
∂f (x)
∂x

]

i
∆xi+1 = − [f (x)]i (24)

with the residual vector,

[f (x)] =
∆t2

4


Mq̈ + ΦT

qαΦ + ΦT
qλ
∗ −Q

ṗ − h

 (25)

and the approximated tangent matrix
[
∂f (x)
∂x

]
,



M +
∆t
2

C +
∆t2

4

(
ΦT

qαΦq + K
)

−∆t2

4
∂Q
∂p

−∆t
2

(
∆t
2
∂h
∂q

+
∂h
∂q̇

)
∆t
2

(
Inp − ∆t

2
∂h
∂p

)


(26)

Here np is the number of elements in the vector of pressures p, and Inp
is the identity matrix of such a dimension. It must be pointed out that the
tangent matrix is not symmetric any more, as it was when dealing with the
multibody problem alone. This fact will negatively affect the efficiency, since
specific solvers for symmetric matrices are faster.

Once the Newton-Raphson iteration process converges, the resulting ve-
locities and accelerations should be projected into their respective constraint
manifolds in order to achieve constraint satisfaction at velocity and accelera-
tion levels. The projection equations are exactly the same as those presented
in Eq. (14-15).

4. The example

The example to test this approach is shown in Fig. 2. The solution ob-
tained using the proposed formulation is compared against those obtained
through other approaches. Comparison with the approach consisting of kine-
matically guiding the actuator will make it possible to assess the loss in
efficiency incurred by the unified approach. Comparison with a co-integration
scheme will allow appraising the accuracy achieved by the unified approach.

The rod, with length L=1 m and mass m=200 kg uniformly distributed,
is pinned to the ground at one of its ends in A, and has attached a point mass
of M=250 kg at the other end. The system is subject to gravity. A hydraulic
actuator is pinned to the center point of the rod at one end, and to the ground
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Fig. 2. The mechanism employed in the example

at the other end in B. The piston area is A=0.0065 m2, and the total cylinder
length is l=0.442 m. Friction in the actuator has been considered through a
linear viscous model, with coefficient c=105 Ns/m. Coordinates of the fixed
points are A(0,0) and B(

√
3/2,0). Initially, the system is at rest, the angle

between the rod and the ground is 30o, and the two cylinder chambers have
the same volume.

The multibody system is modeled with the five variables grouped into
vector q, while the hydraulic actuator is modeled with the two pressures of
vector p,

qT =
{

x1 y1 x2 y2 s
}

pT =
{

p1 p2

} (27)

where x1, y1 are the Cartesian coordinates of point 1, located in the middle
of the rod, x2, y2 are the Cartesian coordinates of point 2, coincident with
the point mass rigidly attached to the end of the rod, s is the variable length
of the hydraulic actuator, and p1, p2 are the pressures in the upper and lower
chamber of the cylinder, respectively. The meaning of all these variables is
also illustrated in Fig. 2.

According to the described data, the term of the applied forces vector Q
of Eq. (17) due to the hydraulic actuator is,

Q (5) = (p2 − p1) A − cṡ (28)
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Regarding the second set of equations in Eq. (17), i.e. the pressure equa-
tions, they are stated as follows,

ṗ1 = h1 =
β1

Al1

Aṡ + Aicd

√
2 (pP − p1)

ρ
δP − Aocd

√
2 (p1 − pT )

ρ
δT



ṗ2 = h2 =
β2

Al2

−Aṡ + Aocd

√
2 (pP − p2)

ρ
δP − Aicd

√
2 (p2 − pT )

ρ
δT


(29)

where βi is calculated according to Eq. (3), l1 and l2 are the variable lengths
of the upper and lower chamber, respectively, Ai and Ao are the variable
valve areas connecting the cylinder chambers to the pump and to the tank,
respectively, cd=0.67 is the valve discharge coefficient, ρ=850 kg/m3 is the
fluid density, pP=7.6 MPa and pT=0.1 MPa are the pump and tank pressures,
respectively (considered constant in this example), and, finally, δP and δT are
0 in case the quantity inside the square root is negative, and 1 otherwise.

Given that the two cylinder chambers have equal volume at initial time,
the variable lengths of the upper and lower chamber are obtained as,

l1 = 0.5l + so − s
l2 = 0.5l + s − so

(30)

with so=0.5 m the initial length of the actuator.
The variable valve areas Ai and Ao take, for each time instant, the fol-

lowing values,
Ai = 0.0005κ

Ao = 0.0005 (1 − κ) (31)

where κ is the spool displacement or valve control parameter, i.e. the input
which controls the system motion.

The initial values of the problem variables are set so that the system
is in static equilibrium. This serves to avoid instabilities in the integration
process. The values of the position variables, q, are easily obtained from the
initial configuration of the system described above. The initial velocities, q̇,
are set to zero, since the system is at rest. The initial values of the pressures,
p, are calculated as the solution of a nonlinear system formed by the three
following equations:

(2M + m) g = (p2 − p1) A
h1 = 0
h2 = 0

(32)
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where g=9.81 m/s2 is the value of gravity. The solution of the nonlinear
system of Eq. (32) yields the initial values of the pressures p1 and p2 and
the initial value of the spool displacement κ, so that static equilibrium is
guaranteed.

In order to build the combined dynamic equations provided in Eq. (17),
some additional terms are required.

The mass matrix is,

M =



0 0 0 0 0
0 0 0 0 0

0 0 M +
m
3

0 0

0 0 0 M +
m
3

0

0 0 0 0 0



(33)

The inertia of the rod has been distributed between point A (fixed) and point
2, so that no inertia has been assigned to point 1, thus yielding the null first
and second rows and columns of the mass matrix.

The applied forces are,

Q =



0
−mg

0
−Mg

(p2 − p1) A − cṡ



(34)

and the constraints vector is,

Φ =



(x1 − xA)2 + (y1 − yA)2 − (0.5L)2

(x2 − xA) − 2 (x1 − xA)
(y2 − yA) − 2 (y1 − yA)

(x1 − xB)2 + (y1 − yB)2 − s2


(35)

where the first equation imposes the constant length of segment A1, the
second and third equations indicate that vector A2 is proportional to vector
A1, and the fourth equation relates the variable actuator distance s with the
Cartesian coordinates of points 1 and B.

Finally, in order to build the approximate tangent matrix of Eq. (26),
the following terms are also required. The stiffness matrix K is null in this
example, while the damping matrix C has only one non-zero element due to
the viscous damping at the actuator, C(5,5)=c. Moreover,
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∂Q
∂p

= A



0 0
0 0
0 0
0 0
−1 1



∂h
∂q

=


0 0 0 0

h1

l1
0 0 0 0 −h2

l2



∂h
∂q̇

=


0 0 0 0

β

l1
0 0 0 0 − β

l2



∂h
∂p

= − βcd

A
√

2ρ


D 0
0 E



(36)

where D and E are obtained as,

D =
1
l1

(
Ai√

pP − p1
δP +

Ao√
p1 − pT

δT

)

E =
1
l2

(
Ao√

pP − p2
δP +

Ai√
p2 − pT

δT

) (37)

A 10-seconds analysis is defined as the case-study: starting from rest initial
conditions, the spool displacement κ is varied according to the following
law:

κ =



κo t 6 2
κo − 0.01 2 < t 6 6
κo + 0.01 6 < t 6 10

(38)

where κo is the initial value of the control parameter, which provides static
equilibrium conditions, as explained before. The areas of the orifices depend
on the displacement of the spool according to Eq. (31).

Chronologically, the proposed unified scheme was first run and the his-
tories of the cylinder length s and its first and second time-derivatives were
stored during the simulation.

In the second simulation executed, a program which implements the sim-
plified approach (kinematic guidance of the actuator) was run. The histories
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of the cylinder length and its derivatives, stored in the previous simulation,
were recovered and used to kinematically guide the coordinate s of the multi-
body problem, so that the same motion of the system was ensured. It must
be pointed out that this second simulation is not a kinematic simulation,
but a dynamic one provided by the formalism described in Section 2, in
which the value of the problem variable associated to the cylinder, s, is
imposed by means of an additional kinematic constraint (in the general case,
knowing the motion of the hydraulic cylinders does not imply that the full
system motion is known and, hence, the equations of motion should still be
integrated). Therefore, the constraints vector is not that shown in Eq. (35),
but the following one,

Φ =



(x1 − xA)2 + (y1 − yA)2 − (0.5L)2

(x2 − xA) − 2 (x1 − xA)
(y2 − yA) − 2 (y1 − yA)

(x1 − xB)2 + (y1 − yB)2 − s2

s − s(t)



(39)

Finally, a third simulation implementing a multi-rate integration scheme (dif-
ferent integrators and time steps) was carried out. The multibody problem
conducted the integration. A time step of 10 ms was adopted for the multi-
body integration, while the hydraulic problem was integrated through a for-
ward Euler integrator with a time step of 0.2 ms, the largest that reached con-
vergence. These time-step sizes imply that, at every iteration of the multibody
problem, the hydraulic problem must be integrated 50 times.

The integration of the hydraulic expressions given in Eq. (29) assumes a
constant elongation velocity of the actuator during the multibody time step.
This velocity is approximated by the length variation divided by the time-step
size:

ṡ =
s (tn+1) − s (tn)

∆t
(40)

The Newton-Raphson scheme of the multibody integration yields, at every
iteration step, a variation of the elongation at time tn+1, so that a new inte-
gration of the hydraulic equations is required. Therefore, the total time of the
simulation will be larger than in the case of the unified approach. However,
the theoretically more accurate solution will serve to validate the solution
provided by the scheme proposed in this paper.

The results obtained from the three simulations, along with their discus-
sion, are addressed in the next Section.
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5. Results and discussion

Fig. 3 shows the histories of the cylinder length, s, and its first derivative,
ṡ. Fig. 4 plots the difference between the elongation, s, obtained by the unified
method and the multi-rate integration. Fig. 5 presents the histories of the
pressures p1 and p2. A detail of the discrepancies between both solutions is
presented in Fig. 6, where the grey line provides the solutions of the multi-
rate integration while the black line represents the solutions of the unified
method.

Fig. 7 illustrates the actuator force, including the damping losses. Fig. 8
plots the histories of the total energy, the kinetic energy, the potential energy,
and the work performed by the actuator (including the damping losses again).
Fig. 9 displays the violation of the constraints and their first and second
derivatives (in all the three cases, the plotted magnitude is the norm of the
corresponding vector). The abrupt jumps at t =2 s and t =6 s are due to
the sudden changes of the spool motion at those instants. At t =2 s the
mechanism is in equilibrium position, so that the influence of starting the
spool motion is lower than that of stopping it at t=6 s. The constraints
behavior reveals the difficulty of keeping the mechanism assembled under
the actuating forces. Anyway, the norm of the constraints vector is kept under
the imposed tolerance of 1.e-7.

Solutions in position, velocity and acceleration of the cylinder show
practically no discrepancies between the two methods. Because of this, only
one single line can be seen in the plots and the difference between the solution
provided by the multi-rate and unified integration is detailed in Fig. 4. Notice
that this difference is under 0.1 mm in the positions.

In order to validate the solution of the unified scheme, a comparison of
the evolution of the pressures is illustrated in Fig. 5 and a detail of the pick
value of pressure p1 is provided in Fig. 6. As explained before, the hydraulic
problem is stiff, this behavior being evidenced in Fig. 6. The multi-rate
scheme employs a smaller integration step for the hydraulic problem and
therefore yields a smoother solution. In general terms, the solution of the
unified scheme is accurate and oscillations are not relevant.

It must be said that, although typical values of the penalty factor α (see
Eq. (5)) are in the range 107-109, in this case a value of α=1010 has been
shown to provide the best convergence properties for the Newton-Raphson
iteration of the unified scheme. The need of such a large penalty factor is
due to the stiffness introduced in the system by the hydraulic equations.
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In regard to the integration time-step size, the plotted results in Figs. 3
through 9 have been obtained with a fixed time-step of 10 ms for the unified
integration scheme, the multibody part of the multi-rate integration scheme,
and the simplified simulation. Of course, smaller time-step sizes have been
tested too and can be used without any problem. The integration time-step
size for the hydraulic problem in the multi-scale scheme has been set to
0.2 ms. Larger time steps did not reach convergence when using the for-
ward Euler integrator. However, if the trapezoidal rule is employed, a time-
step size of 10 ms can be reached. In this case, the histories of the pres-
sures are equal to those obtained with the unified scheme and showed in
Fig. 5.

The number of iterations required for convergence with α=1010 and
∆t=10 ms has been two or three at the more demanding instants of the
simulation (around t=2 s and t=6 s) and just one for the rest. The plot of
the total energy in Fig. 6 shows good conservation properties: there is a
variation of 1 J in the total energy during the simulation, which is a small
quantity compared to variations of potential energy and actuator work of
around 1000 J. The plots of constraints violation at position, velocity and
acceleration levels in Fig. 7 prove that constraint satisfaction is kept within
very strict limits. Therefore, the algorithm has shown a good behavior for
such a large time-step size of integration, which confirms that it conserves
the robustness already demonstrated in multibody simulations.

Regarding the efficiency, CPU-times measured for the three simulations
performed are shown in Table 1. The programs were developed and run
in Matlab computing environment, which means that absolute CPU-times
are not representative, yet they serve for comparison among the different
approaches.
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In Table 1, the increase in computational cost motivated by the inclusion
of the hydraulic equations in the unified scheme is around 20% with respect
to the simplified simulation, that only considers the multibody problem. From
a theoretical point of view, the increase in computational cost is basically
due to two factors: first, to the larger problem size, since the pressures are
added to the problem variables, and, second, to the non-symmetric character
of the new approximated tangent matrix of the Newton-Raphson iteration.

Table 1.
CPU-times for the three compared approaches

Simulation CPU-time (s)

Kinematic guidance 0.338

Unified integration 0.389

Multi-rate integration
Forward Euler (∆t = 0.2 ms) 5.895

Trapezoidal Rule (∆t = 10 ms) 0.672

The comparison between the unified scheme and the multi-rate approach
is very favorable to the unified scheme. Multi-rate integration with the for-
ward Euler integrator implies to evaluate and integrate the hydraulic equa-
tions 50 times at each iteration within a time step of the multibody inte-
gration. As can be seen in Table 1, the use of a more stable integrator as
the trapezoidal rule for the hydraulic problem leads to a smaller difference
between the unified and multi-rate schemes, since this integrator allows to
employ a time-step size of 10 ms for the integration of the hydraulic problem.

Table 2 shows the fastest simulations that provide a smooth solution of
the pressure problem when a multi-rate integration is performed. As it can
be seen, the simulation does not converge for time-step sizes larger than
0.2 ms with the forward Euler integrator. In the case of the trapezoidal rule,
a time-step size of 5 ms can be reached; faster simulations are also possible,
but larger time-step sizes lead to non-smooth results.

Table 2.
Fastest simulations with smooth solution of the hydraulic problem for multi-rate integration

Integrator CPU-time (s)

Forward Euler (∆t = 0.2 ms) 5.895

Trapezoidal Rule (∆t = 5 ms) 1.021

Finally, Table 3 shows the main features of the different approaches.
When considering the kinematic guidance, precision is not taken into account
because the actual hydraulic problem is not resolved. Regarding the multi-rate
integration with the trapezoidal rule as integrator for the hydraulic problem,
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the presented characteristics correspond to a time-step size of 5 ms, since
this is the largest one that provides a smooth solution.

Table 3.
Properties of the different methods

Simulation

E
ffi
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en

cy

A
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ur
ac

y

E
as

e
of

im
pl

em
en

t.

Kinematic guidance ***** - *****

Unified integration ***** *** *

Multi-rate integration
Forward Euler * ***** ****

Trapezoidal Rule *** ***** ****

Several consequences can be derived from Table 3. The use of the unified
integration scheme is adequate when efficiency is paramount. Otherwise,
the multi-rate integration is recommended; in such a case, the use of the
trapezoidal rule as integrator provides a good compromise between efficiency
and accuracy.

Evidently, these trends require further confirmation in the simulation of
large and complex machines like, for example, the full model of an excavator,
but the analysts interested in moving from the simplified approach to the
integration of the hydraulic equations may use this study as a starting point.

6. Conclusions

Based on the results reported herein, the following conclusions can be
established:
• The augmented Lagrangian formulation traditionally used to address multi-

body dynamics problems preserves its robustness when facing combined
multibody and hydraulic dynamics problems in a unified approach. For
the academic example studied, a large time-step size of 10 ms could be
taken, but a high penalty factor of 1010 was required in order to keep good
convergence properties, due to the stiffness of the hydraulic equations.

• The increase in computational cost motivated by the inclusion of the
hydraulic equations when compared with a simplified modeling of the
hydraulic problem through kinematic guidance of the actuators is mod-
erated, and due mainly to the larger resulting problem size and the non-
symmetric character of the approximated tangent matrix. A 20% increase
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was measured for the academic example considered. Therefore, it can be
affirmed that efficiency is not substantially altered when moving from a
simplified to a fully-coupled approach.

• The unified approach is more efficient than the multi-rate integration
scheme due to the lower number of evaluations of the hydraulic equa-
tions required. However, this higher efficiency is achieved at the cost of
obtaining a less smooth solution for the hydraulics.

• If a smooth solution of the hydraulics is required, the multi-rate integra-
tion scheme with an implicit integrator for the hydraulic problem provides
a good compromise between efficiency and accuracy, and requires less
implementation effort than the unified approach.
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Skuteczna, zunifikowana metoda połączonej symulacji dynamiki systemu wieloczłonowego
i hydraulicznego: porównanie podejścia uproszczonego i integracyjnego

S t r e s z c z e n i e

W Laboratorium Budowy Maszyn (Laboratory of Mechanical Engineering) Uniwersytetu La
Coruña opracowano solidne i skuteczne sformułowanie problemu symulacji umożliwiające symu-
lację dużych, skomplikowanych systemów wieloczłonowych. Opracowano symulatory samochodów,
koparek i innych maszyn wykazując, że można wykonać symulacje w czasie rzeczywistym, nawet
w sytuacji skomplikowanych manewrów.

Siłowniki hydrauliczne są wykorzystywane w wielu zastosowaniach przemysłowych w sys-
temach wieloczłonowych, np. w maszynach roboczych. Przy symulacji tego rodzaju systemów,
w których występuje połączenie hydrauliki z dynamiką systemów wieloczłonowych, można naj-
częściej zastosować jedno z dwu podejść: ograniczyć się do kinematycznego sterowania zmien-
ną długością siłownika, unikając w ten sposób konieczności uwzględnienia dynamiki systemu
hydraulicznego albo, gdy wymagany jest bardziej szczegółowy opis problemu, np. gdy celem
symulacji jest optymalizacja sterowania pompy, wykonać wielostopniowe całkowanie w obydwu
systemach.

W przedstawionej pracy dokonano włączenia dynamiki siłowników hydraulicznych do wspom-
nianego wyżej samodzielnego sformułowania dla systemu wieloczłonowego, co doprowadziło do
podejścia zunifikowanego. Zaprezentowano przykład akademicki, w którym porównano efekty-
wność, dokładność i łatwość implementacji podejść uproszczonego (sterowanie kinematyczne),
wielostopniowego i zunifikowanego. To porównanie jest najważniejszym przyczynkiem, jaki wnosi
prezentowana praca, gdyż może służyć wskazaniu wyboru właściwego podejścia w zależności od
charakterystyk problemu.


