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The application of hypergeometric functions to computing fractional

order derivatives of sinusoidal functions
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Abstract. In the paper, the analytical forms of fractional order derivatives of sinusoidal function according to definitions of Riemann –

Liouville and Caputo are presented. To determine the analytical form of the integrals appearing in definitions of derivatives of fractional

order the Lommel functions from hypergeometrical functions family were applied. With the use of properties of the derivatives of fractional

order - differential-integral there were presented the conception of generalized element of a single equation, which depending on the value

of the derivative order, can be inductor, resistor, capacitor, or a hypothetical element of a fractional order differential equation.
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1. Introduction

Fractional order derivatives, also known as differential-

integrals are applied in ever new areas of knowledge, such as:

• the modeling of the behavior of polymers and highly elastic

materials [1];

• the examination of the phenomena of relaxation of organic

dielectrics. [2];

• automatics, Pi
λDµ controllers [3–5];

• modeling of electrochemical processes [6];

• modeling of traffic in computer networks [7];

• supercapacitors modeling [8, 9].

In this paper, we attempt to apply fractional order deriva-

tives in circuit theory.

It is assumed that there exist hypothetical components

(quasi-capacitative, quasi-inductive), in which the connections

between currents and voltages or voltages and currents are de-

fined using a fractional order derivative, for example:

iC = C
dαuC

d tα
, uL = L

dαiL
d tα

, (1)

which can, in general, be written as a relation between the

forcing – input signal x and the output signal – response y

y = B
dαx

d tα
, (2)

where B denotes a constant numeric coefficient.

There are many indications that the real elements that

meet such equations are: supercapacitors [9], coils with an

open ferromagnetic core [10] and non-linear elements with

the ambiguous characteristics.

The cases where the input signal is a unit step were consid-

ered in [11]. It would be interesting to determine the response

of these elements to sinusoidal inputs. Therefore, the task is

to compute:
dα

d tα
A sin(ω t). (3)

Numerical algorithms for computing such derivatives were

given in [12, 13] but an analytic solution is not known.

The aim of this work is to find an analytical form of the

derivative (3) basing on two known definitions of fraction-

al order derivatives – a derivative according to definitions of

Riemann-Liouville and Caputo. To determine the solution, the

Lommel functions belonging to the family of hypergeometric

functions were used.

2. Derivatives of sinusoidal functions according

to the definition of Riemann-Liouville

Using the definition of Riemann-Liouville (R-L) [14–17]:

aDα
t f(t) =

1

Γ(k − α)

dk

dtk

t
∫

a

(t − τ )
k−α−1

f(τ)dτ , (4)

where k − 1 ≤ α ≤ k, Γ(α) – gamma (Euler) function, we

get the response of the system for the fractional derivative of

order 0 < α < 1 in the form:

y = B0D
α
t x =

AB

Γ(1 − α)

d

dt

t
∫

0

(t − τ)−α sin(ωτ)dτ . (5)

As can be seen, the most difficult task is to compute the def-

inite integral analytically, as in the next step its derivative

should be calculated. This integral can be determined using

Lommel’s function from the family of hypergeometric func-

tions.
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Hypergeometric functions are an extensive class of func-

tions, whose characteristic feature is that their Tschebyschev

coefficients can be expressed sufficiently simply by values of

functions from this class [18]. Hence, the integer from relation

(5) is expressed as follows:

t
∫

0

(t − τ)−α sin(ωτ)dτ =
(ωtαL1 − L2)ωα−

3

2 · t−
1

2

(α − 1)
, (6)

where L1 = LommelS1 (1/2 − α, 3/2, ωt), L2 =
LommelS1 (3/2 − α, 1/2, ωt).

The Lommel function is defined in the following way [18]:

LommelS1(µ, ν, x) = sµν(x)

=
xµ+1

(µ − ν + 1) (µ + ν + 1)

· 2F1

(

1,
1

2
(µ − ν + 3) ,

1

2
(µ + ν + 3) , −

1

4
x2

)

,

(7)

2F1(α, β, γ, x) is a hypergeometric function defined as [18]:

2F1(α, β, γ, x) =

∞
∑

k=0

(α)k(β)k

(γ)kk!
xk, (8)

where (a)k is Pochhammer’s symbol expressed by the formu-

la:

(a)k = a(a + 1) . . . (a + k − 1) for (a)0 = 1.

Therefore, functions denoted as L1 and L2 obtain the form:

L1 =
(ωt)1.5−α

(−α)(3−α)

∞
∑

k=0

(−1)k (1)k(1−0.5α)k

(2.5−0.5α)k4kk!
(ωt)2k, (9)

L2=
(ωt)2.5−α

(2−α)(3−α)

∞
∑

k=0

(−1)k (1)k(2−0.5α)k

(2.5−0.5α)k4kk!
(ωt)2k. (10)

Whereas the integral (6) is expressed by the formula;

t
∫

0

(t − τ)
−α

sin(ωτ)dτ =
−ω t2−α

(α − 1) · (3 − α)

·

(

∞
∑

k=0

{

(−1)k(1)k(ωt)2k

4k(2.5−0.5α)kk!

[

(1−0.5α)k+
(2−0.5α)k

(2−α)

]}

)

,

(11)

or in the form suitable for differentiation with respect to the

variable t:
t
∫

0

(t − τ )
−α

sin(ωτ)dτ =
−ω

(α − 1) · (3 − α)

·

(

∞
∑

k=0

{

(−1)k(1)kω2kt2−α+2k

4k(2.5−0.5α)kk!

[

(1−0.5α)k+
(2−0.5α)k

(2−α)

]}

)

.

(12)

To determine the derivative of the integral (6) with respect

to time, the definite series defined in (12) should be differen-

tiated term by term. One can proceed in such a way only if

every term of the series is continuous for a finite value of the

variable, with respect to which one is differentiating (in this

case, this it the variable t) [19].

Hence the derivative equals:

d

d t

t
∫

0

(t − τ )
−α

sin(ωτ)dτ =
−ω

(α − 1) · (3 − α)

·











∞
∑

k=0



















(−1)
k
(1)k ω2k (2 − α + 2k) t1−α+2k

4k (2.5 − 0.5α)k k!

·

[

(1 − 0.5α)k +
(2 − 0.5α)k

(2 − α)

]





























.

(13)

The responses for sinusoidal input to the system (5) for frac-

tional derivative of order 0 < α < 1 according to the

Riemann-Liouville definition have the analytic form:

y =
−ABω

(α − 1) · (3 − α) · Γ (1 − α)

·

∞
∑

k=0



















[

(1 − 0.5α)k +
(2 − 0.5α)k

(2 − α)

]

·
(−1)

k
(2 − α + 2k) (1)k ω2k t1−α+2k

4k (2.5 − 0.5α)k k!



















.

(14)

Considering fractional Riemanna-Liouville derivatives of or-

der −1 < α < 0 we obtain:

0D
α
t f(t) =

1

Γ(−α)

t
∫

0

(t − τ )
−α−1

f(τ) dτ . (15)

The integral in formula (15) can be expressed in an analytic

form:
t
∫

0

(t − τ)−α−1f(τ)dτ

=
−t2ωt−α−1(−1 + (ωt)α−0.5L2)

α(α − 1)
,

(16)

where L2 denotes the Lommel function defined by formula

(10).

Therefore, responses for sinusoidal inputs (5) to the sys-

tem for a fractional derivative of order −1 < α < 0 according

to the definition of Riemann-Liouville have the form:

y =
ω AB

α(α − 1)Γ(−α)

·











t1−α −
1

(2 − α) (3 − α)

·
∞
∑

k=0

(−1)k (1)k (2 − 0.5α)k (ω)
2k+2

(t)
2k+3−α

4k (2.5 − 0.5α)k k!











,

(17a)

or in an expanded form:

y =
ω AB

α(α − 1)Γ(−α)

·











t1−α −
1

(2 − α) (3 − α)

·
∞
∑

k=0

(1)k (2 − 0.5α)k (ω)2k+2 (t)2k+3−α

4k (2.5 − 0.5α)k k!











.

(17b)
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Considering the fractional order Riemann-Liouville deriva-

tives of orders from the interval 1 < α < 2 one obtains the

expression:

0D
α
t f (t) =

1

Γ (2 − α)

d2

dt2

t
∫

0

(t − τ )
1−α

f(τ) dτ . (18)

The integral in the formula (15) can be expressed in an ana-

lytic form:

t
∫

0

(t − τ )
1−α

f(τ)dτ = ωα−1.5t0.5L2. (19)

Computing its second derivative, one obtains:

d2

dt2

t
∫

0

(t − τ)1−αf(τ)dτ =
ω

(2 − α) · (3 − α)

·

∞
∑

k=0

[

(−1)k(1)k(2−0.5α)k(3−α+2k)·(2−α+2k)

(2.5−0.5α)k

·
ω2kt1−α+2k

4kk!

]

.

(20)

Hence, the responses for sinusoidal imput (5) to the system

for fractional derivative of order 1 < α < 2 according to the

definition of Riemann-Liouville obtain the analytic form:

y =
ABω

(2 − α) · (3 − α) · Γ(2 − α)

·

∞
∑

k=0

[

(−1)k(1)k(2−0.5α)k(3−α+2k)·(2−α+2k)

(2.5−0.5α)k

·
ω2k t1−α+2k

4kk!

]

.

(21)

Analogously, one can obtain analytic formulas for a fractional

order from any interval.

3. Derivatives of sinusoidal functions according

to the definition of Caputo

Another definition of a fractional order derivative is the defi-

nition of Caputo [14, 15, 20–25]:

C
a Dα

t f(t) =
1

Γ(α − n)

t
∫

a

f (n)(τ)

(t − τ)α+1−n
dτ,

n − 1 ≤ α ≤ n.

(22)

As can be seen, in this case the calculation will be easier

to do, since the derivatives of order n are under the integral

and concern the sine function. Hence, for fractional orders

0 < α < 1 one obtains:

C
a Dα

t f(t) =
1

Γ(1 − α)

t
∫

0

f (1)(τ)

(t − τ )α dτ

=
ω

Γ(1 − α)

t
∫

0

(t − τ )
−α

cos(ωτ)dτ .

(23)

The analytic form of the integral in formula (21) is shown by

the expression:

t
∫

0

(t − τ)
−α

cos(ωτ)dτ =
t1−α

[

−1 + (ωt)α−0.5L2
]

(α − 1)
. (24)

Whereas the responses for sinusoidal inputs (5) to the system

for a fractional derivative of order 0 < α < 1 according to

the Caputo definition obtain the form:

y =
ω AB t1−α

(α − 1)Γ (1 − α)

·









−1 +
1

(2 − α) · (3 − α)

·
∞
∑

k=0

(−1)
k (1)k (2 − 0.5α)k

(2.5 − 0.5α)k 4kk!
(ωt)

2k+2









(25a)

and in an expanded form.

y =
ω AB t1−α

(α − 1)Γ (1 − α)

·











−1 +
1

(2 − α) · (3 − α)

·
∞
∑

k=0

(1)k (2 − 0.5α)k (ωt)
2k+2

4k (2.5 − 0.5α)k k!











.

(25b)

For a fractional derivative of order –1 < α < 0 according to

the definition of Caputo we obtain, in sequence:

C
0 Dα

t f (t) =
1

Γ(−α)

t
∫

a

f (0) (τ)

(t − τ)α+1 dτ

=
1

Γ(−α)

t
∫

a

(t − τ)
−α−1

sin(ωτ)dτ .

(26)

The integral in the above formula is:

t
∫

0

(t − τ)
−α−1

sin (ωτ) dτ

=
−ω t−α+1

[

−1 + (ωt)
α−0.5

L2
]

α (α − 1)
.

(27)

Substituting (27) into Eq. (5) we get:

y =
ω AB t−α+1

α (α − 1) Γ (−α)

·











− 1 +
(ω t)

2

(2 − α) · (3 − α)

·
∞
∑

k=0

(−1)
k (1)k (2 − 0.5α)k

(2.5 − 0.5α)k 4kk!
(ω t)

2k











(28a)
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and, taking into account the Lommel function (L2):

y =
ω AB t−α+1

α(α − 1)Γ(−α)

·











1 −
1

(2 − α) (3 − α)

·
∞
∑

k=0

(1)k (2 − 0.5α)k (ω t)
2k+2

4k (2.5 − 0.5α)k k!











.

(28b)

Whereas for the fractional derivative of order 1 < α < 2
according to the definition of Caputo we obtain:

C
0 Dα

t f(t) =
1

Γ (2 − α)

t
∫

0

f (2) (τ)

(t − τ )α−1 dτ

=
−ω2

Γ (2 − α)

t
∫

0

(t − τ )−α+1 sin(ωτ)dτ ,

(29)

where the integral in (29) is expressed as follows:

t
∫

0

(t − τ )
−α+1

sin(ωτ)dτ = ωα−1.5t0.5L2. (30)

As a result, the system response for the fractional derivative

represented by formula (5) is:

y =
−ω2AB

Γ (2 − α)

t3−α

(2 − α) · (3 − α)

·

∞
∑

k=0

(−1)k (1)k (2 − 0.5α)k

(2.5 − 0.5α)k 4kk!
(ω t)2k

(31a)

and with regard to the Lommel function (L2) Eq. (31a) be-

comes:

y =
−ωα−1AB

(2 − α) (3 − α)Γ (2 − α)

·

∞
∑

k=0

(1)k (2 − 0.5α)k (ω t)
2k+3−α

4k (2.5 − 0.5α)k k!
.

(31b)

Analogously, one can compute the analytic forms of fraction-

al derivatives from any interval k − 1 < α < k for any

integer k.

4. Numeric realization

The numerical realization of fractional order derivatives of

sinusoidal functions described analytically – according to

Riemann-Liouville definition – Eqs. (14), (17a) and (21) and

according to Caputo definition – (25a), (28a) and (31a) is not

simple because these equations present infinite sums of alter-

nating series. Ingredients successively alter their signs – fac-

tor (−1)k, and it’s difficult to determine how many elements

should be summed. In addition, a steadily growing exponent

t makes, that for large times the series is divergent. However,

by using appropriate scaling and selection of the amounts of

the components, the convergence can be achieved. Figure 1

shows a comparison of derivatives of 0.9 order calculated

according to Riemann-Liouville and Caputo definitions with

the integer derivative of the first order i.e. the cosinus func-

tion.

Fig. 1. Comparison of derivatives of 0.9 order and integer derivative

of the first order

In analyzing these waveforms it can be seen that for small

values of time t fractional order derivatives calculated accord-

ing to Riemann-Liouville and Caputo definitions – overlap

while with increasing t – they show increasing differences. It

should also be pointed out, that only derivative according to

Caputo definition has zero in the same place as the cosinus

function.

Next figures show the waveforms of fractional derivatives

of 0.9, 0.8 and 0.7 order, calculated according to the Riemann-

Liouville (Fig. 2) and Caputo (Fig. 3) definitions. As can be

seen, in both cases decreasing of the derivative’s order causes

a “flattening” of the waveform.

Fig. 2. Fractional order derivatives calculated according to Riemann-

Liouville definition
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Fig. 3. Fractional order derivatives calculated according to Caputo

definition

5. Summary

In this paper, we outlined analytic forms of the fractional order

derivatives of a sinusoidal function according to the defini-

tion of Riemann-Liouville and Caputo. We used the Lommel

function from the family of hypergeometric functions.

These functions are expressed in the form of power series

with respect to the variable t, which is important inasmuch

as it is straightforward to differentiate and integrate them and

therefore one can easily determine a fractional derivative of

a sinusoidal function for any interval k − 1 < α < k for

any integer k, according to both the definition of Riemann-

Liouville and Caputo.

Using the properties of the derivative of fractional order

– the differential–integral, one can introduce the concept of

a generalized component given by the equation:

u = B
dαi

d tα
. (32)

Depending on the value for the order of the derivative α:

• for α = 0 – it would be a resistor with resistance R = B,

• for α = 1 – it would be an ideal inductor with inductance

L = B ,

• for α = −1 – it would be an ideal capacitor with capacity

C = 1/B.

For other values of order α, it would be a component

whose properties have not been defined yet.

The numerical realization of fractional order derivatives

of sinusoidal functions described analytically – according to

Riemann-Liouville definition and according to Caputo defini-

tion is not simple, however, by using appropriate scaling and

selection of the amounts of the components, the convergence

can be achieved.
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