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A FINITE ELEMENT IMPLEMENTATION OF KNOWLES
STORED-ENERGY FUNCTION: THEORY, CODING AND

APPLICATIONS

This paper contains the full way of implementing a user-defined hyperelastic
constitutive model into the finite element method (FEM) through defining an ap-
propriate elasticity tensor. The Knowles stored-energy potential has been chosen to
illustrate the implementation, as this particular potential function proved to be very
effective in modeling nonlinear elasticity within moderate deformations. Thus, the
Knowles stored-energy potential allows for appropriate modeling of thermoplastics,
resins, polymeric composites and living tissues, such as bone for example. The decou-
pling of volumetric and isochoric behavior within a hyperelastic constitutive equation
has been extensively discussed. An analytical elasticity tensor, corresponding to the
Knowles stored-energy potential, has been derived. To the best of author’s knowl-
edge, this tensor has not been presented in the literature yet. The way of deriving
analytical elasticity tensors for hyperelastic materials has been discussed in detail.
The analytical elasticity tensor may be further used to develop visco-hyperelastic,
nonlinear viscoelastic or viscoplastic constitutive models. A FORTRAN 77 code has
been written in order to implement the Knowles hyperelastic model into a FEM
system. The performance of the developed code is examined using an exemplary
problem.

NOMENCLATURE

B left Cauchy-Green (C-G) deformation tensor,
B isochoric left C-G deformation tensor,
Br ,Bt reference and current configurations,
Biso

t current configuration after purely distortional deformation,
C right Cauchy-Green (C-G) deformation tensor,
C isochoric right C-G deformation tensor,
CCC elasticity tensor,
CCCτc elasticity tensor related to convected stress rate,
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CCCτZ−J elasticity tensor related to Zaremba-Jaumann stress rate,
CCCMZ−J elasticity tensor used by Abaqus,[
Ci j

]
elasticity matrix used by Abaqus,

D strain rate tensor,
ek unit vector of a Cartesian base, k = 1, 2, 3,
F deformation gradient tensor,
F isochoric deformation gradient tensor,
Fvol dilatational deformation gradient tensor,
H fourth order auxiliary tensor,
I fourth order identity tensor,
Ik algebraic invariants of the right C-G deformation tensor, k = 1, 2, 3,
Īk algebraic invariants of the isochoric right C-G deformation tensor, k = 1, 2, 3,
J Jacobian determinant,
L velocity gradient tensor,
S second Piola-Kirchhoff (P-K) stress tensor,
U volumetric stored elastic energy potential,
We stored elastic energy potential,
W isochoric stored elastic energy potential,
λk stretch ratio in the k-th direction, k = 1, 2, 3,
τ,σ Kirchhoff and Cauchy stress tensors,
x,X position vectors in the current and in the reference configuration,
1, δi j second order identity tensor in the absolute and indicial notation,
µ, b, n,D1 material parameters,
DEV[•] operator extracting deviatoric part of a tensor in reference configuration,
Grad(•) operator of a gradient with respect to X,
Lv(•) convected objective rate operator,
tr(•) trace operator,
(•)T transpose operator,
· double contraction operator,
⊗ dyadic product operator,
(•)∇ Zaremba-Jaumann (Z-J) objective rate operator.

1. Introduction

Numerous materials such as thermoplastics, resins or polymeric compos-
ites exhibit nonlinear elastic behavior for strains ranging up to 5%. In order
to take this phenomenon into account in the Finite Element Analysis (FEA),
a proper hyperelastic constitutive model has to be employed.

As it has been observed by several researchers [3], [21], the popular
models of hyperelasticity like Neo-Hooke or Mooney-Rivlin for instance,
which are very effective in modeling large strain nonlinear elasticity, are not
able to capture the nonlinear elastic behavior in the range up to 5%. This
problem is usually skipped by making use of the linear elastic model (Saint-
Venant-Kirchhoff stored-energy potential) or/and assuming that the entire
nonlinearity is due to plasticity. This assumption is in contradiction to the
experimental observations. In the case of thermoplastic polymers for example,
it can be noticed that after a loading-unloading experiment a certain strain
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remains in the specimen in face of a zero stress. It should be noticed, however,
that the remaining strain is not plastic but viscoelastic, and it decreases as
the specimen rests, to finally vanish after a properly long time period. This
kind of behavior is typical for viscoelastic materials, and it is usually stated
that this group of materials does not posses a well-defined stress free state. In
other words, the stress free state of the specimen may occur at different states
of deformation. Since the deformations are elastic, they should be modeled
as such, and assuming that they are plastic is a mistake.
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Fig. 1. Simple tension test data and theoretical predictions

It has been already mentioned that the popular models of hyperelasticity
fail to capture the experimental stress-strain curve of the materials which ex-
hibit nonlinear elasticity for moderate strains. The theoretical predictions of
Saint Venant-Kirchhoff (S V-K), Neo-Hooke (N-H) and Knowles (K) models
are compared in the Figure 1 to the experimental results of a simple tension
test performed on a specimen of high density polyethylene [7]. A proper set
of material constants can allow for good description of small strain behavior,
as it can be seen for the Saint Venant-Kirchhoff model. Further predictions
carry a significant error which can range over 50%. Improving the model
predictions for higher strains results in increasing the error in the range of
small strains, as it has been shown for Neo-Hooke model. Thus, a stored-
energy potential that would effectively describe the stress-strain relation is
needed. For that purpose several researchers have proposed various, alter-
native stored-energy potentials. Bouchart proposed using Ciarlet-Geymonat
stored-energy function in order to model the elastic response of polyprophy-
lene [3]. This model uses four material constants and all three invariants of
the right Cauchy-Green (C-G) deformation tensor. It appears that Knowles
stored-energy potential [11], used by Soares and Rajagopal to model poly-
lactide [22], is a better solution. The model by Knowles uses four material
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constants but only one invariant (first) of the right C-G deformation tensor
which simplifies the process of material parameter identification. As it can
be seen in Figure 1, the Knowles model allows for effective modeling of
elastic response of thermoplastics, resins, polymeric composites, metals and
living tissues such as bone for example.

The model by Knowles is not offered by any of the popular FEA systems
and, in order to use it, one has to implement it as a user-defined material.
In this study, the full way of implementing the Knowles material model into
FEA system Abaqus has been presented. The focus on Abaqus system does
not cause a loss in generality as the general framework of implementing a
user-defined material is similar in all FEA systems.

A user-defined hyperelastic constitutive laws can be implemented into
Abaqus in several ways. Abaqus offers three alternative user subroutines
which can be used for implementing a hyperelastic constitutive equation.
Those are: UHYPER (for isotropic incompressible hyperelastic materials),
UANISOHYPER (for anisotropic hyperelastic materials) and UMAT (general
purpose subroutine which can be used for implementing arbitrary material
behavior). Abaqus allows for using both UHYPER and UANISOHYPER to
develop a more sophisticated constitutive equations. Both subroutines can be
used to model nonlinear viscoelasticity within a theory which is similar to the
Pipkin & Rogers theory of viscoelasticity [5]. Alternatively, Mullins effect
can be modeled together with the elastic response defined by a user subroutine
(viscoelasticity and Mullins effect must be used separately; Abaqus does
not allow for combining those behaviors). Thus, a user implementing his
constitutive equation through sobroutines UHYPER or UANISOHYPER is
limited to using built in options of Abaqus.

In order to develop a constitutive equation based on the theories not
supported by Abaqus, subroutine UMAT should be used. Using subroutine
UMAT requires defining material stiffnes tensor also reffered to as tangent
modulus tensor, material Jacobian or elasticity tensor in the case of elastic
materials. The derivation of an analytical elasticity tensor is not an easy
task, which is the reason why the approximate elasticity tensors are often
used, although they worsen the rate of convergence and accuracy of analysis’
results. Stein and Sagar [23] have found for the Neo-Hooke hyperelastic
model that only an analytically derived elasticity tensor assures a quadratic
rate of convergence1. For the approximate elasticity tensors, not only the
convergence rates are not quadratic but even convergence at all is not assured

1 Quadratic convergence means that the square of the error at one iteration is proportional
to the error at the next iteration.
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for all elements and considered problems. Thus, it is always profitable to use
an analytical elasticity tensor whenever it is possible.

This paper presents the entire way of derivation of an analytical elasticity
tensor corresponding to the Knowles stored-energy potential. To the best of
author’s knowledge, this tensor has not been reported in the literature yet. It
should be noted that the discussed framework is valid for both isotropic and
anisotropic hyperelastic materials.

2. Kinematics of finite deformations

Let us consider a continuum body whose reference configuration is de-
noted as Br . As a consequence of the deformation, the body takes a new
(current) configuration denoted as Bt (Fig. 2).

Fig. 2. Deformation gradient F

The position vectors of a considered particle are denoted as X and x in
the reference and current configurations, respectively. It is assumed that a
one-to-one mapping function of the form x = χ(X, t) exists.

The deformation gradient F is as second order tensor which is defined
by the following equation:

F = Grad x (X, t) (1)

where „Grad” denotes a gradient operation with respect to the components
of vector X. The Cartesian components of F are Fi j = ∂xi/∂X j (i, j=1,2,3).

During the motion, a spatial velocity field may be expressed as v(x, t) =

∂x/∂t and a velocity gradient tensor can be defined as L = ḞF−1. As any
other second order tensor, L can be decomposed into a sum of a symmetric

and an antisymmetric tensors, namely L = D + W, where D =
1
2

(
L + LT

)
is

the strain rate tensor and W =
1
2

(
L − LT

)
is the spin tensor. The symmetric
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Fig. 3. Alternative paths of deformation

and positive-definite right and left Cauchy-Green (C-G) deformation tensors
are defined as C = FTF and B = FFT , respecively.

For the use of finite element method it is worthy to decouple the di-
latational (volumetric) and distortional (isochoric) deformations. This can be
achieved by a multiplicative decomposition of the deformation gradient [9]:

F = FvolF (2)

where Fvol denotes a deformation gradient corresponding to purely volu-
metric deformation (Fvol = J1/31) and F denotes a deformation gradient
corresponding to purely isochoric deformation (F = J−1/3F). J = det F is the
Jacobian determinant also known as the volume ratio. Figure 3 provides a
graphic interpretation of the considered multiplicative decomposition. Other
deformation tensors can be decomposed in a similar way. The right and left
Cauchy-Green (C-G) deformation tensors are decomposed as [9]:

C = FTF = J2/3C, B = FFT = J2/3B (3)

where C = F
T
F and B = FF

T
are the right and left volume-preserving C-G

deformation tensors, respecively.

3. Decoupled constitutive equation of hyperelastic material

A hyperelastic or Green elastic material is defined as an elastic material
which possesses a stored elastic energy function, denoted as We [9], [15], [16].
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From the principles of conservation of energy and conservation of angular
momentum the following expression for the time derivative of the stored-
energy potential can be obtained [24]:

Ẇe = S · Ė =
1
2
S · Ċ (4)

where S is the second Piola-Kirchhoff (P-K) stress tensor, E is the Green
finite strain tensor and C is the right Cauchy-Green (C-G) deformation tensor.
After assuming that We = We(C) and applying the chain rule to (4), it is found
that: (

S − 2
∂We

∂C

)
· 1
2
Ċ = 0 (5)

which holds for arbitrary Ċ. Thus it can be deduced that:

S = 2
∂We

∂C
(6)

which is the general form of the constitutive equation determining the relation
between stress and deformation tensors for a hyperelastic material.

For the isotropic hyperelastic materials, We may be regarded as a function
of the three principal algebraic invariants I1, I2, I3 of C, namely:

We(C) = We(I1, I2, I3) (7)

in order to fulfill the requirements of objectivity and isotropy.
The invariants of the right C-G deformation tensor are given by the

following formulas:

I1 = tr C, I2 =
1
2

(
(tr C)2 − tr C2

)
, I3 = J2 = det C (8)

where tr (•) is the trace operator and J is the Jacobian determinant.
In terms of FEM, it is profitable if the volumetric and isochoric responses

are decoupled within the constitutive equation. The decoupling siginificantly
simplifies the derivation and the final form of the fourth-order elasticity ten-
sor. It is facilitated by assuming a stored-energy function of the form [9], [25]:

We(C) = U(J) + W (C) (9)

where U and W are volumetric and isochoric stored-energy potentials, re-
spectively. The enforcement of incompressibility constraint is much easier for
an uncoupled stored-energy, as it is achieved simply by assuming a properly
high value of the bulk modulus.
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In order to find a general form of a constitutive equation corresponding
to a stored-energy potential given by (9), the following results are needed:

∂J
∂C

=
1
2
JC−1,

∂C
∂C

= J−2/3
(
I − 1

3
C ⊗ C−1

)
. (10)

By substituting stored-energy potential (9) into (6), making use of the chain
rule and the results (10), it is in turn found that:

S = 2
∂U
∂J

∂J
∂C

+ 2
∂W

∂C
· ∂C
∂C

= J
∂U
∂J

C−1 + 2J−2/3∂W

∂C
·
(
I − 1

3
C ⊗ C

−1
)

= J
∂U
∂J

C−1 + 2J−2/3
∂W
∂C
− 1

3

∂W
∂C
· C

C
−1



After introducing the following operator [25]:

DEV [•] = [•] − 1
3

(
[•] · C

)
C
−1

(11)

which extracts the deviatoric part from a second order tensor in the reference
configuration, the above lengthty result can be significantly shortened, that
is:

S = J
∂U
∂J

C−1 + 2J−2/3 DEV
∂W
∂C

 . (12)

It should be emphasized that the equation (12) is valid for both isotropic and
anisotropic materials.

In the special case of the isotropic hyperelastic materials, the stored-
energy potential takes the form:

We(C) = U(J) + W (Ī1, Ī2) (13)

where Ī1 = J−2/3I1 and Ī2 = J−4/3I2. Depending on the values of the material
parameters associated with the volumetric potential U(J), equation (12) can
describe compressible, slightly comressible or almost-incompressible mate-
rial.
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4. Uncoupled elasticity tensor and objective rate of stress tensor

The nonlinear constitutive equation defined by (6) can be transformed
into the following incremental2 form [2], [9], [14]:

∆S = CCC · 1
2

∆C (14)

which is a linear relation between the increments of S and C, and so it is
commonly referred to as linearized constitutive equation. CCC denotes a fourth-
order elasticity tensor, defined as:

CCC = 2
∂S
∂C

= 4
∂2We

∂C∂C
. (15)

Substituting the equation (12) into (15) gives [25]:

CCC = 2
∂S
∂C

= 2
∂

∂C

(
2
∂We

∂C

)

= 2
∂

∂C

J
∂U
∂J

C−1 + 2J−2/3
∂W
∂C
− 1

3

∂W
∂C
· C

C
−1


 .

(16)

Having in mind the results (10) and additionally
∂C−1

∂C
= −IC−1 , where

(IC−1)i jkl = −1
2

(
C−1ik C−1jl + C−1il C−1jk

)
, a systematic use of the chain rule leads

to an expression3:

CCC = J
∂U
∂J

(
C−1 ⊗ C−1 − 2IC−1

)
+ J2∂

2U
∂J2 C−1 ⊗ C−1

− 4
3
J−4/3

∂W
∂C
⊗ C

−1
+ C

−1 ⊗ ∂W
∂C



+
4
3
J−4/3

∂W
∂C
· C


(
J4/3IC−1 +

1
3
C
−1 ⊗ C

−1
)

+ J−4/3CCCW

(17)

2 Starting off from this section some differentials met in the formulas have been replaced
with finite increments as they are implemented as such into FEM.

3 see Appendix B. for the derivation.
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where CCCW is the part of CCC which arises directly from the second derivatives
of W with respect to C [25]. It is defined as:

CCCW = 4
∂2W

∂C∂C
− 4

3


 ∂

2W

∂C∂C
· C

 ⊗ C
−1

+ C
−1 ⊗

C · ∂
2W

∂C∂C




+
4
9

C · ∂
2W

∂C∂C
· C

C
−1 ⊗ C

−1
.

(18)

The incremental constitutive equation (14) which is formulated in the
reference configuration can be transformed into the current configuration4.
It takes the following form [2], [23]:

Lvτ = ∆τ −
(
∆FF−1

)
τ − τ

(
∆FF−1

)T
= CCCτc · ∆D (19)

where Lvτ = ∆τ −
(
∆FF−1

)
τ − τ

(
∆FF−1

)T
is the incremental form of the

convected objective rate (also called the Oldroyd or Lie rate) of the Kirchhoff
stress τ and CCCτc is a transformed elasticity tensor whose components are
defined as Cτci jkl = FipF jqFkrFlsCpqrs.

The convected objective rate used to be employed in older versions of
Abaqus system. Nowadays Abaqus makes use of the incremental form of
the Zaremba-Jaumann5 objective rate defined as τ∇ = ∆τ − ∆Wτ − τ∆WT ,
and, consequently, a proper incremental constitutive equation takes the
form:

τ∇ = ∆τ − ∆Wτ − τ∆WT = CCCτZ−J · ∆D (20)

where

∆W =
1
2

(
∆FF−1 −

(
∆FF−1

)T )
, (21)

∆D =
1
2

(
∆FF−1 +

(
∆FF−1

)T )
(22)

and the elasticity tensor CCCτZ−J corresponding to the Zaremba-Jaumann ob-
jective rate of the Kirchhoff stress is defined as:

4 see Appendix A. for the derivation.
5 This kind of objective rate is usually called the Jaumann rate, although it was Polish

professor S. Zaremba who introduced it first [19]. The popularity of the name “Jaumann rate” is
probably due to unawareness of Zaremba’s works, however, some authors use the name “Jaumann-
Zaremba rate” [9]. Through this text the name “Zaremba-Jaumann objective rate” is used.
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CCCτZ−J = CCCτc +
1
2

(
δikτ jl + τikδ jl + δilτ jk + τilδ jk

)
ei ⊗ e j ⊗ ek ⊗ el (23)

where ek (k = 1, 2, 3) denotes a unit vector of a Cartesian basis.
It should be noted that the elasticity tensor which should be implemented

into the subroutine UMAT is slightly different from (23) and takes the form:

CCCMZ−J =
1
J
CCCτZ−J . (24)

The framework presented above can be used to derive the analytical elasticity
tensors of both isotropic and anisotropic hyperelastic materials.

5. Abaqus implementation

5.1. General

In the following text the analytical elasticity tensor following from the
Knowles hyperelastic model is presented. The derived analytical elasticity
tensor has been implemented into the Abaqus system via subroutine UMAT.

5.2. Application of Knowles stored-energy function

The decoupled form of the Knowles stored-energy function is given as
follows [11]:

We =
µ

2b

{[
1 +

b
n

(
Ī1 − 3

)]n
− 1

}
+

1
D1

(J − 1)2 (25)

where µ is a shear modulus, n is a “hardening” parameter (the material
hardens or softens according as n > 1 or n < 1), b is an additional para-
meter which improves curve-fitting and D1 is the inverse of a bulk modulus
[11], [12], [13]. The simplest possible form of the volumetric stored-energy

function, namely U =
1
D1

(J − 1)2, has been assumed. It is easy to notice

that n = 1 and b = 1 corresponds to the special case of Neo-Hookean solid.
By making use of (12) and the transformation rule τ = FSFT , an expres-

sion for the Kirchhoff stress is found, that is:

τ =
2
D1

J (J − 1) 1 + µ

[
1 +

b
n

(
Ī1 − 3

)]n−1 (
B − 1

3
Ī11

)
. (26)
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Subsequent use of (17), the transformation rule Cτci jkl = FipF jqFkrFlsCpqrs,
(23) and (24) leads to the the following elasticity tensor expressed by means
of Eulerian variables6:

CMZ−J
i jkl =

µ

J

[
1 +

b
n

(
Ī1 − 3

)]n−1 [
1
2

(
δikB jl + δ jlBik+

+ δilB jk + δ jkBil

)
+

2
3

(
1
3
Ī1δi jδkl − Bi jδkl − δi jBkl

)]

+ 2
µ

J
b(n − 1)

n

[
1 +

b
n

(
Ī1 − 3

)]n−2 [
Bi jBkl − 1

3
Ī1

(
Bi jδkl

+ δi jBkl

)
+

1
9
Ī2
1δi jδkl

]
+

2
D1

(2J − 1)δi jδkl.

(27)

To the best of author’s knowledge, this elasticity tensor has not been presented
in the literature yet. It is further utilized to develop a FORTRAN 77 code
allowing one to use the Knowles hyperelastic material model in the FEA
system Abaqus and to extend it employing an arbitrary theory.

5.3. Dimensions

In the discussed case of the Knowles hyperelastic material, the elas-
ticity tensor is symmetric and thus it can be degraded to a 6 × 6 matrix.
Consequently, both the Kirchhoff stress tensor τ and the isochoric left C-G
deformation tensor B can be degraded to 6 × 1 column vectors. For the ten-
sor B the column vector takes the form

[
Bi j

]
=

[
B11 B22 B33 B12 B13 B23

]T
.

Thus the components of the vector denoted by „1”, „2”, ... , „6” correspond
to „11”, „22”, ... , „23” components of the tensor, respectively. This rule is
employed for the Kirchhoff stress tensor as well. The components of the 6×6
elasticity matrix

[
Ci j

]
are equal to the proper components of the elasticity

tensor CCCMZ−J . The indices „i” and „ j” used in
[
Ci j

]
refer to the proper tensor

indices, determined by the rule described above.

5.4. Variables

In the following table the meaning of the variables used in the FORTRAN
code has been explained. The lengthy definitions of the secondary variables
have been skipped.

6 see Appendix C. for the derivation.
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Number of direct stress components NDI
Number of shear stress components NSHR
Constants µ, b, n and D1 MU, B, N, D1
Deformation Gradient Tensor F DFGRD1(I,J)
Jacobian Determinant DET
Isochoric Deformation Gradient Tensor F DISTGR(I,J)
Isochoric Left C-G Deformation Tensor B BBAR(I)
Trace of B divided by 3 TRBBAR
Cauchy Stress Tensor σ STRESS(I)
Elasticity Matrix DDSDDE(I,J)
Secondary Variables EK, PR, SCALE,

TERM1, TERM2

5.5. User Subroutine

Algorithm for the implementation in ABAQUS

Input data: F, NDI, NSHR
1. Calculate Jacobian determinant J

J = det F

2. Calculate isochoric deformation gradient F

F = J−1/3F

3. Calculate isochoric left C-G deformation tensor B

B = FF
T

4. Calculate Cauchy stress matrix STRESS(I) = σ

σ =
2
D1

(J − 1) 1 +
µ

J

[
1 +

b
n

(
Ī1 − 3

)]n−1 (
B − 1

3
Ī11

)

5. Calculate Elasticity Matrix
[
Cij

]
(DDSDDE(I,J)) according

to (5.3).
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5.6. Coding in FORTRAN 77

SUBROUTINE UMAT(STRESS,STATEV,DDSDDE,SSE,SPD,SCD,
1 RPL,DDSDDT,DRPLDE,DRPLDT,STRAN,DSTRAN,
2 TIME,DTIME,TEMP,DTEMP,PREDEF,DPRED,MATERL,NDI,NSHR,NTENS,
3 NSTATV,PROPS,NPROPS,COORDS,DROT,PNEWDT,CELENT,
4 DFGRD0,DFGRD1,NOEL,NPT,KSLAY,KSPT,KSTEP,KINC)

C
INCLUDE ’ABA PARAM.INC’

C
CHARACTER*8 MATERL
DIMENSION STRESS(NTENS),STATEV(NSTATV),
1 DDSDDE(NTENS,NTENS),DDSDDT(NTENS),DRPLDE(NTENS),
2 STRAN(NTENS),DSTRAN(NTENS),DFGRD0(3,3),DFGRD1(3,3),
3 TIME(2),PREDEF(1),DPRED(1),PROPS(NPROPS),COORDS(3),DROT(3,3)

C
C LOCAL ARRAYS
C - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
C BBAR - DEVIATORIC RIGHT CAUCHY-GREEN TENSOR
C DISTGR - DEVIATORIC DEFORMATION GRADIENT (DISTORTION TENSOR)
C - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
C

DIMENSION BBAR(6),DISTGR(3,3)
C

PARAMETER(ZERO=0.D0, ONE=1.D0, TWO=2.D0, THREE=3.D0, FOUR=4.D0)
C
C - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
C UMAT FOR COMPRESSIBLE KNOWLES HYPERELASTICITY
C
C WARSAW UNIVERSITY OF TECHNOLOGY
C
C CYPRIAN SUCHOCKI, MAY 2011
C - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
C FOR LOW D1 HYBRID ELEMENTS SHOULD BE USED
C - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
C PROPS(1) - MU
C PROPS(2) - B
C PROPS(3) - N
C PROPS(4) - D1
C - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

REAL MU, B, N, D1, TERM1, TERM2
C
C ELASTIC PROPERTIES
C

MU=264.069
B=54.19
N=0.2554
D1 =0.000000033

C
C JACOBIAN AND DISTORTION TENSOR
C

DET=DFGRD1(1, 1)*DFGRD1(2, 2)*DFGRD1(3, 3)
1 -DFGRD1(1, 2)*DFGRD1(2, 1)*DFGRD1(3, 3)
IF(NSHR.EQ.3) THEN
DET=DET+DFGRD1(1, 2)*DFGRD1(2, 3)*DFGRD1(3, 1)
1 +DFGRD1(1, 3)*DFGRD1(3, 2)*DFGRD1(2, 1)
2 -DFGRD1(1, 3)*DFGRD1(3,1)*DFGRD1(2, 2)
3 -DFGRD1(2, 3)*DFGRD1(3, 2)*DFGRD1(1, 1)
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END IF
SCALE=DET**(-ONE/THREE)
DO K1=1, 3

DO K2=1, 3
DISTGR(K2, K1)=SCALE*DFGRD1(K2, K1)

END DO
END DO

C
C CALCULATE LEFT CAUCHY-GREEN TENSOR
C

BBAR(1)=DISTGR(1, 1)**2+DISTGR(1, 2)**2+DISTGR(1, 3)**2
BBAR(2)=DISTGR(2, 1)**2+DISTGR(2, 2)**2+DISTGR(2, 3)**2
BBAR(3)=DISTGR(3, 3)**2+DISTGR(3, 1)**2+DISTGR(3, 2)**2
BBAR(4)=DISTGR(1, 1)*DISTGR(2, 1)+DISTGR(1, 2)*DISTGR(2, 2)
1 +DISTGR(1, 3)*DISTGR(2, 3)
IF(NSHR.EQ.3) THEN
BBAR(5)=DISTGR(1, 1)*DISTGR(3, 1)+DISTGR(1, 2)*DISTGR(3, 2)
1 +DISTGR(1, 3)*DISTGR(3, 3)
BBAR(6)=DISTGR(2, 1)*DISTGR(3, 1)+DISTGR(2, 2)*DISTGR(3, 2)
1 +DISTGR(2, 3)*DISTGR(3, 3)
END IF

C
C CALCULATE THE STRESS
C

TRBBAR=(BBAR(1)+BBAR(2)+BBAR(3))/THREE
TERM1=MU/DET*(ONE+B/N*(THREE*TRBBAR-THREE))**(N-ONE)
TERM2=TWO*MU/DET*B*(N-ONE)/N*(ONE+B/N*(THREE*TRBBAR-THREE))**(N
1 -TWO)
EK=TWO/D1*(TWO*DET-ONE)
PR=TWO/D1*(DET-ONE)
DO K1=1,NDI

STRESS(K1)=TERM1*( BBAR(K1)-TRBBAR)+PR
END DO
DO K1=NDI+1,NDI+NSHR

STRESS(K1)=TERM1*BBAR(K1)
END DO

C
C CALCULATE THE STIFFNESS
C

EG23=EG*TWO/THREE
DDSDDE(1, 1)=TWO/THREE*TERM1*(BBAR(1)+TRBBAR)+
1 TERM2*(BBAR(1)**TWO-TWO*TRBBAR*BBAR(1)+TRBBAR**TWO)+EK
DDSDDE(2, 2)=TWO/THREE*TERM1*(BBAR(2)+TRBBAR)+
1 TERM2*(BBAR(2)**TWO-TWO*TRBBAR*BBAR(2)+TRBBAR**TWO)+EK
DDSDDE(3, 3)=TWO/THREE*TERM1*(BBAR(3)+TRBBAR)+
1 TERM2*(BBAR(3)**TWO-TWO*TRBBAR*BBAR(3)+TRBBAR**TWO)+EK
DDSDDE(1, 2)=TWO/THREE*TERM1*(TRBBAR-BBAR(1)-
1 BBAR(2))+TERM2*(BBAR(1)*BBAR(2)-
2 TRBBAR*(BBAR(1)+BBAR(2))+TRBBAR**TWO)+EK
DDSDDE(1, 3)=TWO/THREE*TERM1*(TRBBAR-BBAR(3)-
1 BBAR(1))+TERM2*(BBAR(3)*BBAR(1)-TRBBAR*(BBAR(3)+
2 BBAR(1))+TRBBAR**TWO)+EK
DDSDDE(2, 3)=TWO/THREE*TERM1*(TRBBAR-BBAR(2)-BBAR(3))+
1 TERM2*(BBAR(2)*BBAR(3)-TRBBAR*(BBAR(2)+BBAR(3))+
2 TRBBAR**TWO)+EK
DDSDDE(1, 4)=ONE/THREE*TERM1*BBAR(4)+TERM2*(BBAR(1)-
1 TRBBAR)*BBAR(4)
DDSDDE(2, 4)=ONE/THREE*TERM1*BBAR(4)+TERM2*(BBAR(2)-
1 TRBBAR)*BBAR(4)
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DDSDDE(3, 4)=-TWO/THREE*TERM1*BBAR(4)+TERM2*(BBAR(3)-
1 TRBBAR)*BBAR(4)
DDSDDE(4, 4)=ONE/TWO*TERM1*(BBAR(1)+BBAR(2))
IF(NSHR.EQ.3) THEN
DDSDDE(1, 5)=ONE/THREE*TERM1*BBAR(5)+TERM2*(BBAR(1)-
1 TRBBAR)*BBAR(5)
DDSDDE(2, 5)=-TWO/THREE*TERM1*BBAR(5)+TERM2*(BBAR(2)-
1 TRBBAR)*BBAR(5)
DDSDDE(3, 5)=ONE/THREE*TERM1*BBAR(5)+TERM2*(BBAR(3)-
1 TRBBAR)*BBAR(5)
DDSDDE(1, 6)=-TWO/THREE*TERM1*BBAR(6)+TERM2*(BBAR(1)-
1 TRBBAR)*BBAR(6)
DDSDDE(2, 6)=ONE/THREE*TERM1*BBAR(6)+TERM2*(BBAR(2)-
1 TRBBAR)*BBAR(6)
DDSDDE(3, 6)=ONE/THREE*TERM1*BBAR(6)+TERM2*(BBAR(3)-
1 TRBBAR)*BBAR(6)
DDSDDE(5, 5)=ONE/TWO*TERM1*(BBAR(3)+BBAR(1))+
1 TERM2*BBAR(5)**TWO
DDSDDE(6, 6)=ONE/TWO*TERM1*(BBAR(3)+BBAR(2))+
1 TERM2*BBAR(6)**TWO
DDSDDE(4,5)=ONE/TWO*TERM1*BBAR(6)+TERM2*BBAR(4)*BBAR(5)
DDSDDE(4,6)=ONE/TWO*TERM1*BBAR(5)+TERM2*BBAR(4)*BBAR(6)
DDSDDE(5,6)=ONE/TWO*TERM1*BBAR(4)+TERM2*BBAR(5)*BBAR(6)
END IF
DO K1=1, NTENS

DO K2=1, K1-1
DDSDDE(K1, K2)=DDSDDE(K2, K1)

END DO
END DO

C
RETURN
END

6. Performance

In order to verify the performance of the code presented above, a simu-
lation of a uniaxial tension experiment has been conducted in FEA system
Abaqus, version 6.8. The simulation utilized a single finite element C3D8H7.
It has been assumed that the material is almost ideally incompressible.

The displacement vector components at each of the nodes have been
displayed in Figure 4. The i-th (i = 1, 2, 3) displacement vector component
at j-th ( j = 1, 2, . . . , 8) node has been denoted as u j

i . The u j
1 displacement

components (direction „1”) have been set to ∆u for the nodes 5, 6, 7 and 8,
whereas some displacements have been fixed to equal zero in order to exclude
the possibility of rigid body motion. The employed set of boundary conditions
allowed for obtaining the state of uniaxial tension in the entire volume of
the finite element. Due to the assumed incompressibility the deformation
gradient corresponding to the given deformation process takes the form:

7 cubic, three-dimensional, 8 nodes, hybrid.
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Fig. 4. Boundary conditions used for single element uniaxial tension test

Fig. 5. Comparison of simple tension test data and FEM predictions

[F] =



λ1 0 0

0
1√
λ1

0

0 0
1√
λ1



where λ1 denotes the stretch ratio in the direction „1”.
The data obtained from a uniaxial tension test performed on high density

polyethylene (HDPE) [7] at the deformation rate of 0.004 s−1 [7] were used
to determine the constants µ, b and n. The inverse of the bulk modulus D1
has been set to 0.000000033 MPa−1 in order to account for almost incom-
pressible deformation. In Figure 5 the theoretical predictions of the FEM
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simulation have been compared to the experimental data. It can be seen that
the agreement is very good. The described simulation has been repeated for
greater number of finite elements without any difference in results.

7. Conslusions

This paper presents the full way of derivation of an analytical elasticity
tensor characterizing the mechanical behavior of a hyperelastic material. The
described framework is valid for both isotropic and anisotropic hyperelas-
tic materials. The analytical elasticity tensor associated with the Knowles
hyperelastic model has been derived and presented for the first time in the
literature.

Basing on the derived elasticity tensor, a FORTRAN code has been
written, allowing for the implementation of the Knowles material model into
the FEA system Abaqus. The agreement between the experimental and FEM
predictions is very good (Fig. 5.). The code has been presented in the work
and is ready to use. Since the code is based on an analytical elasticity tensor,
it guarantees quadratic convergence for all kinds of boundary value problems
of nonlinear elasticity.

As it has been pointed out at the beginning of the text, the Knowles
material model, although not very popular, is probably the most effective
potential function, when it comes to modeling of the nonlinear elasticity
of thermoplastics, polymeric composites and some of the biological tissues
such as bone for instance. It is possible to develop more sophisticated models
which take into account such behaviors as viscoelasticity, plasticity, strain
rate dependency, hysteresis and other. Since the analytical elasticity tensor is
available now, the advanced models do not have to be based on the theories
offered by the commercial FEA systems.

A. Derivation of constitutive rate equation

By taking a material time derivative of (6) one can obtain a rate form of
the constitutive equation describing a hyperelastic material:

Ṡ = 4
∂2We

∂C∂C
· 1
2
Ċ = CCC · 1

2
Ċ (28)

where CCC is the elasticity tensor expressed by means of the Lagrangian varia-
bles.
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As it will be shown below, the constitutive rate equation given by (28)
can be transformed into the current configuration and take the form which
is typical for hypoelastic constitutive relations8.

For the sake of the further derivations, the following relations are needed:

Ċ = ḞTF + FT Ḟ, L = ḞF−1 = −FḞ−1, S = F−1τF−T ,

Ṡ = Ḟ−1τF−T + F−1τ̇F−T + F−1τḞ−T .

The last of the equations given above follows from taking a material time
derivative of the transformation law S = F−1τF−T .

By substituting the first and the last of the given above relations into
(28), it is found that:

F−1τ̇F−T + Ḟ−1τF−T + F−1τḞ−T = CCC · 1
2

(
ḞTF + FT Ḟ

)
(29)

Right-multiplying of (29) by F and left-multyplying byFT results in:

τ̇ + FḞ−1τ + τḞ−TFT = F
{
CCC · 1

2

(
ḞTF + FT Ḟ

)}
FT

or equivalently

τ̇ + FḞ−1τ + τ
(
FḞ−1

)T
= F

{
CCC · 1

2

[
FT

(
F−T ḞT + ḞF−1

)
F
]}

FT

or

τ̇ + FḞ−1τ + τ
(
FḞ−1

)T
= F

{
CCC ·

[
1
2
FT

((
ḞF−1

)T
+ ḞF−1

)
F
]}

FT .

By making use of the definition of strain rate tensor, namely D =
1
2

(
LT + L

)

and recalling the given above definition of the velocity gradient, it is found
that:

τ̇ − Lτ − τLT = F
[
CCC · (FTDF)

]
FT . (30)

8 Generally, hypoelasticity, elasticity and hyperelasticity are not equivalent. However it has
been proved by Noll that for some special cases it is possible to transform a hypoelastic constitutive
relation into an elastic constitutive relation [8]. It should be noticed that a hyperelastic material
is an elastic material which possesses a stored-energy potential. Thus, there is a link between the
hypoelastic and hyperelastic constitutive relations. Every hyperelastic constitutive relation can be
transformed into a hypoelastic constitutive relation and the current section describes the general
framework of the transformation. It is important that the rule stated above is not reversible. Only
some of the hypoelastic constitutive relations can be transformed into the form of hyperelastic
relations.
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The components of the expression on the right side of (30) are given by the
formula: {

F
[
CCC · (FTDF)

]
FT

}
i j

= CpqrsFipF jqFkrFlsDkl. (31)

A new, transformed elasticity tensor CCCτc can be introduced. Its components
are defined as follows:

Cτci jkl = CpqrsFipF jqFkrFls. (32)

Thus, (30) takes the form:

τ̇ − Lτ − τLT = CCCτc · D (33)

where Lvτ = τ̇ −Lτ − τLT defines convected objective rate of the Kirchhoff
stress τ. By taking into account the fact that L = D + W and introducing
new fourth order tensor H, it is found that:

τ̇ −Wτ − τWT = CCCτc · D + Dτ + τDT︸      ︷︷      ︸
H·D

(34)

where the components of H are given by the following formula:

(H)i jkl =
1
2

(
δikτ jl + τikδ jl + δilτ jk + τilδ jk

)
. (35)

Finally, a rate form of the constitutive equation using the Zaremba-Jaumann
objective rate is obtained:

τ̇ −Wτ − τWT = CCCτZ−J · D (36)

where CCCτZ−J = CCCτc + H is a new elasticity tensor associated to the Zaremba-
Jaumann objective rate of the Kirchhoff stress, namely τ∇ = τ̇ −Wτ − τWT .

B. Derivation of elasticity tensor in general form

The uncoupled form of the stored-energy function We, as stated before,
is given by the following equation:

We(C) = U(J) + W (C) (37)

where U(J) and W (C) denote volumetric and isochoric component, respec-
tively. By substituting (37) into the general form of the constitutive equation
given by (6), it can be found that:

S = J
∂U
∂J

C−1 + 2J−2/3
∂W
∂C
− 1

3

∂W
∂C
· C

C
−1

 (38)
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which is the general form of the constitutive equation with uncoupled volu-
metric and isochoric components.

The material elasticity tensor is defined aby the formula:

CCC = 2
∂S
∂C

= 4
∂2We

∂C∂C
. (39)

The substitution of (38) into (39) and systematic use of the chain rule leads
by turns to the following results:

CCC = 2
∂S
∂C

= 2
∂

∂C

(
2
∂We

∂C

)

= 2
∂

∂C

J
∂U
∂J

C−1 + 2J−2/3
∂W
∂C
− 1

3

∂W
∂C
· C

C
−1




= 2
∂

∂C

(
J
∂U
∂J

C−1
)

+ 2
∂

∂C

2J−2/3
∂W
∂C
− 1

3

∂W
∂C
· C

C
−1




= 2
∂U
∂J

C−1 ⊗ ∂J
∂C

+ 2J
∂U
∂J

∂C−1

∂C
+ 2JC−1 ⊗ ∂

∂C

(
∂U
∂J

)

+ 4
∂W
∂C
− 1

3

∂W
∂C
· C

C
−1

 ⊗ ∂J
−2/3

∂C

+ 4J−2/3 ∂

∂C

∂W
∂C
− 1

3

∂W
∂C
· C

C
−1



= 2
∂U
∂J

C−1 ⊗ ∂J
∂C

+ 2J
∂U
∂J

∂C−1

∂C
+ 2J

∂2U
∂J2 C−1 ⊗ ∂J

∂C

− 8
3
J−5/3

∂W
∂C
− 1

3

∂W
∂C
· C

C
−1

 ⊗ ∂J
∂C

+ 4J−2/3


∂2W

∂C∂C
· ∂C
∂C
− 1

3
C
−1 ⊗ ∂

∂C

∂W
∂C
· C

 − 1
3

∂W
∂C
· C

 ∂C
−1

∂C



For the use of further derivations the following relations are needed:

∂J
∂C

=
1
2
JC−1,

∂C−1

∂C
= −IC−1 ,

∂C
∂C

= J−2/3
(
I − 1

3
C ⊗ C−1

)
,

∂C
−1

∂C
= J−2/3

(
1
3
C
−1 ⊗ C

−1 − J4/3IC−1

)
.
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The given relations allow to calculate the necessary terms as shown below:

∂2W

∂C∂C
· ∂C
∂C

= J−2/3 ∂
2W

∂C∂C
·
(
I − 1

3
C ⊗ C

−1
)

= J−2/3 ∂
2W

∂C∂C
− 1

3
J−2/3

 ∂
2W

∂C∂C
· C

 ⊗ C
−1
,

(40)

∂

∂C

∂W
∂C
· C

 = C · ∂
2W

∂C∂C
· ∂C
∂C

+
∂W

∂C
· ∂C
∂C

= J−2/3C · ∂
2W

∂C∂C
·
(
I − 1

3
C ⊗ C

−1
)

+ J−2/3∂W

∂C
·
(
I − 1

3
C ⊗ C

−1
)

= J−2/3
C · ∂

2W

∂C∂C



− 1
3
J−2/3

C · ∂
2W

∂C∂C
· C

 ⊗ C
−1

+ J−2/3∂W

∂C
− 1

3
J−2/3

∂W
∂C
· C

C
−1
,

(41)

and finally
∂C
−1

∂C
= J−2/3

(
1
3
C
−1 ⊗ C

−1 − J4/3IC−1

)
. (42)

Using the results given above in the equation expressing the elasticity tensor,
we obtain the final formula:

CCC = J
∂U
∂J

(
C−1 ⊗ C−1 − 2IC−1

)
+ J2∂

2U
∂J2 C−1 ⊗ C−1

− 4
3
J−4/3

∂W
∂C
⊗ C

−1
+ C

−1 ⊗ ∂W
∂C



+
4
3
J−4/3

∂W
∂C
· C


(
J4/3IC−1 +

1
3
C
−1 ⊗ C

−1
)

+ J−4/3CCCW

(43)

where

CCCW = 4
∂2W

∂C∂C
− 4

3


 ∂

2W

∂C∂C
· C

 ⊗ C
−1

+ C
−1 ⊗

C · ∂
2W

∂C∂C




+
4
9

C · ∂
2W

∂C∂C
· C

C
−1 ⊗ C

−1
.

(44)
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C. Derivation of elasticity tensor associated to Knowles material

For the use of FEM implementation the Knowles stored-energy function
is decoupled into an isochoric and a volumetric components. The definition
of the isochoric component corresponds to the definition of the Knowles
stored-energy function [11], namely:

W =
µ

2b

{[
1 +

b
n

(
Ī1 − 3

)]n
− 1

}
. (45)

The simplest possible form of the volumetric component has been chosen:

U =
1
D1

(J − 1)2 . (46)

According to (43) and (44), the following derivatives have to be calculated
in order to find an expression for the elasticity tensor:

∂W
∂Ī1

=
µ

2

[
1 +

b
n

(
Ī1 − 3

)]n−1
, (47)

∂W

∂C
=
∂W
∂Ī1

1 =
µ

2

[
1 +

b
n

(
Ī1 − 3

)]n−1
1, (48)

∂U
∂J

=
2
D1

(J − 1),
∂2U
∂J2 =

2
D1
. (49)

The second derivatives are more difficult to calculate. They are obtained by
a systematic use fo the chain rule:

∂2W

∂C∂C
=

∂

∂C

∂W
∂C



=
∂

∂C

∂W
∂Ī1

1


= 1 ⊗ ∂

∂C

∂W
∂Ī1



= 1 ⊗

∂

∂Ī1


µ

2

[
1 +

b
n

(
Ī1 − 3

)]n−1
∂Ī1
∂C



= 1 ⊗

µ

2
b(n − 1)

n

[
1 +

b
n

(
Ī1 − 3

)]n−2
1



=
µ

2
b(n − 1)

n

[
1 +

b
n

(
Ī1 − 3

)]n−2
1 ⊗ 1.

(50)
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What is more the following expressions are needed:
∂W
∂C
· C

 =
µ

2

[
1 +

b
n

(
Ī1 − 3

)]n−1 (
1 · C

)

=
µ

2

[
1 +

b
n

(
Ī1 − 3

)]n−1
Ī1,

(51)

 ∂
2W

∂C∂C
· C

 =
µ

2
b(n − 1)

n

[
1 +

b
n

(
Ī1 − 3

)]n−2 (
1 · C

)
1

=
µ

2
b(n − 1)

n

[
1 +

b
n

(
Ī1 − 3

)]n−2
Ī11,

(52)

C · ∂
2W

∂C∂C

 =
µ

2
b(n − 1)

n

[
1 +

b
n

(
Ī1 − 3

)]n−2 (
C · 1

)
1

=
µ

2
b(n − 1)

n

[
1 +

b
n

(
Ī1 − 3

)]n−2
Ī11,

(53)

C · ∂
2W

∂C∂C
· C

 =
µ

2
b(n − 1)

n

[
1 +

b
n

(
Ī1 − 3

)]n−2 (
C · 1

) (
1 · C

)

=
µ

2
b(n − 1)

n

[
1 +

b
n

(
Ī1 − 3

)]n−2
Ī2
1 .

(54)

Substituting (48), (49), (50), (51), (52), (53), and (54), into (43) and (44)
results in the following formula for the elasticity tensor corresponding to the
Knowles stored-energy function:

CCC =
2
D1

J(J − 1)
(
C−1 ⊗ C−1 − 2IC−1

)
+ J2 2

D1
C−1 ⊗ C−1

− 2
3
J−2/3µ

[
1 +

b
n

(
Ī1 − 3

)]n−1 (
1 ⊗ C−1 + C−1 ⊗ 1

)

+
2
3
µ

[
1 +

b
n

(
Ī1 − 3

)]n−1
Ī1

(
IC−1 +

1
3
C−1 ⊗ C−1

)

+ 2J−4/3µ
b(n − 1)

n

[
1 +

b
n

(
Ī1 − 3

)]n−2
1 ⊗ 1

− 2
3
J−2/3µ

b(n − 1)
n

[
1 +

b
n

(
Ī1 − 3

)]n−2
Ī1

(
1 ⊗ C−1 + C−1 ⊗ 1

)

+
2
9
µ
b(n − 1)

n

[
1 +

b
n

(
Ī1 − 3

)]n−2
Ī2
1C
−1 ⊗ C−1

(55)
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The elasticity tensor associated to the convected rate of the Kirchhoff stress
is obtained by the use of the transformation rule Cτci jkl = FipF jqFkrFlsCpqrs.
It takes the form:

CCCτc =
2
D1

J(J − 1) (1 ⊗ 1 − 2I) + J2 2
D1

1 ⊗ 1

− 2
3
J−2/3µ

[
1 +

b
n

(
Ī1 − 3

)]n−1
(B ⊗ 1 + 1 ⊗ B)

+
2
3
µ

[
1 +

b
n

(
Ī1 − 3

)]n−1
Ī1

(
I +

1
3
1 ⊗ 1

)

+ 2J−4/3µ
b(n − 1)

n

[
1 +

b
n

(
Ī1 − 3

)]n−2
B ⊗ B

− 2
3
J−2/3µ

b(n − 1)
n

[
1 +

b
n

(
Ī1 − 3

)]n−2
Ī1 (B ⊗ 1 + 1 ⊗ B)

+
2
9
µ
b(n − 1)

n

[
1 +

b
n

(
Ī1 − 3

)]n−2
Ī2
11 ⊗ 1.

(56)

The substitution of (48) and (49) into (38) gives the following form of the
constitutive equation in the reference configuration:

S =
2
D1

J (J − 1) C−1 + µ

[
1 +

b
n

(
Ī1 − 3

)]n−1 (
J−2/31 − 1

3
Ī1C−1

)
. (57)

Using the transformation rule τ = FSFT results in a formula for the Kirchhoff
stress:

τ =
2
D1

J (J − 1) 1 + µ

[
1 +

b
n

(
Ī1 − 3

)]n−1 (
B − 1

3
Ī11

)
. (58)

Making use of the relation:

CCCτZ−J = CCCτc +
1
2

(
δikτ jl + τikδ jl + δilτ jk + τilδ jk

)
ei ⊗ e j ⊗ ek ⊗ el (59)
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and recalling that the components of the fourth-order identity tensor are

defined as Ii jkl =
1
2

(
δikδ jl + δilδ jk

)
, the following result is obtained:

CτZ−J
i jkl =

2
D1

J(J − 1)
(
δi jδkl − δikδ jl − δilδ jk

)
+ J2 2

D1
δi jδkl

+
2
3
µ

[
1 +

b
n

(
Ī1 − 3

)]n−1 [
Ī1

(
1
2

(
δikδ jl + δilδ jk

)
+

1
3
δi jδkl

)

− Bi jδkl − δi jBkl

]
+ 2µ

b(n − 1)
n

[
1 +

b
n

(
Ī1 − 3

)]n−2 [
Bi jBkl

− 1
3
Ī1

(
Bi jδkl + δi jBkl

)
+

1
9
Ī2
1δi jδkl

]

+
1
D1

J (J − 1) δikδ jl +
µ

2

[
1 +

b
n

(
Ī1 − 3

)]n−1 (
δikB jl − 1

3
Ī1δikδ jl

)

+
1
D1

J (J − 1) δikδ jl +
µ

2

[
1 +

b
n

(
Ī1 − 3

)]n−1 (
Bikδ jl − 1

3
Ī1δikδ jl

)

+
1
D1

J (J − 1) δilδ jk +
µ

2

[
1 +

b
n

(
Ī1 − 3

)]n−1 (
δilB jk − 1

3
Ī1δilδ jk

)

+
1
D1

J (J − 1) δilδ jk +
µ

2

[
1 +

b
n

(
Ī1 − 3

)]n−1 (
Bilδ jk − 1

3
Ī1δilδ jk

)
.

After simplifying the above relation, the following expression for the elastic-
ity tensor associated to the Zaremba-Jaumann objective rate of the Kirchhoff
stress is obtained:

CτZ−J
i jkl = µ

[
1 +

b
n

(
Ī1 − 3

)]n−1 [
1
2

(
δikB jl + δ jlBik+

+ δilB jk + δ jkBil

)
+

2
3

(
1
3
Ī1δi jδkl − Bi jδkl − δi jBkl

)]

+ 2µ
b(n − 1)

n

[
1 +

b
n

(
Ī1 − 3

)]n−2 [
Bi jBkl − 1

3
Ī1

(
Bi jδkl

+ δi jBkl

)
+

1
9
Ī2
1δi jδkl

]
+

2
D1

J(2J − 1)δi jδkl.

(60)

By substituting (60) into the equation

CMZ−J
i jkl =

1
J
CτZ−J

i jkl (61)
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the form of the elasticity tensor accepted by Abaqus is found:

CMZ−J
i jkl =

µ

J

[
1 +

b
n

(
Ī1 − 3

)]n−1 [
1
2

(
δikB jl + δ jlBik+

+ δilB jk + δ jkBil

)
+

2
3

(
1
3
Ī1δi jδkl − Bi jδkl − δi jBkl

)]

+ 2
µ

J
b(n − 1)

n

[
1 +

b
n

(
Ī1 − 3

)]n−2 [
Bi jBkl − 1

3
Ī1

(
Bi jδkl

+ δi jBkl

)
+

1
9
Ī2
1δi jδkl

]
+

2
D1

(2J − 1)δi jδkl.

(62)

It can be noticed that for b = 1 and n = 1 the elasticity tensor corresponding
to the Knowles stored-energy tensor reduces to the elasticity tensor of Neo-
Hooke hyperelastic model.

Manuscript received by Editorial Board, July 05, 2011;
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Wprowadzenie funkcji energii potencjalnej typu Knowlesa do systemu metody elementów
skończonych: teoria, kodowanie i zastosowania

S t r e s z c z e n i e

Praca przedstawia pełną drogę wprowadzania do systemu metody elementów skończonych
(MES) równania konstytutywnego hipersprężystości zdefiniowanego przez użytkownika przy użyciu
odpowiedniego tensora sztywności. Aby zilustrować metodykę wprowadzania równania konstytu-
tywnego do MES posłużono się modelem materiału hipersprężystego typu Knowlesa, gdyż model
ten dobrze opisuje nieliniową sprężystość w zakresie średnich deformacji. Stąd model Knowlesa
pozwala na poprawny opis własności mechanicznych polimerów termoplastycznych, żywic, kom-
pozytów polimerowych i niektórych tkanek biologicznych, jak np. tkanka kostna. Przedstawiono
podział równania konstytutywnego na część izochoryczną i objętościową. Wyprowadzono anali-
tycznie tensor sztywności odpowiadający modelowi Knowlesa. Tensor ten nie był dotąd prezen-
towany w literaturze. Omówiono szczegółowo sposób wyprowadzania analitycznych tensorów sz-
tywności dla materiałów hipersprężystych. Wyznaczony tensor sztywności może dalej posłużyć
do budowy równań konstytutywnych nieliniowej lepkosprężystości lub lepkoplastyczności. W celu
wprowadzenia modelu do systemu MES napisany został program w języku FORTRAN 77. W pracy
przedstawiono wyniki z prostej symulacji MES wykonanej z wykorzystaniem napisanego programu.


