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SIMULATION-BASED STABILITY ANALYSIS OF A THIN-WALLED
CYLINDER DURING TURNING WITH IMPROVEMENTS USING AN

ADAPTRONIC TURNING CHISEL

The dynamics of the turning process of a thin-walled cylinder in manufactur-
ing is modeled using flexible multibody system theory. The obtained model is time
varying due to workpiece rotation and tool feed and retarded, due to repeated cutting
of the same surface. Instabilites can occur due to these consecutive cuts that must
be avoided in practical application because of the detrimental effects on workpiece,
tool and possibly the machine. Neglecting the small feed, the stability of the result-
ing periodic system with time-delay can be analyzed using the semi-discretization
method.

The use of an adaptronic tool holder comprising actuators and sensors to im-
prove the dynamic stability is then investigated. Different control concepts, two collo-
cated and two model-based, are implemented in simulation and tuned to increase the
domain of stable cutting. Cutting of a moderately thin workpiece exhibits instabilities
mainly due to tool vibration. In this case, the stability boundary can be significantly
improved. When the instability is due to workpiece vibration, the collocated concepts
fail completely. Model based concepts can still obtain some improvements, but are
sensitive to modeling errors in the coupling of workpiece and tool.

1. Introduction

In machining technology, the striving for even higher machining speeds
at good surface finish is limited by the occurrence of vibrations of workpiece
and tool. These vibrations, called chatter, are inherently self-excited and do
not only lead to a poor surface quality, but also cause tool wear and can
even damage tool, workpiece and machine. In [1], four chatter mechanisms
have been identified. Of those, regenerative chatter, which is caused by con-
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secutive cuts on the same surface, is the most important by occurrence and
intensity. In general, it is modeled as an interaction between the dynamics
of the machine structure and the time-delay of the system. The resulting dy-
namics is described by a set of delay-differential equations (DDE). Because
of the detrimental effects on the machining operation, the dynamic stability
of the process needs to be analyzed and unstable machining must be avoided.
Stability depends not only on the dynamical properties of the system, but
also on the process parameters like rotational velocity and depth or width of
cut. It is usually characterized in terms of those parameters and displayed in
so called stability charts.

In this contribution, stability of the inside turning operation of thin-
walled cylinders is investigated and then improved using modern control
theory. First, a model of the process is derived using flexible multibody
system theory, [2], which can account for the large, nonlinear described
rotations of the cylinder as well as the small elastic deformations of cylinder
and tool.

Then, a stability analysis of the resulting system is performed using an
approximation as a discrete system via the Semi-Discretization Method, [3].
To improve the dynamic behavior a feedback control, based on the adaptronic
turning chisel shown in Figure 2, is conceived. Several control laws, ranging
from simple collocated concepts to advanced model based methods, are im-
plemented and compared. The different methods are rated by their influence
on the stability domain.

2. System Model

Figure 1 shows a schematic view of the considered system. Workpiece
and tool are elastic bodies coupled by the process force Fp. In addition to
the small elastic deformations caused by this process force, the workpiece
performs large nonlinear rotations around its symmetry axis with rotational
velocity ω. The tool is fixed to the machine structure and moves with the
feed velocity v f toward the jaw.

2.1. Adaptronic tool holder

Figure 2 shows an exploded view of the adaptronic tool. It consists of
a turning chisel typically used for inside turning clamped into a tool holder.
The top of the tool holder is rigidly attached to the turret of the lathe. The
holder was designed to accomodate a piezo stack actuator and contains the
drillings necessary for cooling and power supply. The piezo is restrained
between two disc shaped endpieces. An eddy current sensor is placed next
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Fig. 1. Workpiece and tool coupled by cutting force law

to the actuator and allows to precisely capture the elongations of the stack.
When an external voltage is applied to the piezo stack, a force is generated
that acts as a pressure on the two disc shaped pieces clamping the actuator.
An additional accelerometer can be placed next to the tool tip and allows to
better capture the tip vibrations.

The blade that is used to cut the material is made of hardened high-speed
steel and fixed to the chisel. It can be considered as rigid.

fixation  to
machine

piezo
actuator

eddy current sensor

blade

turning chisel
additional

accelerometer

Fig. 2. Active tool comprising actuators and sensors
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The Finite-Element-Method (FEM) is used to derive a model of the
tool in terms of nodal displacements x f ,t . For this, the commercial software
Ansys is used. First, the tool geometry is built and subsequently meshed using
the implemented ‘solid45’ 8-node continuum element. The piezo actuator is
modeled as a force element in parallel to a spring whose stiffness is set equal
to the stiffness of the stack, kpiezo = 6 · 108N/mm. The resulting equations of
motion read

M f ,t · ẍ f ,t + D f ,t · ẋ f ,t + K f ,t · x f ,t = f e,t =
[
Bp,t Bu,t

]
·

Fp(t)
u(t)

 . (1)

The flexible mass-, stiffness and damping matrices M f ,t ∈ RNt×Nt , D f ,t ∈
RNt×Nt and K f ,t ∈ RNt×Nt obtained from Finite-Element-Analysis (FEA) de-
scribe the dynamic behaviour of the tool under the influence of the external
forces f e,t . The input matrix [Bp,t Bu,t] projects hereby the acting forces
on the nodal degrees of freedom (dofs). Acting forces are the process force
Fp(t) and the force u(t) generated by the piezo stack. The latter will serve as
the control input for the feedback design. To reduce the number Nt of nodal
dofs needed as inputs, interface nodes are added that serve as application
points for Fp(t) and u(t). Figure 3a shows the interface for the piezo actuator
force, Figure 3b the interface node for the process force. Those nodes are
kinematically bound to the contact surfaces of actuator and cutter. The lighter
lines represent those kinematic bindings. Note that part of the model has been
made transparent.

The displacement at the tool center point (TCP), yp,t , needed for the
calculation of Fp, and the available measurements for the controller design,
ym,t , are grouped into the output vector yt ,

yt =


yp,t

ym,t

 =


Cp,t

Cm,t

 · x f ,t . (2)

Because the rigid body motion of the tool is very small, no addition-
al terms are needed to account for it. For the considered application, feed
velocities v f are typically in the range of a few mm/s.

2.2. Workpiece

The workpiece is a hollow steel cylinder of length l, inner diameter
d and wall thickness dw, as shown in Figure 1. The cylinder is clamped
into a three jaw chuck of height h j. Each of the jaws covers an angle β
of the circumference. Flexible Multibody System Theory, [2], will be used
to account for the small elastic deformations of the workpiece as well as
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(a) Piezo-actuator input and eddy current (b) At the TCP for cutting force input and
sensor output accelerometer output

Fig. 3. Interface nodes and constraints for tool in- and outputs

the large nonlinear described rotations. The general movement of a flexible
body consists of deformations caused by internal or external forces and large
displacements and rotations, the rigid body motion. If the deformations of
the workpiece remain small, i.e. linear describable and elastic, as it is true
in the considered case, its equation of motion can be written in the form,

Mrr,wp Mr f ,wp

M f r,wp M f f ,wp

 ·

ẍr,wp

ẍ f ,wp

 =


hr,wp

h f ,wp

+


0

−K f ,wp · x f ,wp − D f ,wp · ẋ f ,wp

+


0

f e,wp

 .
(3)

The rigid body motion is hereby described by the displacements and rota-
tions of a body fixed reference frame grouped in xr,wp ∈ R6. The frame of
reference of the cylinder is fixed to the jaws and located on the symmetry-
axis as shown in Figure 1. Using the FEM, the deformations are described
by a number of nodal displacements x f ,wp ∈ RNwp given with respect to
the body fixed frame. The submatrices M f f ,wp, D f ,wp, K f ,wp ∈ RNwp×Nwp are
the mass, damping and stiffness matrices of the flexible part obtained from
FEA, Mrr,wp ∈ R6×6 corresponds to the mass matrix known from rigid multi-
body dynamics, M f r,wp = MT

r f ,wp couples the elastic deformations and the
rigid body movement. The vectors hr,wp and h f ,wp collect generalized inertia
forces. Using a lumped mass formulation, all quantities needed to form Eq.
(3) can be calculated from FEA results, [4]. The vector f e,wp collects external
forces acting on the nodal degrees of freedom. Here, this is the process force
Fp that acts at the TCP, thus

f e,wp = Bp,wp · Fp. (4)

The input matrix Bp,wp projects hereby the process force on the elastic
dofs of the workpiece that correspond to the TCP. Due to rotation and feed,
the force application point is not constant but varies with time. The input
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matrix is therefore a function of the rigid body motion of workpiece and
tool,

Bp,wp = Nwp(xr,wp, xr,t). (5)

Figure 4 shows the general case where the force application point is not
coincident with a node of the underlying FE-mesh of the cylinder surface.
The force Fp has to be expressed via forces acting on the dofs of the adjacent
nodes h,i, j and k. This is done by means of bilinear shape functions using
local distances ξ and η. The matrix Nwp contains nonzero entries only on
positions corresponding to the dofs of nodes h,i, j and k.

Fig. 4. Cutting force acting on a surface element

The displacements of the workpiece at the TCP yp,wp are expressed using
the output matrix Cp,wp, yp,wp = Cp,wp · x f ,wp. As yp,wp is the displacement
on the force application point, it becomes clear that Cp,wp also depends on
the rigid dofs of workpiece and tool,

Cp,wp = NT
wp(xr,wp, xr,t) · x f ,wp , (6)

using the same shape functions.

2.3. Mode Synthesis Method

Typically, in order to get accurate results from FEA, a fine mesh is used,
resulting in a high number of elements. Correspondingly, the number of nodes
is high. Consequently, the equations of motion of the flexible model in the
form described by Eqs. (3) and (1) contain a high number of generalized
coordinates. This number is in general too high to allow for an efficient
numerical implementation. This problem is overcome with the help of model
order reduction techniques that allow to reduce the number of generalized
coordinates while maintaining a reasonable accuracy of the results.
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In this work, the mode synthesis method using modes of vibration is used.
The nodal displacements x f of workpiece and tool are hereby expressed in
terms of modal coordinates q using the coordinate transformation

u = [φm,1 . . . φm,N ] · q = Φm · q . (7)

The modal coordinates q represent the contribution of the displacement field
given by the modal matrix Φm towards the nodal degrees of freedom. A
modal coordinate qi belongs to the mode of vibration φm,i associated to a
natural frequency ωm,i of the flexible body. Eigenfrequencies and -vectors
can be obtained by solving the eigenvalue problem,

(M f fω
2
m,i − K f f ) · φm,i = 0 . (8)

Often only a fraction of the modes is needed to accurately describe the system
behaviour. Consequently, the columns corresponding to the other modes are
excluded from Φ. The mode synthesis technique allows thus to improve the
numerical efficiency.

2.4. Process Force Model

Material removal operations represent complex physico-chemical process-
es involving a multitude of different effects. Those range from high plasticity
and elevated deformation rates of the material to extreme heat gradients and
interactions between tool and workpiece like abrasion and pressure wielding.
Precise accounting for these effects would impose very high demands on the
process model. In general, it is therefore customary to factor the process by
empirically determined force laws.

In this work, we consider experimentally determined force laws that were
first introduced by Kienzle and Victor [5]. They investigated the acting forces
during the turning of different materials for a given nominal process. They
were thus able to derive laws of the form

Fi = kiaph (9)

for the three components of the process force, the cutting force Fc, the passive
force Fp and the feed force F f . Each of the components was assumed to be
proportional to the chip geometry, i.e. the product of chip thickness h and
the depth of cut ap. The chip thickness relates to the feed movement of the
tool, the depth of cut is the tool movement perpendicular to the surface.

However, they soon discovered that (9) only holds for small variations
around their nominal process conditions. Correction factors were added re-
sulting in highly nonlinear force laws.
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For stability analysis, it is sufficient to observe small force variations
around the cutting conditions that are to be analyzed. In this work, we there-
fore consider a linear force law Fp = [Fp Fc F f ] = kap(ap(t)−ap,0)+kh(h(t)−
h0) + F0, obtained through linearization around a nominal depth of cut ap,0
and chip thickness h0 that lead to the constant force F0. Extensive data on
specific cutting forces and correction factors can be taken from literature,
e.g. from [6].

The force law is reformulated and the width and thickness variation
expressed by the workpiece and tool displacements yp,wp, yp,t at the tool
center point. Because successive cuts usually overlap in turning, the force
not only depends on the present, but also on past values of workpiece and
tool displacements, modeled by the discrete delay τ = 2π/ω, resulting in

F(t) = F0 + G · (yt(t) + ywp(t)︸         ︷︷         ︸
utcp(t)

−µutcp(t − τ)) . (10)

The factor µ comprised between 0 and 1 is used to describe the overlapping
of consecutive cuts. The matrix G contains the specific cutting forces and
projects the TCP-movements in the directions of depth and width of cut.

2.5. Coupled System

Here, rotational velocities between 600 and 1000 rpm will be considered,
corresponding to time delays ranging from 0.1 to 0.06 seconds. Higher ro-
tational velocities are not permitted because of limitiations of the allowable
cutting speeds by the equipment. The rotational velocity is constant during
the operation, the accelerations of the floating frame of reference of the
workpiece therefore vanish. The equations of motion of the workpiece (3)
can thus be simplified. Coupling with the tool equations using the force law
(10) and the in- and output matrices (6) and (5) yields the coupled equations
of motion of workpiece and tool,

M ·ẍ f (t)+D·ẋ f (t)+(K+Kcp(t))·x f (t)+µKcp(t)·x f (t−τ) = B·[F(t) u(t)], (11)

where

M =


M f ,wp 0

0 M f ,t

 D =


D f ,wp 0

0 D f ,t

 ,

K =


K f ,wp 0

0 K f ,t

 , B =


Bp,wp(t) 0

Bp,t Bu,t

 ,

Kcp =


Bp,wp(t) · G · Cp,wp(t) Bp,wp(t) · G · Cp,t

Bp,t · G · Cp,wp(t) Bp,t · G · Cp,t

 , x f =


x f ,wp

x f ,t

 .
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The derived nonlinear model is subsequently used to analyze the dy-
namic stability of the turning process. A feedback law using the available
measurements is then implemented and the effects on the stability boundary
are compared.

3. Stability analysis

Consecutive cuts on the same surface, modeled in Eq. (10) as an inter-
action of the time-delay of the system and the system dynamics, can lead
to self-excited vibrations. These instabilities cause a poor surface finish and
can even damage the equipment. In practical application, the operator would
always seek to chose the operation parameters such that no instabilities oc-
cur. This is done by use of the expertise of the operator as well as the help
of so-called stability charts. Those charts display the domain of stable and
unstable cutting in a 2D plot parametrized by modifiable process parameters.
For turning, these are usually the rotational velocity of the workpiece in
revolutions per minute (rpm) and depth or width of cut. As the flexibility
of workpiece and tool in depth of cut direction is considerably higher than
in chip thickness direction, Eq. (10) will be slightly rewritten and only the
variation in depth of cut direction considered,

∆F = Vkp f δap = G · (utcp(t) − µutcp(t − τ))) . (12)

Furthermore, as the focus of this contribution lies on improving dynamic
stability, the charts will be given in terms of rotational velocity ω and the
force parameter kp f . This simplifies the evaluation of the results. Using the
extensive data available in literature, [6], kp f can be related to the modifiable
parameters for a known process. The force direction V is consequently a
unity vector.

The coupled equations of motion of tool and workpiece (11) form to-
gether with the cutting force law (10) a system of nonlinear delay differential
equations. Analysis of its stability is a difficult task that has received and still
receives a lot of interest in the scientific community. Different analysis meth-
ods have been proposed that differ greatly in their applicability. The methods
available can be distinguished in three different classes, i.e. frequency domain
based methods, methods using an approximation as a time-discrete system
and time-domain simulations.

Methods based on an approximation as a time discrete system deduce the
stability of a linear periodic time varying system with the help of the eigen-
values of the transition matrix of an approximating discrete system. Whilst
they do not allow to find an analytical solution for the stability boundary as
the frequency dependent methods do, [7], they offer a much faster calculation
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and a more robust determination of stability than time domain simulations.
In addition, they allow to account for the time-varying dynamics of the sys-
tem and are, therefore, the method of choice here. They have been applied
successfully in different applications [8,9].

Starting point for this class of methods is Floquet Theory, [10]. Floquet
Theory states that the stability of a time-variant periodic system can be
deduced by means of the largest eigenvalue of the corresponding transition
matrix. Although Floquet Theory can be generalized for functional differen-
tial equations and, therefore, applied to systems with time delay, practical
application is not straightforward. One reason is, that the rate of change of a
delayed system depends not only on the present, but also on the past of the
system. Its corresponding state-space representation and thus the fundamen-
tal matrix are therefore infinite-dimensional. To obtain a finite-dimensional
map of the infinite-dimensional system, several strategies exist. The most
popular are the Temporal Finite Element Method, [11,12], and the Semi-
Discretization Method, [3,13].

Both methods focus on finding a discrete map of the continuous system.
What is determined is thus the transition between two successive states ζd
and ζd+1 of the approximated discrete system,

ζd = Φ · ζd+1 , (13)

as illustrated in Figure 5.

Fig. 5. Discretization of the system past and approximation as time-discrete system

Here, these are equivalent to two successive rotations of the workpiece.
The state of the discrete system consists of the current state of the system as
well as a finite number of past states at given instants,

ζd = [x̄i x̄i−1 · · · x̄i−kT ], ζd+1 = [x̄i+kT x̄i+kT−1 · · · x̄i], (14)
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Having calculated the transition matrix Φ, the stability of the approximated
system can be determined by means of the largest eigenvalue of Φ. For a
stable system, they have to be located inside the unit circle of the complex
plane,

|λ(Φ)|max =



> 1 unstable,
= 1 boundary of stability,
< 1 stable.

(15)

The Semi-Discretization-Method will subsequently be used to derive an ap-
proximation as a time discrete system and construct the corresponding tran-
sition matrix. The procedure follows the outline given in [14].

Starting point for the method is a state-space representation of the form

˙̄x = A(t) · x̄(t) + Q(t) · x̄(t − τ) . (16)

The matrices A and Q are hereby supposed to be time-variant and periodic,

A(t + T ) = A(t), Q(t + T ) = Q(t) .

Note that the periodicity T in the considered case equals the time delay τ.
When the feed movement is neglected, the overlap factor becomes µ = 1 and
the time-varying terms in Eq. (11) are indeed periodic. This simplification
is justified, because the tool moves here only a small fraction of the length
of the cutting edge during one rotation. The matrices A and Q can then be
written as

A(t) =


0 E

M−1 · (K + Kcp(t)) M−1 · D

 , Q(t) =


0 0

M−1 · Kcp(t) 0

 , (17)

and the state vector reads
x̄ = [x f ẋ f ]T . (18)

The submatrix E is hereby an identity matrix with appropriate dimen-
sions. Departing from an instant ti in time, the system past is represented by
means of discrete interpolation points

x̄i− j = x̄(ti − j∆t), (19)

the discrete time step ∆t is hereby chosen such that

kT∆t = T, kT ∈ N . (20)

For the interval [ti ti+1], the delayed states x̄(t − τ) are approximated by a
constant value. The value at the middle of the interval is chosen and expressed
by weighted means of the closest interpolation points

x̄(t − τ) ≈ x̄(t + ∆t/2 − τ) ≈ wbx̄i−kT + wax̄i−kT +1 . (21)
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The weighting coefficients are set to wa = wb = 0.5. The time variant coeffi-
cient matrices A and Q are approximated in a similar way,

A(t) ≈ A(t + ∆t/2) =: Ai, Q(t) ≈ Q(t + ∆t/2) =: Qi . (22)

The initial delay differential equation is thus approximated on the interval
[ti ti+1] by the ordinary differential equation

˙̄x = Ai · x̄ + Qi · (wax̄i−kT +1 + wbx̄i−kT ) . (23)

For a given initial condition (x̄i, x̄i−kT , x̄i−kT +1), the state x̄i+1 at the end of the
interval can be obtained by integrating this equation,

x̄i+1 = e(Ai·∆t) · x̄i + (e(Ai∆t) − E) · A−1i · Qi · (wax̄i−kT + wbx̄i−kT +1)
= Pi · x̄i + Si · x̄i−kT + Ri · x̄i−kT +1.

(24)

The solution for the interval T , i.e. one complete revolution of the tool, can
be obtained based on the solutions of all the subintervals. Two ways exist to
build the transition matrix Φ. Following the presentation in [3,13] a transition
matrix Φ̄m can be constructed for each of the kt timesteps ∆t that gives the
transition from the beginning to the end of the subinterval. The transition
matrix for the entire period T is then obtained by multiplying the Φ̄m. In
the considered case of turning, the number of subintervals is high due to the
relatively long time delay (compared with the milling operation considered
in the reference). The, therefore, elevated number of matrix multiplications
is computationally intensive. To avoid those multiplications, a calculation
method is adopted that is referred in [14] as the direct method (in contrast
to the successive multiplication).

Writing Eq. (24) for each of the subintervals in matrix form gives



E −Pi+kT−1 0 0 · · · 0 0 0
0 E −Pi+kT−2 0 · · · 0 0 0
...

. . .
. . .

. . .
. . .

. . .
...

...

0 0 0 0 · · · 0 E −Pi

0 0 0 0 · · · 0 0 E


︸                                                            ︷︷                                                            ︸

=: Φl

·



x̄i+kt

x̄i+kt−1
· · ·
x̄i+1

x̄i


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=



Si+kT−1 −T i+kT−1 0 0 · · · 0 0 0
0 Si+kT−2 −T i+kT−2 0 · · · 0 0 0
...

. . .
. . .

. . .
. . .

. . .
...

...

0 0 0 0 · · · 0 Si −T i

0 0 0 0 · · · 0 0 0


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·
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x̄i

x̄i−1
· · ·

x̄i−kT +1

x̄i−kT



.
(25)

The matrix Φ can then be obtained as

ζd = Φ−1l ·Φr︸    ︷︷    ︸
Φ

· ζd+1 . (26)

In order to calculate the largest eigenvalue, the eigenvalue problem

(Φ−1l ·Φr − λE) · U = 0 (27)

needs to be solved. The equivalent generalized eigenvalue problem

(Φr − λΦl) · U = 0 (28)

is considered to avoid the costly calculation of the inverse. Note that Eqs.
(27) and (28) have the same eigenvalues. The largest eigenvalue of the above
equation can be efficiently determined using the QZ-algorithm that is readily
available in matlab.

Note that Eq. (28) allows to conclude on the stability of one specific
system. In order to calculate the boundary of stability, the criterion must
be evaluated for different values of kp f and τ. To reduce the number of
evaluations, an adaptive mesh refinement is used.

4. Feedback control to improve dynamic stability

To improve the dynamic behavior of the turning operation, a feedback
control using the adaptronic turning chisel is synthesized and tested in sim-
ulation. The criterion to judge the obtained results is hereby given by the
stability analysis procedure presented in the previous section. The domain
of stable cutting is to be increased. Typically, actuators and sensors are only
effective up to a certain frequency. A good feedback control exhibits thus a
roll-off at high frequencies. This also increases the robustness with respect
to faster dynamics that have been neglected in the design of model based
controllers.



380 ACHIM FISCHER, PETER EBERHARD

The tool is also part of a larger system that seeks not only to prevent
unstable cutting, but also compensates shape errors typical for turning of
thin-walled cylinders, [15]. As part of this system, the tool must also execute
precise infeed movements. An additional demand is thus good reference
tracking in the low frequency domain. In this contribution, however, the
focus lies on stability improvement. The demand is thus not explicitly taken
into account, but kept in mind when discussing the concepts.

Four different concepts will be implemented and compared. The first two,
Direct-Velocity-Feedback (DVF) and Positive-Position-Feedback (PPFB), are
collocated control concepts using either a velocity or a position feedback.
They are usually found in the context of active vibration damping of struc-
tures and need no system model. The next two, the Frequency-Shaped-Linear-
Quadratic-Regulator (FS-LQR) and H∞-optimal control are model based con-
cepts that synthesize a controller that is optimal in the sense of a given
criterion. The potential of adaptronic machine tools in combination with
collocated and model-based control concepts has been shown in previous
studies, [16,17].

4.1. Collocated control

Collocated control concepts, [18,19], introduce damping locally. The
control laws are simple and do not require a model of the system. They
depend on very few parameters that can easily be tuned manually. In the
ideal case, they guarantee stability for a stable system, i.e. they do not desta-
bilize it. Collocated control concepts are thus a good first choice for control
problems involving vibrations. If a reference signal needs to be tracked, an
additional outer or high authority control loop must be designed.

Collocated control demands that actuators and sensors are collocated,
i.e. they have to be located at the same place and must be energetically
conjugated. A force input is thus calculated based on a displacement or
velocity measurement obtained at the same point. In the case of the adaptronic
tool holder of Figure 2, the force created by the piezo stack is collocated
with the measurement of the piezo elongation xp obtained through the eddy
current sensor. The most straightforward dissipative force law uses a velocity
feedback,

u = −dv ẋp , (29)

effectively making the actuator act like a damper. Collocated control using
Eq. (29) is referred to as Direct-Velocity-Feedback (DVF). To improve the



SIMULATION-BASED STABILITY ANALYSIS OF A THIN-WALLED CYLINDER DURING. . . 381

roll-off of the control system and avoid high frequency excitation, the position
signal is filtered by a first order low pass filter Wdv f ,

Wdv f =
ω f

s + ω f
. (30)

The filter frequency ω f is chosen according to the frequency of the mode to
be controlled.

Using directly the piezo stack elongation and a positive feedback leads
to a feedback law called Positive-Position-Feedback (PPFB),

u = kcxp . (31)

In order to improve the roll-off of the control system, the position signal
is filtered by a second order low pass filter,

Wpp f b(s) =
ω2

f

s2 + 2ξ fω f s + ω2
f

. (32)

As before, the filter frequency ω f is hereby set close to the frequency of the
mode that is to be controlled. The filter is heavily damped, e.g. ξ f = 0.7. It
should be noted that the PPFB causes a local stiffness reduction. The system
can therefore be destabilized if the open-loop static gain is unity.

It is to be expected that the use of a collocated control concept is some-
how limited here by the relatively long distance between the actuator input
and the TCP. Model based concepts promise here to have advantages as using
a system model allows to globally affect the system dynamics using the local
force input and sensor information.

4.2. The Frequency-Shaped-Linear-Quadratic-Regular

The first model based concept, the FS-LQR, is an optimal state feedback
using a frequency dependent cost functional. It is also widely used in the field
of control of flexible structures, [18,19], and an extension of the classical
LQR. The LQR is an optimal state feedback calculated to minimize the
quadratic performance criterion

J =

∫ ∞

0
[x̃T (t) · Q · x̃(t) + u(t)ru(t)]dt, (33)

where the positive semi-definite matrix Q and the positive coefficient r are
used to weight the system states x̃ and the control input u. For a system in
modal form, i.e. when the system has been transformed and/or reduced using
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Eq. (7), the states represent modal amplitudes and velocities. Choosing Q
as a diagonal matrix allows to directly penalize specific modes, effectively
increasing the damping of the selected mode.

Directly using constant weighting matrices can, however, destabilize the
modes that have been neglected in the controller design. This phenomenon,
called spillover, can be prevented by using frequency dependent weighting
matrices. According to Parseval’s theorem, the cost functional (33) can be
transformed into the frequency domain,

J =
1
2π

∫ ∞

0
[x̃∗(ω) · Q · x̃(ω) + u∗(ω)ru(ω)]dω. (34)

The symbol ∗ is used to denote the hermitian, i.e. the complex conjugate
transposed. If the system output is given by y = C · x̃, using frequency
depending weighting matrices of the form

Q(ω) = C∗h(ω)∗h(ω)C, r(ω) = Rs∗(ω)s(ω) (35)

is equivalent to adding input and output filters to the system and minimizing
the frequency independent cost functional

J =

∫ ∞

0
[y∗f y f + u∗f ru f ]dω =

∫ ∞

0
[y2

f + u2
f r]dt. (36)

The state feedback,
u = −K · x̃n, (37)

that minimizes (36) can now be obtained by solving the LQR-problem for
the system augmented with the filters. The new system state is

x̃n = [xi x̃ xo]T , (38)

with x̃ being the state vector of the original system and xi, xo the states of
the input and output filters. It should be noted, that the LQR problem can
easily be augmented to satisfy tracking requirements.

Figure 6a shows the schematic view of the entire controller, including
the input and output filters. Typically, the system states cannot be measured
in their entirety but must be reconstructed from the available measurements
using an observer, e.g. a Kalman Filter. Because the filters are calculated in
the computer, their states are known and need not be reconstructed. Figure
6b shows the filter characteristics adopted here. The output filter puts more
weight on low frequency, the input filter penalizes high frequency control
signals. The parameter R will serve as design parameter. The acceleration
measurement has been chosen as output to be filtered.
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(a) Structure of the frequency shaped LQG, (b) Frequency dependent weigh-
observer and system with filters ting functions for LQR

Fig. 6. Structure and filter functions of the FS-LQG

4.3. H∞ control

H∞ control belongs to the so called robust control techniques. Modern
robust control techniques, [20,21], allow to define the desired closed loop
behavior more precisely by “shaping” the closed loop transfer functions. First,
the control problem needs to be expressed by means of the generalized plant
P and signals w, u, z and v. A block diagram is shown in Figure 7.

Fig. 7. Generalized plant P and controller K

The vector of exogenous signals w collects hereby all external quantities
acting on the system, such as references and disturbances, z, the performance
measurement, contains signals that allow to assess the system behaviour. The
controlled inputs u and measurements v group the available inputs and sensor
outputs of the system. When P is known, the problem of controller synthesis
is formulated as an optimization problem. Find a stabilizing controller K
such that the norm of the transfer function of the closed loop from w to z is
minimized. In the case of H∞ control,

||Fl(P,K)||∞ = γ
!
= min . (39)

Here, Fl denotes a lower linear fractional transformation of P with K as
parameter, i.e. Fl(P,K) is obtained by using K to close the loop shown in
Figure 7. The optimization problem is usually solved using linear matrix
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inequalities or algebraic riccatti equations. Solvers are readily available in
programs like matlab. They return the optimal controller K and the minimal
value γ of the criterion.

Usually, u and v are given by the system to be controlled and can not be
changed. The task of the control engineer is thus to define the signals w and
z to suit the needs of the given problem. Those signals are usually filtered
to achive a desired behaviour of the resulting controller. Figure 8a shows the
choice used here. The tracking error ε between the infeed of the tool and
some given reference is included, as well as the control signal. An unknown
perturbation acting on the TCP is added to force optimization with respect
to disturbances ocurring during machining. The filters W1(s) and W2(s) are
first order stable transfer functions, W3 is a constant gain. The reference and
control signals are scaled such that a signal of magnitude 1 represents a large
signal, i.e. a piezo force of 10000N and a reference command of 10µm.

Filters W1(s) can be used to directly shape the transfer function from the
reference to the error of the closed loop, that is called the sensitivity S(s).
To ensure a small tracking error, usually S(s) is wanted to be small in the
lower frequency range while left unchanged in the higher range. The transfer
function W2(s) allows to influence the complementary sensitivity T (s) of the
system. In order to avoid amplification of noise, we want T (s) to be small for
high frequencies to penalize high frequency control signals. Figure 8b shows
the filters used in the controller design. The minimal value γ of criterion
(39) indicates if the constraints imposed by the filters have been respected.
If γ < 1, then |S(s)| < |1/W1(s)| and |T (s)| < |1/W2(s)|. The constant weight
W3 will subsequently serve as design parameter.

(a) Choice of exogenous inputs and performance out- (b) Weights W1(s) and W2(s) for
puts and Filters H∞ controller synthesis

Fig. 8. Choice of signals for generalized plant and filters
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5. Numerical Experiments

The adaptronic tool is now coupled with two different workpiece models,
the stability of the resulting system analyzed and the effects of the presented
control concepts observed. Numerous testing conditions are conceivable that
boil all down to two basic cases: The system dynamics is dominated by the
tool or it is dominated by the workpiece. The display is limited to those
two cases represented by two test systems. System 1 represents hereby the
coupling with a moderately thin steel cylinder of wall thickness 6mm. In this
case, the workpiece exhibits dimensions that could typically be encountered
in a workshop. In system 2, the model of a very thin workpiece of wall
thickness 1mm is used. This presents a type of workpiece that is very difficult
to machine and that would typically demand the use of specialized clamping
devices. The remaining dimensions and material properties are the same for
both models and given in Table 1. In both cases, we consider the system
immediately after machining has started, i.e. the tool is located at the far end
of the cylinder, away from the chuck.

Table 1.
Numerical values for the considered workpiece models

l d h j β j Youngs modulus density Poisson’s ratio

0.2m 0.12m 10mm 20◦ 210 · 106 N/m 7800 kg/m3 0.3

First of all, the stability diagrams of workpiece and tool are determined
independently. For this, each of the workpiece models is coupled with a rigid
tool and the tool is coupled with a rigid workpiece. Figure 9b shows the sta-
bility boundary of the very thin workpiece and Figure 9a the moderately thin
workpiece and the tool. The area under a specific curve is the domain of stable
cutting. The stability diagrams were obtained using the Semi-Discretization
Method. The number of discretization points for the past state has been cho-
sen to kT = 2920. The analysis was done using a reduced model including
the first five modes of workpiece and tool. A further increase of modes or
discretization points leads only to minor changes. In fact, the use of four
modes and kT = 2200 discretization points already yields the same chart in
the case of the workpiece. Two modes are already enough for the tool. From
this, it is clear that the instability is due to excitation of the first few modes
of the system. The higher frequencies play only a minor role.

The results indicate already that the instability will be due to vibrations
of the comparatively long and slender tool in the case of system 1. System 2
will most likely become instable due to vibrations of the very thin workpiece.
It should be noted that system 1 can be considered as the typical case in
inside turning where flexible tools force the operator to choose lower material
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removal rates. System 2, however, is an extreme case that is very difficult to
machine.

(a) Structure of the frequency shaped LQG, (b) Thin workpiece

Fig. 9. Stability diagrams of the tool and the two different workpiece models

Collocated control concepts are now used to increase the stable domain
of system 1. The frequency of the filters for DVF and PPFB is chosen to ω f =

2π · 720, thus roughly equal to the second eigenfrequency of the tool. The
gains dv and kp of the two concepts are then successively increased and the
effect on the stability boundary observed. Figure 10b shows the results of the
Positive-Position-Feedback and Figure 10a of the Direct-Velocity-Feedback.

(a) Stability chart of system 1 using Direct- (b) Stability chart of system 1 using
Velocity-Feedback Positive-Position-Feedback

Fig. 10. Stability diagrams of system 1 using collocated concepts

Relatively high gains are needed in order to achieve visible results. High-
er gains result in a larger domain of stable cutting. Increasing the gains above
dv = 9·105 or kp = 3·108 results in only minor improvements. It is interesting
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to note that those occur mainly in the range of higher rotational velocities.
In the case of PPFB, the system can even become unstable independently
of the delay when the gain exceeds a value of kp = 1.6 · 109 because the
stiffness matrix becomes negative definite.

Figure 11a shows the stability diagram of the FS-LQR synthesized using
a tool model that includes the first four modes of vibration for different
values of the design parameter R. Decreasing R reduces the penalization of
the command in Eq. (36). The resulting feedback controller will thus use
larger control signals which result in higher damping. This increases the
domain of stable cutting. It is interesting to note that there is a value of
the weight for which the obtained stability boundary is maximal. Decreasing
R below this value does not yield any improvements anymore, but slightly
lowers the boundary.

The presented H∞ controller synthesis method is now tested. As before,
a tool model including the first four eigenmodes is used. Figure 11b shows
the stability diagrams obtained for different values of W3. Increasing the
parameter W3 forces the algorithm to consider larger perturbations acting on
the TCP and improves the stability of the system. It should be mentioned
that the value of γ returned by the controller synthesis algoritm is below one
for all displayed values, i.e. the constraints defined by the filters have been
respected. The domain of stable cutting is significantly increased. As before,
a maximum stability boundary is reached, further increasing W3 does not
yield any improvements. A comparison with chart 9a gives an explanation.
For higher values of W3, the controller stabilizes the tool so well that the
stability behaviour becomes dominated by the workpiece. The control law is
not able to counteract vibrations of the workpiece, as there is no information
about it contained in the model used for controller synthesis.

All previously synthesized controller concepts are now tested with system
2. They are not able to increase the boundary of stability. This could be
expected. As they only act on the tool, they do not influence directly the
workpiece that is coupled by the process force. To overcome the problem,
the model-based concepts can be augmented with a model of the workpiece.
The option will be explored using the H∞ control that performed best in the
case of system 1.

Augmenting the system model, however, is made very difficult by the
need for a linear, time-invariant model for controller synthesis. The cou-
pling of workpiece and tool is time-dependent due to workpiece rotation and
depends on the given process. Furthermore, the workpiece dynamic itself
changes during the operation when material is removed.

Figure 12 shows the stability chart of system 2 with and without feedback.
Slight improvements were possible choosing the cutting force coefficient
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(a) Stability chart of system 1 using the (b) Stability chart of system 1 using the
FS-LQR presented H∞ controller synthesis method

Fig. 11. Stability diagrams of system 1 using model based concepts

close to the value on the stability boundary. However, the result is sensitive
to variations of the coupling coefficient. Classical feedback is not able to
improve the turning operation when the dynamic behaviour is dominated by
the workpiece.

Fig. 12. Stability diagram of thin workpiece and tool with and without feedback

6. Conclusions

The use of an active tool can improve the stability of the system and al-
lows thus to increase machining speed without loss of quality. When the focus
lies on damping vibrations and the dynamic behaviour is dominated by the
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tool, simple collocated concepts like Direct-Velocity-Feedback and Positive-
Position-Feedback can already lead to good results. They introduce damping
locally into the system and are thus limited by the location of actuators and
sensors and the simple control laws used. The Frequency-Shaped-Linear-
Quadratic-Regulator achieved comparable improvements in the numerical
experiments. This is somehow dissapointing as it was expected that the use
of a system model and an additional measurement allows to obtain results
superior to the collocated concepts. The reason is most likely the choice of
the criterion (36). It is to be expected that choosing a different weighting of
the states can lead to a controller that is capable of further improvements.

The full potential of model based concepts was shown by the presented
H∞ controller. Directly shaping the closed loop transfer functions allows
to easily implement additional demands like small tracking errors in the
low frequency domain and a limit on the maximum actuator force. The H∞
controller obtained the best results and was able to prevent instabilities of
the tool to such an extent, that vibrations of the workpiece became the main
reason for dynamic instability.

When the dynamic behavior is dominated by the cylinder, i.e. with
decreasing wall thickness, collocated control concepts fail to improve the
stability at all. Model based concepts can still obtain some results when the
coupling between workpiece and tool is accounted for in the controller design
model. The improvements are however small and sensitive to changes in the
coupling coefficients. Linear, time-invariant control laws are not the answer
for this special case. The improvement of workpiece dominated dynamic
stability is a demanding topic that pends further study.
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Symulacyjna analiza stabilności cienkościennego cylindra podczas toczenia
z udoskonaleniem wykorzystującym dłuto tokarskie typu Adaptronic

S t r e s z c z e n i e

Dynamikę procesu toczenia przy obróbce cienkościennego walca zamodelowano stosując
teorię giętkich układów wielu ciał. Uzyskano model uwzględniający zmienność w czasie wynika-
jącą z obrotu przedmiotu obrabianego i posuwu narzędzia, a także opóźnienia powodowane wielo-
krotnym skrawaniem tej samej powierzchni. Niestabilności, które mogą powstać w wyniku tych
wielokrotnych skrawań, powinny być wyeliminowane w praktycznych zastosowaniach, gdyż ma-
ją one szkodliwe skutki dla przedmiotu obrabianego, narzędzia, a nawet dla maszyny. Pomijając
niewielki posuw narzędzia, wynikowa stabilność układu z opóźnieniem i zmiennego w czasie może
być analizowana metodą częściowej dyskretyzacji. Badano zastosowanie uchwytu narzędziowego
typu Adaptronic, zawierającego siłowniki i czujniki, którego zadaniem jest poprawa stabilnoś-
ci dynamicznej. W symulacji systemu wdrożono różne koncepcje sterowania, dwie kolokacyjne
i jedną opartą na modelu, dobierając ustawienia tak, by zwiększyć zakres stabilnego skrawa-
nia. W procesie skrawania przedmiotu o umiarkowanie cienkich ścianach występują niestabilności
spowodowane głównie wibracjami narzędzia. W tym przypadku granice obszaru stabilności mogą
być znacznie poszerzone. Jeśli jednak niestabilność wynika z wibracji przedmiotu obrabianego,
koncepcja kolokacyjna zawodzi całkowicie. Koncepcje oparte na modelu mogą nadal zapewniać
pewną poprawę, lecz są wrażliwe na błędy modelowania zjawisk na styku przedmiotu obrabianego
i narzędzia.


