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OPTIMIZATION OF THE DYNAMICAL BEHAVIOR OF
HIGH-PERFORMANCE LENS SYSTEMS TO REDUCE DYNAMIC

ABERRATIONS

In high-performance optical systems, small disturbances can be sufficient to put
the projected image out of focus. Little stochastic excitations, for example, are a huge
problem in those extremely precise opto-mechanical systems. To avoid this problem
or at least to reduce it, several possibilities are thinkable. One of these possibilities
is the modification of the dynamical behavior. In this method the redistribution of
masses and stiffnesses is utilized to decrease the aberrations caused by dynamical
excitations.

Here, a multidisciplinary optimization process is required for which the basics
of coupling dynamical and optical simulation methods will be introduced. The opti-
mization is based on a method for efficiently coupling the two types of simulations.
In a concluding example, the rigid body dynamics of a lithography objective is
optimized with respect to its dynamical-optical behavior.

1. Introduction

High-performance objectives, especially lithography objectives, are one
of the most precise machines in relation to their dimension. Lithography
objectives are used in manufacturing semiconductor devices [1]. In general,
their purpose is to provide a good image quality at high resolution. This
requires highest accuracies in producing and mounting its components. Dur-
ing the application, disturbances should be kept away to maintain the high
image quality. A potential disturbance is dynamical excitation. Regarding
a lithography objective in a wafer stepper, this could be vibrations from
the ground, noise produced by coolers or by the waver stepper itself, etc.
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Despite the heavy frame of the objectives, small excitations can make the
lenses vibrate so that the projected image is aberrated, i.e. erroneous.

Making the objectives independent of disturbances is a main task of the
mechanical designer. This principally concerns the dynamics of the housing
and the lens mountings. Some possibilities for decoupling the image quality
from excitations are listed below.
• The motion of the lenses can be passively minimized by stiffening all

supports, by means of passive damping or by absorbers. However, there
are limitations due to the requirement of allowing for a compensation of
thermal expansion.

• Active vibration damping by means of active mounts could be used to
suppress residual vibrations.

• Instead of suppressing residual vibrations, lenses could be actively de-
formed to compensate occurring aberrations by opposite aberrations [2].

• If the lens vibrations cause small aberrations, either less or perhaps no
active vibration damping is needed. This issue requires mode shapes
with small aberrations in relevant frequency ranges. Mode shapes can be
controlled by modifying masses and stiffnesses.
The first two points are typical and well-known dynamical problems,

whereas the last two points require combined methods of mechanics and ap-
plied optics. In this paper, the last point will be described in detail, including
all necessary principles. However, some restrictions have to be made. In the
dynamical part deformations will be neglected. The same applies to wave-
optical effects like diffraction in the optical part, so only geometrical optics
will be discussed.

2. Evaluating a dynamical-optical system

Coupling dynamical and optical simulations is a multidisciplinary prob-
lem. The computation methods differ completely, except some few numerical
methods which occur in both fields. So the definition of interfaces is a deter-
mining point. For this kind of coupled simulation, a straight-forward method
is the most convenient way. It starts with computing the motion of the lenses.
The results are passed in terms of moved and tilted lenses to the optical sim-
ulation, i.e. the raytracing simulation. Raytracing means calculating the path
of light rays through an optical system. It is used to calculate the aberrations
for each simulation step. Since all optical systems produce aberrations even
in a non-perturbed state, the aberrations are computed relatively to these
reference aberrations.

At first, modeling the mechanical part will be shortly described. This is
followed by an overview about calculating the optical aberrations. After this,
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the Zernike polynomials are introduced in order to utilize them for quanti-
fying aberrations. In both the mechanical and the optical part, a Cartesian
system is used where the z-axis is the axis of rotational symmetry. In the
optical model, this is called the optical axis. The positive z-direction is the
direction of the light, starting at the object plane and ending at the image
plane.

2.1. Modeling rigid lens systems

For deriving the mechanical model, the design of a lithography objective
is used. It consists of a stack of lens holding devices which are subdivided
into outer rings, inner rings and lenses. The outer rings are fixed to each
other so that they form the housing. The inner rings hold the lenses that
are connected to the outer rings by different types of mechanisms for fine
position adjustments, see e.g. [3].

The model is built by means of multibody system (MBS) formalisms,
see [4]. The holding devices are simplified to groups of rigid bodies which
are connected by spring elements. It is assumed that no additional damping
is present, and structural damping is neglected due to the small influence on
the dynamical-optical behavior. A small lens system with its connection to a
fixed environment is shown in Fig. 1.

Fig. 1. The mechanical model of a lens triplet

The motion of a single lens is described by the movement ρ of the
center of the first surface and by the orientation as displayed in Fig. 2. The
orientation depends on two rotations, θx and θy. A rotation about the third
axis, the axis of rotational symmetry, can be neglected since this would not



410 NICOLAI WENGERT, PETER EBERHARD

affect the optical simulation. So each lens of the k lenses has five degrees of
freedom. All lens movements are summarized in the vector

y =
[
ρx,1, ρy,1, ρz,1, θx,1, θy,1, ... ρx,k , ρy,k , ρz,k , θx,k , θy,k

]T
. (1)

Fig. 2. Kinematical description of a single lens

Only small vibrations are of interest, and nonlinear motion effects do
not occur in those systems. Therefore, the equations of motion are linear by
their physics. They have the form

M · q̈(t) + D · q̇(t) + K · q(t) = B · u(t) (2)
y(t) = C · q(t) (3)

with the generalized coordinates q, the mass matrix M, the damping matrix
D, the stiffness matrix K, the input matrix B, the inputs u and the output
matrix C. The lens movements observed in the output y can be passed directly
to a raytracing simulation.

2.2. Chief ray deviation and wavefront aberration

The imaging quality of an optical system can be determined by different
descriptions of aberrations [5]. In the special case of investigating the motion
of lenses, a promising method is to distinguish between chief ray deviation
(CRD) acrd and wavefront aberration (WFA) aw f a, see Fig. 3. In the lower
left figure, a mixture of the two aberrations of the upper figures can be seen.
The figure without any disturbance serves as contrast to the aberration drafts.
It shows an ideal imaging as well as the object plane and image plane. The
light always directs from the object to the image.

In geometrical optics, it is common to use point light sources which are
the starting point of a ray bundle, the so-called fields. The ray that crosses
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Fig. 3. Scheme of chief ray deviation and wavefront aberration

the optical axis at the system aperture is called the chief ray. This is usually
the center ray of a ray bundle. If some lenses are perturbed, the chief ray
gets deviated at the image plane, which will be described by xcrd and ycrd .
Several fields are required to described an object, so the deviations of the
several chief rays determine the movement and distortion of an image. The
chief ray deviation does not occur in perfectly mounted static systems.

In theory, the point light sources produce spherical waves. The wave-
fronts are perpendicular to the rays. In an ideal case, the wavefronts are
still spherical after they passed an optical system, i.e. all rays hit the image
plane at one point. If the rays hit the image plane somehow scattered, the
wavefront is deformed. The wavefront aberration is the difference between
an ideal wavefront and a deformed wavefront. It is a measure for the blurring
of an image and it can be quantified by an expansion in Zernike polynomials.
Another quantification is possible be computing the root mean square (RMS).
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2.3. Zernike polynomials

Zernike polynomials Z j are orthogonal polynomials with a unit circle
base, see [5,6]. They consist of a radial-dependent part

Rm
n =

(n−m)/2∑

k=0

(−1)k(n − k)!
k! ((n + m)/2 − k)! ((n − m)/2 − k)!

rn−2k (4)

with the normalized radius r and an angular-dependent part with the angle φ.
The indices m and n are positive integers with n ≥ m. There exist different
notations for the polynomials. Here, the standard notation introduced in [7] is
used due to its advantages in computer programming. The Zernike standard
polynomials Z j read

Z j(r, φ) =
√

2(n + 1) Rm
n(r) cos(mφ), if m , 0 and j even,

Z j(r, φ) =
√

2(n + 1) Rm
n(r) sin(mφ), if m , 0 and j odd,

Z j(r) =
√

n + 1 Rm
n(r), if m = 0.

(5)

The expansion of aw f a in k̄ Zernike polynomials Z j means describing
the wavefront aberration by k̄ Zernike coefficients c j,

aw f a = [c1, c2, . . . ck̄]
T . (6)

This corresponds to a subdivision into characteristic aberrations which are,
e.g., defocus (Z4), spherical aberration (Z11), coma, etc. The coefficients c j
are used to describe the wavefront aberration and, therefore, the blurring of
the projected image. The wavefront aberration is a circular area ζ defined
by discrete points and it is scaled to the unit circle. Generally, the wavefront
aberration evaluated by Zernike polynomials reads

ζ =
∑

c jZ j. (7)

In index notation, each discrete point ζi(ri, θi) of the wavefront aberration is
defined by Z j,i(ri, θi),

ζi = [Z1,i, Z2,i, . . . Zk̄,i] · aw f a (8)

where the coefficients in aw f a are unknown. The equation system derived
for all discrete points is usually overdetermined and has to be solved by a
least-squares algorithm.
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2.4. Dynamical-optical sensitivities

In the case of small movements, the aberrations acrd and aw f a are pro-
portional to the lens movements y of Eq. (3). This can be expressed by the
dynamical-optical sensitivities S,

a =


acrd

aw f a

 = S · y (9)

with the sensitivities S = [S1, S2, ... Sk] for k lenses and, considering a single
field, for one lens i

Si =



xcrd,x xcrd,y xcrd,z xcrd,θx xcrd,θy

ycrd,x ycrd,y ycrd,z ycrd,θx ycrd,θy

c1,x c1,y c1,z c1,θx c1,θy
...

...
...

...
...

ck̄,x ck̄,y ck̄,z ck̄,θx
ck̄,θy



. (10)

Each column represents the aberrations of a unity movement in one degree
of freedom. Then, inserting Eq. (3) in Eq. (9) leads to

a = S · C︸︷︷︸
Cs

· q. (11)

The sensitivities in S are strictly related to the design of the optical system.
When investigating a certain optical design, S has to be calculated only
once. For each column in S, one raytracing simulation is required. Once S is
known, using Eq. (11) is advantageous for simulations in the time domain.
The other possibility would be calculating the aberrations at each time step
which is, in general, less efficient.

2.5. A formalism including modal transformation

The previously discussed sensitivities will now be expanded to a method
which is essential for the optimization process. This method allows for a di-
rect evaluation of the dynamical design quality of an optomechanical system.
Therefore, the main idea of this method will be used in Section 3.1. to define
the objective function of the optimization.

The characteristics of a dynamical system described by Eq. (2) can be
investigated by means of the eigenvalue problem

(
K − ω2

jM
)
· φ j = 0 (12)
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with the j-th eigenfrequency ω j and the associated mode shape φ j. When a
vibrating system is freezed at an arbitrary point in time t∗, the state of the
system is a superposition of the mode shapes,

q(t∗) =

n∑

j=1

d j(t∗)φ j (13)

with d j being the amplitudes of the corresponding mode shapes and n being
the number of degrees of freedom. The n mode shapes can be summarized
in

Φ = [ φ1, φ2, . . . φn ]. (14)

For the following calculations, the mode shapes Φ will be used to scale the
mass matrix

ΦT ·M ·Φ = I (15)

where I is the identity matrix. Using the substitution q = Φ · q̃ with the
modal coordinates q̃ and premultiplying Eqs. (2) and (3) by ΦT leads to the
modally transformed equations of motion,

ΦT ·M ·Φ · ¨̃q + ΦT · D ·Φ · ˙̃q + ΦT · K ·Φ · q̃ = ΦT · B · u (16)
y = C ·Φ · q̃. (17)

The modal coordinates q̃ are equal to the amplitudes d j in Eq. (13). Using
the scaling of Eq. (15), Eq. (16) becomes

¨̃q + diag(2ωiξi) · ˙̃q + diag(ω2
i ) · q̃ = B̃ · u. (18)

Inserting Eq. (17) in Eq. (9) yields

a = S · C ·Φ︸    ︷︷    ︸
C̃s

· q̃. (19)

The matrix C̃s indicates the aberrations of a mode shape. This matrix can
either be calculated like in Eq. (19), or can be computed by applying the lens
movements of the mode shapes to the optical system and doing a raytracing
simulation. Using Eq. (19), we now can compute the optical aberrations a
from the modally described lens movements q̃.
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3. Optimization of the mode shapes

Usually, the mechanical design for an optical system is customized with
respect to the optical design. So it is the idea of this method to improve
an existing mechanical design without touching the optical design. Here,
improving the design means systematically adjusting mode shapes which
produce small aberrations. The improved dynamical behavior can be found by
means of numerical optimization methods where the masses and stiffnesses
are adjusted.

3.1. The performance function

In dynamical systems, knowing the input/output behavior is essential.
Here, the input is an excitation and the outputs are the aberrations a. The
behavior is described by a dynamical-optical transfer function H(iω) derived
from the modally transformed system in Eqns. (18) and (19)

‖H(iω)‖ =

n∑

j=1

‖[C̃s]∗ j[B̃] j∗‖
−ω2 + ω2

j + 2iωω jξ j
. (20)

The product [C̃s]∗ j[B̃] j∗ is the dyadic product of the j-th column of C̃s and
the j-th row of B̃. Following from Eqn. (20), the substitution

woptical, j =
‖[C̃s]∗ j[B̃] j∗‖

ω j
(21)

determines the influence of an unitary sinusoidal excitation on the aberra-
tion of a mode shape. Using woptical, j as weighting factor, the optimization
problem

min f (p) with f (p) =

k∑

j=1

|C̃s · woptical, j φ j | (22)

subject to pmin ≤ p ≤ pmax

is specified by the sum of the weighted aberrations of k selected mode
shapes.

Before or during the optimization, mode shapes have to be selected. For
this, the user has two possibilities. On the one hand, he can in advance select
mode shapes by their number. On the other hand, he can chose a frequency
range. All mode shapes corresponding to an eigenfrequency within this range
will then be selected during the evaluation of the performance function.



416 NICOLAI WENGERT, PETER EBERHARD

It is additionally possible to ’weight’ the mode shapes by their eigen-
frequencies. For this, the function wexcitation(ω) has to be defined, which
represents the frequency spectrum of the excitation of the simulation model.
This frequency spectrum is known or should at least be guessed from expe-
rience. The quality of the optimization results increases with the accuracy of
the frequency spectrum estimation. Multiplying wexcitation(ω j) with woptical, j
leads to a new weighting factor w j which replaces woptical, j in the performance
function,

f (p) =

k∑

j=1

|C̃s · w j φ j |. (23)

3.2. Software implementation of the optimization

The software implementation of the computation of the performance
function contains the generation of the mass and stiffness matrix, solving the
eigenvalue problem, scaling the eigenvectors and computing the performance
function f (p) using Eqn. (23). A basic scheme is shown in Fig. 4.

Fig. 4. The optimization process

A disadvantage of the method shown is the requirement of a solution of
the eigenvalue problem in each iteration step. Increasing the performance is
possible by calculating only a fixed number of smallest eigenvalues.

Sometimes in optimizing dynamical systems, the transfer function for a
frequency range is summed up in each iteration step in order to calculate
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the performance function. However, if damping is neglected, this leads to
inaccuracies due to the peaks at the eigenfrequencies. Furthermore, a matrix
inversion is required for computing the transfer function.

The performance function has usually many local minima, thus a stochas-
tic optimization algorithm is required to ensure good solutions. Here, a Par-
ticle Swarm Optimization (PSO) algorithm named ALSPO [8] is used which
is written in Matlab and treats constraints using an Augmented Lagrangian
Optimization technique. For general information about PSO see [9,10].

The results are compared to a deterministic algorithm for which the
Sequential Quadratic Programming (SQP) method is chosen. In general, the
NLPQL algorithm [11] in the Matlab implementation fmincon() yields good
results and, therefore, will be applied here.

Optimization algorithms usually require a scaling of the design parame-
ters,

p̄i = ( p̄max − p̄min)
pi − pmin,i

pmax,i − pmin,i
− p̄min with p̄min ≤ p̄ ≤ p̄max. (24)

In the following computations, p̄min = −10 and p̄max = 10 are used.

4. Optimization of a lithography objective

The introduced methods will now be applied to a lithography objective
from [12]. The cross section of the lenses and the ray bundles of two point
light sources are presented in Fig. 5.

Fig. 5. Optical design of a lithography objective with an on-axis field and an off-axis field

In this optimization process, a mechanical model is used. It is similar to
the lens triplet in Fig. 1, but consists of more lenses. The design parameters
p contains 56 parameters in total which are the mass of the housing mH ,
the masses of the inner rings mIR, the spring coefficients of the connections
between frame and housing kFH , between housing and inner rings kHI and
between inner rings and lenses kIL,

p = [ mH , mIR,1, . . . kFH , kHI ,1, . . . kIL,1, . . . ]. (25)
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The optimization process comprises the optimization of transversal mo-
tion. The motion is only represented by movements in y-direction and the
x-direction is left out since the lens system is assumed to be rotationally
symmetric about the z-axis. Unfortunately, either chief ray deviation or wave-
front aberration can be minimized. Minimizing both simultaneously would
require a multi-objective optimization, so here, only the chief ray deviation
is concerned in the performance function.

To give an overview about several sets of design parameters, four different
results/ choices will be presented. Regarding industrial applications, it is typ-
ical to improve existing designs. So the first design is the initial guess pinitial
which is meant to represent an existing but not yet mathematically optimized
guess. Then, there are two optimized designs, an SQP-optimized popt,sqp for
the deterministic solution and the PSO-optimized popt,pso. To compare them
all to a poor design, pmaxerror with a maximum aberration is calculated by
maximizing the chief ray deviation with the ALPSO algorithm. This gives
an idea about how a bad design might look like.

4.1. Excitation model for time simulations

To validate the optimization results, simulations in the time domain with
subsequent image simulations are performed. For the time simulations, an
excitation is required, which is applied at the housing of the objective, see
Fig. 6. Once the lens movements are calculated, the aberrations can be com-
puted and can be visualized by means of geometric image simulations.

As stated in Section 3.2, practically meaningful optimization results will
be obtained if an additional weighting of the mode shapes matches the fre-
quency spectrum of the excitation. In the following example, the force exci-
tation in Fig. 6 will be used for validations in the time domain. This force
corresponds to a shock of a soft hammer. Thus, the system is able to perform
free vibrations after a short excitation. The curve of the Fourier transform
serves as the additional weighting function wexcitation within the performance
function to weight the aberrations of the selected mode shapes.

4.2. Optimization results

The transfer behaviors in Fig. 7 show the results of optimizing the
transversal motion. The four models are subjected to an input at the hous-
ing, and the chief ray deviation of the on-axis field serves as criterion
of the optimization. The curves of the optimized models are significant-
ly lower than those of the other two designs. Accordingly, the aberrations
will be lower. It can be stated that the optimizations succeeded and the
method works in the frequency domain. The values of the performance func-
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Fig. 6. Mechanical model with the hammer shock excitation (left), time history of the shock of a

soft hammer and its Fourier transform (right)

tions are f (pinitial) = 11.852, f (pmaxerror) = 25.923, f (popt,sqp) = 0.393 and
f (popt,pso) = 0.065.

Fig. 7. Transfer functions of the four dynamical-optical models

For the validation in the time domain, Fig. 8 represents the results for
the two optimized designs. Here, the difference between popt,sqp and popt,pso
is even more obvious than in Fig. 7. Additionally, the RMS of the wavefront
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aberration is given although only the chief ray deviation has been optimized.
At the beginning of the simulation, there is a peak in all curves which results
from the hammer shock. Furthermore, popt,sqp exhibits beats in both the chief
ray deviation and the wavefront aberration in phase. The beats do not occur
for the PSO-optimized parameters which makes them better than the SQP-
optimized parameters.

Fig. 8. Chief ray deviation and wavefront aberration after a hammer shock on the housing of the

two optimized models

A comparison in the time domain of all four models is summarized in
Fig. 9. With the time range of 0 to 10 seconds, as in Fig. 8, the RMS values
of the aberration curves are computed. For both aberration types the ratios
of the reduction are approximately equal and they correspond to the ratios of
the performance function results. However, the wavefront aberration is not
included in the performance function and thus, its minimization is a side
effect of the optimization. As the diagrams show, the PSO method yields the
lowest aberrations in both cases.

4.3. Geometric image simulations

A geometric image simulation comprises a raytracing simulation with a
test object where millions of rays start with random direction from random
point light sources. The image screen is subdivided into pixels. At each
pixel, the hitting rays are counted which yields an intensity distribution of
a projected image. Integrating the intensity distribution over a time range
yields a map for the energy distribution of an exposure.

The exposure of the letter ’F’ is demonstrated in Fig. 10. In this example,
the same parameter sets and excitation as in the previous section are used. The
time range of the exposure is 2.0 to 2.3 seconds. Expectedly, the images of
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Fig. 9. RMS of the chief ray deviation curve and the wavefront aberration curve after a hammer

shock in y-direction

the non-optimized models are more blurred due to large vertical movements.
These movements are much smaller for the images of the optimized models.
Thus, the image quality is improved significantly. The blurring at the vertical
edges is mainly due to the system-inherent aberrations.

Fig. 10. Image simulations over a time range for pointing out the effect of the hammer shock on a

projected image

5. Conclusions and Outlook

For optomechanical systems which can be modeled by rigid bodies the
optimization method in this paper can improve an existing design. The op-
timization works most notably if it is applied to the expected frequency
spectrum of possible excitations.

Based on these methods, some expansions are possible to gain even better
results. For example, including an adaptation of the optical design within the
performance function. This has to be implemented by an additional opti-
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cal optimization regarding the dimensions of the lenses. Also, the influence
of lens deformations has to be taken into account. This is due to possible
changes in the stiffness of the supports of the lenses which influences the
deformation behavior.
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Optymalizacja właściwości dynamicznych systemów obiektywów o wysokiej
dokładności w celu redukcji aberracji dynamicznych

S t r e s z c z e n i e

W systemach obiektywów wysokiej klasy nawet małe zakłócenia mogą spowodować nieostrość
projekcji obrazu. Ogromny problem dla tych niezwykle precyzyjnych systemów optyczno-mechani-
cznych stanowią na przykład niewielkie pobudzenia o charakterze stochastycznym. Jest do pomyśle-
nia szereg środków, by uniknąć związanych z tym problemów, a przynajmniej by je ograniczyć.
Jedną z takich możliwości jest modyfikacja właściwości dynamicznych. W metodzie tej, w celu
zmniejszenia aberracji powodowanych przez pobudzenia dynamiczne, stosuje się redystrybucję mas
i sztywności systemu.

Wymagany w tym przypadku jest multidyscyplinarny proces optymalizacyjny, dla potrzeb
którego w artykule wprowadza się podstawy połączonych dynamicznych i optycznych metod sty-
mulacji. Optymalizacja jest oparta na metodzie zapewniającej efektywne połączenie tych dwu typów
stymulacji. W końcowym przykładzie przedstawiono optymalizację dynamiki ciała sztywnego
reprezentującego obiektyw litograficzny pod kątem jego właściwości dynamiczno-optycznych.


