
467Bull. Pol. Ac.: Tech. 64(3) 2016

BULLETIN OF THE POLISH ACADEMY OF SCIENCES
TECHNICAL SCIENCES, Vol. 64, No. 3, 2016
DOI: 10.1515/bpasts-2016-0052

*e-mail: j.tkacz@imei.uz.zgora.pl

Abstract. In the paper, design flow of the application specific logic controllers with increased safety by means of Petri nets is proposed. The
controller architecture is based on duplicated control unit and comparison results from both units. One specification of control algorithm is
used by means of Petri net for both units. The hardware duplication is obtained during dual synthesis process. This process uses two different
logic synthesis methods to obtain two different hardware configurations for both control units. Additionally, the dual verification is applied to
increase reliability of the control algorithm. Such design flow simplifies the process of realization of control systems with increased safety.

Key words: critical safety, FPGAs, logic controllers, logic synthesis, Petri nets, verification.

Dual synthesis of Petri net based application specific logic controllers
with increased safety

J. TKACZ*, A. BUKOWIEC, and M. ADAMSKI
University of Zielona Góra, 9 Licealna St., 65-417 Zielona Góra, Poland

safety is based on dual synthesis of the same Petri net model
with the use of different synthesis methods. The first synthesis
method is based on modular and symbolic encoding during
the logic synthesis [15]. The second one is based on architec-
tural decomposition of a logic circuit [16] and decomposition
of Petri net into state machine subnets [16, 17], in which the
embedded memory blocks are utilized during synthesis process
[4, 8, 16–18]. As a result of both synthesis methods, HDL mod-
els are obtained. They will be used for further simulation and
implementation. The design process is supplemented by dual
verification. It is based on the on simulation of both models and
results comparison [10, 19]. Additional methods of testing and
analysis [20] can extend verification process at the earlier stage.

The paper consists of nine sections. After Introduction, in
Section 2, the theoretical background for control colored in-
terpreted Petri net is presented. Section 3 shows sample ap-
plication of ASCL which is used as an example in the follow-
ing sections. The architecture of control system is presented
in Section 4 and whole design flow is proposed in Section 5.
Then the algorithms of coloring of the Petri net (Sec. 6) and
dual synthesis (Sec. 7), including dual verification (Sec. 7.3),
are presented. Section 8 shows implementation of the proposed
control system with increased safety based on the case study of
mixing and transportation of liquid substances. Results of the
simulation of the obtained circuit have been also presented.
Finally, Section 9 concludes the paper.

2.	 Control colored interpreted Petri net

2.1. Place-transition net. A simple Petri net [20, 14] is defined
as a triple

PN = (P, T, F),� (1)

where:
P is a finite non-empty set of places, P = fp1, …, pMg
T is a finite non-empty set of transitions, T = ft1, …, tSg

1.	 Introduction

The paper presents some effective techniques used for rigorous
computer-based design, synthesis and verification of application
specific logic controllers (ASCLs) [1–4], which are dedicated
to safety critical application. Typically, reliability is increased
if algorithms of control system are designed by different teams
and with the use of different methods. It requires the creation
of two specifications and their independent verification. But the
goal is achieved by means of two different hardware structures
and not two different models. The proposed approach simplifies
this process by the application of two different logic synthesis
methods for one model. One specification is created by one
team and then it is verified. Next, it undergoes dual synthesis.
This approach also reduces the costs of the design process be-
cause only one design team is required.

Algorithm of control unit of digital systems can be described
in several forms, e.g. LDs [5, 6], SFCs [7], FSMs [8], stat-
echarts, Petri nets [1, 9], or HDLs [6, 8, 10]. However, for safety
critical applications only very well verified methods can be ap-
plied [10, 11, 12]. Petri nets, cause-effect tables, decision tables
and HDL models with simple construction can be accepted. In
presented solution the link between Petri nets and HDL mod-
els has been applied, in which the behavior of the controller is
specified as hierarchical control interpreted Petri [13, 14] and
HDL models are used for simulation, synthesis and implemen-
tation. The Petri net was chosen as specification because there
are many formal analytic mathematical algorithms available for
its analysis, which cannot be achieved for other notations. The
Petri net can be used as an intermediate model because there are
algorithms for formal model transformation (QVT) available
from UML diagrams such as statecharts or SFC. There are also
academic tools that allow to specify control algorithms directly
as Petri net in case of rapid prototyping. A novel methodolo-
gy of implementation of concurrent controllers with increased

468 Bull. Pol. Ac.: Tech. 64(3) 2016

J. Tkacz, A. Bukowiec, and M. Adamski

F is a set of arcs from places to transitions and from transitions
to places:

BULLETIN OF THE POLISH ACADEMY OF SCIENCES
TECHNICAL SCIENCES, Vol. XX, No. Y, 2016
DOI: 10.1515/bpasts-2016-00ZZ

Dual Synthesis of Petri Net Based Application Specific Logic
Controllers with Increased Safety

Abstract. In the paper, design flow of the application specific logic controllers with increased safety by means of Petri nets is proposed. The
controller architecture is based on duplicated control unit and comparison results from both ones. One specification of control algorithm is used
by means of of Petri net for both units. The hardware duplication is obtained during dual synthesis process. This process uses two different
logic synthesis methods to obtain two different hardware configurations for both control units. Additionally, the dual verification is applied to
increase reliability of the control algorithm. Such design flow simplifies the process of realization of control systems with increased safety.

Key words: critical safety, FPGAs, logic controllers, logic synthesis, Petri nets, verification

1. Introduction

The paper presents some effective techniques used for rigorous
computer-based design, synthesis and verification of Applica-
tion Specific Logic Controllers (ASCLs) [1, 2, 3, 4], which
are dedicated to safety critical application. Typically, reliabil-
ity is increased if algorithms of control system are designed
by different teams and with the use of different methods. It
required the creation of two specifications and their indepen-
dent verification. But the goal is obtained by means of two
different hardware structures and not with the use of two dif-
ferent models. The proposed approach simplifies this process
by the application of two different logic synthesis methods for
one model. One specification is created by one team and then
it is verified. Next, it undergoes dual synthesis. This approach
also reduces the costs of the design process because only one
design team is required.

Algorithm of control unit of digital systems can be described
in several forms e.g. LDs [5, 6], SFCs [7], FSMs [8], stat-
echarts, Petri nets [1, 9], or HDLs [6, 8, 10]. However, for
safety critical applications only very well verified methods can
be applied [10, 11, 12]. Petri nets, cause/effect tables, de-
cision tables and HDL models with simple construction can
be accepted. In presented solution the link between Petri nets
and HDL models has been applied, where behavior of the con-
troller is specified as hierarchical control interpreted Petri net
[13, 14] and HDL models are used for simulation, synthesis
and implementation. The Petri net was chosen as specification
because there are developed a lot of formal analytic mathemat-
ical algorithms for its analysis what is not achieved for other
notations. The Petri net can be used as an intermediate model
because there are also worked out algorithms for formal model
transformation (QVT) from UML diagrams like statecharts, or
SFC. There are also academic tools that allow to specify con-
trol algorithms directly as Petri net in case of rapid prototyp-
ing. A novel methodology of implementation of concurrent
controllers with increased safety is based on dual synthesis
of the same Petri net model with the use of different synthe-
sis methods. First synthesis method is based on modular and
symbolic encoding during the logic synthesis [15]. The second
one is based on architectural decomposition of a logic circuit
[16] and decomposition of Petri net into state machine subnets
[16, 17] where the embedded memory blocks are utilized dur-

ing synthesis process [4, 8, 16, 17, 18]. As a results of both
synthesis methods the HDL models are obtained. They will
be used for further simulation and implementation. The de-
sign process is supplemented by dual verification. It is based
on the on simulation of both models and results comparison
[10, 19]. Additional methods of testing and analysis [20] can
extend verification process at the earlier stage.

The paper consists of nine sections. After Introduction, in
section 2, the theoretical background for control colored inter-
preted Petri net is presented. Section 3 shows sample appli-
cation of ASCL which is used as an example in the following
sections. The architecture of control system is presented in
section 4 and whole design flow is proposed in section 5. Then
the algorithms of coloring of the Petri net (Sec. 6) and dual
synthesis (Sec. 7), including dual verification (Sec. 7.3), are
presented. Section 8 shows implementation of the proposed
control system with increased safety based on the case study
of mixing and transportation of liquid substances. Results of
the simulation of the obtained circuit have been also presented.
Finally, section 9 includes the concludes of the paper.

2. Control Colored Interpreted Petri Net
2.1. Place-Transition Net A simple Petri net [20, 14] is de-
fined as a triple

PN = (P,T,F), (1)

where:

P is a finite non-empty set of places,
P = {p1, . . . , pM}

T is a finite non-empty set of transitions,
T = {t1, . . . , tS}

F is a set of arcs from places to transitions and from transitions
to places:

F ⊆ (P×T)∪ (T ×P),

P∩T = ∅.

Sets of input and output transitions of a place pm ∈ P are de-
fined respectively as follows:

•pm = {ts ∈ T : (ts, pm) ∈ F},
pm• = {ts ∈ T : (pm, ts) ∈ F}.

1

Sets of input and output transitions of a place pm 2 P are defined
respectively as follows:

BULLETIN OF THE POLISH ACADEMY OF SCIENCES
TECHNICAL SCIENCES, Vol. XX, No. Y, 2016
DOI: 10.1515/bpasts-2016-00ZZ

Dual Synthesis of Petri Net Based Application Specific Logic
Controllers with Increased Safety

Abstract. In the paper, design flow of the application specific logic controllers with increased safety by means of Petri nets is proposed. The
controller architecture is based on duplicated control unit and comparison results from both ones. One specification of control algorithm is used
by means of of Petri net for both units. The hardware duplication is obtained during dual synthesis process. This process uses two different
logic synthesis methods to obtain two different hardware configurations for both control units. Additionally, the dual verification is applied to
increase reliability of the control algorithm. Such design flow simplifies the process of realization of control systems with increased safety.

Key words: critical safety, FPGAs, logic controllers, logic synthesis, Petri nets, verification

1. Introduction

The paper presents some effective techniques used for rigorous
computer-based design, synthesis and verification of Applica-
tion Specific Logic Controllers (ASCLs) [1, 2, 3, 4], which
are dedicated to safety critical application. Typically, reliabil-
ity is increased if algorithms of control system are designed
by different teams and with the use of different methods. It
required the creation of two specifications and their indepen-
dent verification. But the goal is obtained by means of two
different hardware structures and not with the use of two dif-
ferent models. The proposed approach simplifies this process
by the application of two different logic synthesis methods for
one model. One specification is created by one team and then
it is verified. Next, it undergoes dual synthesis. This approach
also reduces the costs of the design process because only one
design team is required.

Algorithm of control unit of digital systems can be described
in several forms e.g. LDs [5, 6], SFCs [7], FSMs [8], stat-
echarts, Petri nets [1, 9], or HDLs [6, 8, 10]. However, for
safety critical applications only very well verified methods can
be applied [10, 11, 12]. Petri nets, cause/effect tables, de-
cision tables and HDL models with simple construction can
be accepted. In presented solution the link between Petri nets
and HDL models has been applied, where behavior of the con-
troller is specified as hierarchical control interpreted Petri net
[13, 14] and HDL models are used for simulation, synthesis
and implementation. The Petri net was chosen as specification
because there are developed a lot of formal analytic mathemat-
ical algorithms for its analysis what is not achieved for other
notations. The Petri net can be used as an intermediate model
because there are also worked out algorithms for formal model
transformation (QVT) from UML diagrams like statecharts, or
SFC. There are also academic tools that allow to specify con-
trol algorithms directly as Petri net in case of rapid prototyp-
ing. A novel methodology of implementation of concurrent
controllers with increased safety is based on dual synthesis
of the same Petri net model with the use of different synthe-
sis methods. First synthesis method is based on modular and
symbolic encoding during the logic synthesis [15]. The second
one is based on architectural decomposition of a logic circuit
[16] and decomposition of Petri net into state machine subnets
[16, 17] where the embedded memory blocks are utilized dur-

ing synthesis process [4, 8, 16, 17, 18]. As a results of both
synthesis methods the HDL models are obtained. They will
be used for further simulation and implementation. The de-
sign process is supplemented by dual verification. It is based
on the on simulation of both models and results comparison
[10, 19]. Additional methods of testing and analysis [20] can
extend verification process at the earlier stage.

The paper consists of nine sections. After Introduction, in
section 2, the theoretical background for control colored inter-
preted Petri net is presented. Section 3 shows sample appli-
cation of ASCL which is used as an example in the following
sections. The architecture of control system is presented in
section 4 and whole design flow is proposed in section 5. Then
the algorithms of coloring of the Petri net (Sec. 6) and dual
synthesis (Sec. 7), including dual verification (Sec. 7.3), are
presented. Section 8 shows implementation of the proposed
control system with increased safety based on the case study
of mixing and transportation of liquid substances. Results of
the simulation of the obtained circuit have been also presented.
Finally, section 9 includes the concludes of the paper.

2. Control Colored Interpreted Petri Net
2.1. Place-Transition Net A simple Petri net [20, 14] is de-
fined as a triple

PN = (P,T,F), (1)

where:

P is a finite non-empty set of places,
P = {p1, . . . , pM}

T is a finite non-empty set of transitions,
T = {t1, . . . , tS}

F is a set of arcs from places to transitions and from transitions
to places:

F ⊆ (P×T)∪ (T ×P),

P∩T = ∅.

Sets of input and output transitions of a place pm ∈ P are de-
fined respectively as follows:

•pm = {ts ∈ T : (ts, pm) ∈ F},
pm• = {ts ∈ T : (pm, ts) ∈ F}.

1 Sets of input and output places of a transition ts 2 T are
defined respectively as follows:Sets of input and output places of a transition ts ∈ T are de-

fined respectively as follows:

•ts = {pm ∈ P : (pm, ts) ∈ F},
ts• = {pm ∈ P : (ts, pm) ∈ F}.

A marking of a Petri net is defined as a function:

M : P → N.

It describes a number of tokens M(pm) situated in a place pm.
When a place or a set of places contains a token it is marked.
A transition ts can be fired if all its input places are marked.
Firing of a transition removes tokens from its input places and
puts one token in each output place. There can be specified the
initial marking M0, then the Petri net is defined as a tupe:

PN = (P,T,F,M0). (2)

2.2. Interpreted Petri Net An interpreted Petri net is the
one enhanced with feature for information exchange [1, 20].
This exchange is made by use of binary signals. Interpreted
Petri nets are used as models of concurrent logic controllers
[21]. Two types of interpreted Petri nets can be distinguished:
Moore type and Mealy type.

The Boolean variables occurring in the interpreted Petri net
can be divided into three sets:

X is a set of input variables, X = {x1, . . . ,xL},
Y is a set of output variables, Y = {y1, . . . ,yN},
Z is a set of internal communication variables, typically it is

not used and Z =∅.

An interpreted Petri net has a condition ϕs associated to every
transition ts. The condition ϕs is defined as Boolean function
of the input or internal variables form sets X and Z. In par-
ticular case the condition ϕs can be equal to 1 (always true).
Now, transition ts can be fired if all its input places (•ts) are
marked and current value of corresponding Boolean function
ϕs is equal to 1. Interpreted Petri nets of Mealy and Moore
type, like FSMs, differs in the method of output signals gen-
eration. In case of Moore type interpreted Petri net, ψm is an
elementary conjunction of affirmation of some output variables
form the set Y . Each such conjunction ψm is associated to place
pm. If the place pm is marked the output variables from cor-
responding conjunction ψm are being set otherwise they are
being reset. In case of Mealy type interpreted Petri net ψs is
an elementary conjunction of affirmation or negation of some
output variables form the set Y . When transition ts is fired
variables from corresponding conjunction ψs are being set if
their affirmation belongs to this conjunction and they are being
reset if their negation belongs to this conjunction. The value
of non used variables in corresponding conjunction ψs remain
unchanged.

2.3. Interpreted Colored Petri Net A Petri net can be also
enhanced by assigning colors to places and transitions [14, 22].
Such Petri net is called colored Petri net or colored interpreted
Petri net if both enhancements are applied [1]. These colors
help to intuitively and formally validate the consistency of all

sequential processes in the Petri net under consideration. Each
color recognizes one state machine module. The rules for Petri
net coloring are as follows [1, 21]:

• each place and transition must have at least one color,
• if the place has a color each of its input and output transitions

must have the same color,
• input places of each transition must hold different colors,
• output places of each transition must hold different colors,
• input and output places of transition must share the same set

of colors,
• initially marked places cannot share exactly the same set of

colors,
• number of different colors which are shared by the places

initially marked is equal to the total number of colors.

Control interpreted Petri net is defined as colored interpreted
Petri net that is safe and live, additionally. The Petri net is
safe if it is one-bounded. k-bounded Petri net does not contain
more than k tokens in all reachable markings, so one-bounded
means that each place pm can contain only one marker. The
Petri net is live when all transitions are live. A transition ts is
live if for any marking M′, reachable from initial marking M0,
a sequence of transitions exists friable from M′ which contains
transition ts [23].

y3 y4

y5

y2y1

x1

x2

x0

ST
R

SV1 SV2

x9

x3
x4

x5
x6

y7

y9 y8

x7 x8
y6

SV3

WC
W

MV1 MV2

y0

Fig. 1. Object of discrete control system

3. Sample Application for Logic Controller
The logic controller has ten inputs (X = {x0, . . . ,x9}) and ten
outputs (Y = {y0, . . . ,y9}). Input x0 is driven by start button.
The controlled object (Fig. 1) consists of five tanks and pumps,
which are fitted with valves (y1–y5) and equipped with level
sensors (x1–x6) to detect their "fill" and "empty" states. The
main tank, which serves as a chemical reactor is integrated
with a stirrer (y7). The product is transported by a tank - car-
riage (movement left - y9, right - y8). Output y0 says that chem-
ical installation is ready for work. The tank-carriage is filled

2 Bull. Pol. Ac.: Tech. XX(Y) 2016

A marking of a Petri net is defined as a function:

Sets of input and output places of a transition ts ∈ T are de-
fined respectively as follows:

•ts = {pm ∈ P : (pm, ts) ∈ F},
ts• = {pm ∈ P : (ts, pm) ∈ F}.

A marking of a Petri net is defined as a function:

M : P → N.

It describes a number of tokens M(pm) situated in a place pm.
When a place or a set of places contains a token it is marked.
A transition ts can be fired if all its input places are marked.
Firing of a transition removes tokens from its input places and
puts one token in each output place. There can be specified the
initial marking M0, then the Petri net is defined as a tupe:

PN = (P,T,F,M0). (2)

2.2. Interpreted Petri Net An interpreted Petri net is the
one enhanced with feature for information exchange [1, 20].
This exchange is made by use of binary signals. Interpreted
Petri nets are used as models of concurrent logic controllers
[21]. Two types of interpreted Petri nets can be distinguished:
Moore type and Mealy type.

The Boolean variables occurring in the interpreted Petri net
can be divided into three sets:

X is a set of input variables, X = {x1, . . . ,xL},
Y is a set of output variables, Y = {y1, . . . ,yN},
Z is a set of internal communication variables, typically it is

not used and Z =∅.

An interpreted Petri net has a condition ϕs associated to every
transition ts. The condition ϕs is defined as Boolean function
of the input or internal variables form sets X and Z. In par-
ticular case the condition ϕs can be equal to 1 (always true).
Now, transition ts can be fired if all its input places (•ts) are
marked and current value of corresponding Boolean function
ϕs is equal to 1. Interpreted Petri nets of Mealy and Moore
type, like FSMs, differs in the method of output signals gen-
eration. In case of Moore type interpreted Petri net, ψm is an
elementary conjunction of affirmation of some output variables
form the set Y . Each such conjunction ψm is associated to place
pm. If the place pm is marked the output variables from cor-
responding conjunction ψm are being set otherwise they are
being reset. In case of Mealy type interpreted Petri net ψs is
an elementary conjunction of affirmation or negation of some
output variables form the set Y . When transition ts is fired
variables from corresponding conjunction ψs are being set if
their affirmation belongs to this conjunction and they are being
reset if their negation belongs to this conjunction. The value
of non used variables in corresponding conjunction ψs remain
unchanged.

2.3. Interpreted Colored Petri Net A Petri net can be also
enhanced by assigning colors to places and transitions [14, 22].
Such Petri net is called colored Petri net or colored interpreted
Petri net if both enhancements are applied [1]. These colors
help to intuitively and formally validate the consistency of all

sequential processes in the Petri net under consideration. Each
color recognizes one state machine module. The rules for Petri
net coloring are as follows [1, 21]:

• each place and transition must have at least one color,
• if the place has a color each of its input and output transitions

must have the same color,
• input places of each transition must hold different colors,
• output places of each transition must hold different colors,
• input and output places of transition must share the same set

of colors,
• initially marked places cannot share exactly the same set of

colors,
• number of different colors which are shared by the places

initially marked is equal to the total number of colors.

Control interpreted Petri net is defined as colored interpreted
Petri net that is safe and live, additionally. The Petri net is
safe if it is one-bounded. k-bounded Petri net does not contain
more than k tokens in all reachable markings, so one-bounded
means that each place pm can contain only one marker. The
Petri net is live when all transitions are live. A transition ts is
live if for any marking M′, reachable from initial marking M0,
a sequence of transitions exists friable from M′ which contains
transition ts [23].

y3 y4

y5

y2y1

x1

x2

x0

ST
R

SV1 SV2

x9

x3
x4

x5
x6

y7

y9 y8

x7 x8
y6

SV3

WC
W

MV1 MV2

y0

Fig. 1. Object of discrete control system

3. Sample Application for Logic Controller
The logic controller has ten inputs (X = {x0, . . . ,x9}) and ten
outputs (Y = {y0, . . . ,y9}). Input x0 is driven by start button.
The controlled object (Fig. 1) consists of five tanks and pumps,
which are fitted with valves (y1–y5) and equipped with level
sensors (x1–x6) to detect their "fill" and "empty" states. The
main tank, which serves as a chemical reactor is integrated
with a stirrer (y7). The product is transported by a tank - car-
riage (movement left - y9, right - y8). Output y0 says that chem-
ical installation is ready for work. The tank-carriage is filled

2 Bull. Pol. Ac.: Tech. XX(Y) 2016

It describes a number of tokens M(pm) situated in a place pm.
When a place or a set of places contains a token, it is marked.
A transition ts can be fired if all its input places are marked.
Firing of a transition removes tokens from its input places and
puts a token in each outputplace. The initial marking M0 can be
specified and the Petri net is defined as follows:

Sets of input and output places of a transition ts ∈ T are de-
fined respectively as follows:

•ts = {pm ∈ P : (pm, ts) ∈ F},
ts• = {pm ∈ P : (ts, pm) ∈ F}.

A marking of a Petri net is defined as a function:

M : P → N.

It describes a number of tokens M(pm) situated in a place pm.
When a place or a set of places contains a token it is marked.
A transition ts can be fired if all its input places are marked.
Firing of a transition removes tokens from its input places and
puts one token in each output place. There can be specified the
initial marking M0, then the Petri net is defined as a tupe:

PN = (P,T,F,M0). (2)

2.2. Interpreted Petri Net An interpreted Petri net is the
one enhanced with feature for information exchange [1, 20].
This exchange is made by use of binary signals. Interpreted
Petri nets are used as models of concurrent logic controllers
[21]. Two types of interpreted Petri nets can be distinguished:
Moore type and Mealy type.

The Boolean variables occurring in the interpreted Petri net
can be divided into three sets:

X is a set of input variables, X = {x1, . . . ,xL},
Y is a set of output variables, Y = {y1, . . . ,yN},
Z is a set of internal communication variables, typically it is

not used and Z =∅.

An interpreted Petri net has a condition ϕs associated to every
transition ts. The condition ϕs is defined as Boolean function
of the input or internal variables form sets X and Z. In par-
ticular case the condition ϕs can be equal to 1 (always true).
Now, transition ts can be fired if all its input places (•ts) are
marked and current value of corresponding Boolean function
ϕs is equal to 1. Interpreted Petri nets of Mealy and Moore
type, like FSMs, differs in the method of output signals gen-
eration. In case of Moore type interpreted Petri net, ψm is an
elementary conjunction of affirmation of some output variables
form the set Y . Each such conjunction ψm is associated to place
pm. If the place pm is marked the output variables from cor-
responding conjunction ψm are being set otherwise they are
being reset. In case of Mealy type interpreted Petri net ψs is
an elementary conjunction of affirmation or negation of some
output variables form the set Y . When transition ts is fired
variables from corresponding conjunction ψs are being set if
their affirmation belongs to this conjunction and they are being
reset if their negation belongs to this conjunction. The value
of non used variables in corresponding conjunction ψs remain
unchanged.

2.3. Interpreted Colored Petri Net A Petri net can be also
enhanced by assigning colors to places and transitions [14, 22].
Such Petri net is called colored Petri net or colored interpreted
Petri net if both enhancements are applied [1]. These colors
help to intuitively and formally validate the consistency of all

sequential processes in the Petri net under consideration. Each
color recognizes one state machine module. The rules for Petri
net coloring are as follows [1, 21]:

• each place and transition must have at least one color,
• if the place has a color each of its input and output transitions

must have the same color,
• input places of each transition must hold different colors,
• output places of each transition must hold different colors,
• input and output places of transition must share the same set

of colors,
• initially marked places cannot share exactly the same set of

colors,
• number of different colors which are shared by the places

initially marked is equal to the total number of colors.

Control interpreted Petri net is defined as colored interpreted
Petri net that is safe and live, additionally. The Petri net is
safe if it is one-bounded. k-bounded Petri net does not contain
more than k tokens in all reachable markings, so one-bounded
means that each place pm can contain only one marker. The
Petri net is live when all transitions are live. A transition ts is
live if for any marking M′, reachable from initial marking M0,
a sequence of transitions exists friable from M′ which contains
transition ts [23].

y3 y4

y5

y2y1

x1

x2

x0

ST
R

SV1 SV2

x9

x3
x4

x5
x6

y7

y9 y8

x7 x8
y6

SV3

WC
W

MV1 MV2

y0

Fig. 1. Object of discrete control system

3. Sample Application for Logic Controller
The logic controller has ten inputs (X = {x0, . . . ,x9}) and ten
outputs (Y = {y0, . . . ,y9}). Input x0 is driven by start button.
The controlled object (Fig. 1) consists of five tanks and pumps,
which are fitted with valves (y1–y5) and equipped with level
sensors (x1–x6) to detect their "fill" and "empty" states. The
main tank, which serves as a chemical reactor is integrated
with a stirrer (y7). The product is transported by a tank - car-
riage (movement left - y9, right - y8). Output y0 says that chem-
ical installation is ready for work. The tank-carriage is filled

2 Bull. Pol. Ac.: Tech. XX(Y) 2016

� (2)

2.2. Interpreted Petri net. An interpreted Petri net is the one
enhanced with feature for information exchange [1, 20]. This
exchange is made by use of binary signals. Interpreted Petri
nets are used as models of concurrent logic controllers [21].
Two types of interpreted Petri nets can be distinguished: Moore
type and Mealy type.

The Boolean variables occurring in the interpreted Petri net
can be divided into three sets:
X is a set of input variables, X = fx1, …, xLg,
Y is a set of output variables, Y = fy1, …, yNg,
Z is a set of internal communication variables, typically it is
not used and Z = 

Sets of input and output places of a transition ts ∈ T are de-
fined respectively as follows:

•ts = {pm ∈ P : (pm, ts) ∈ F},
ts• = {pm ∈ P : (ts, pm) ∈ F}.

A marking of a Petri net is defined as a function:

M : P → N.

It describes a number of tokens M(pm) situated in a place pm.
When a place or a set of places contains a token it is marked.
A transition ts can be fired if all its input places are marked.
Firing of a transition removes tokens from its input places and
puts one token in each output place. There can be specified the
initial marking M0, then the Petri net is defined as a tupe:

PN = (P,T,F,M0). (2)

2.2. Interpreted Petri Net An interpreted Petri net is the
one enhanced with feature for information exchange [1, 20].
This exchange is made by use of binary signals. Interpreted
Petri nets are used as models of concurrent logic controllers
[21]. Two types of interpreted Petri nets can be distinguished:
Moore type and Mealy type.

The Boolean variables occurring in the interpreted Petri net
can be divided into three sets:

X is a set of input variables, X = {x1, . . . ,xL},
Y is a set of output variables, Y = {y1, . . . ,yN},
Z is a set of internal communication variables, typically it is

not used and Z =∅.

An interpreted Petri net has a condition ϕs associated to every
transition ts. The condition ϕs is defined as Boolean function
of the input or internal variables form sets X and Z. In par-
ticular case the condition ϕs can be equal to 1 (always true).
Now, transition ts can be fired if all its input places (•ts) are
marked and current value of corresponding Boolean function
ϕs is equal to 1. Interpreted Petri nets of Mealy and Moore
type, like FSMs, differs in the method of output signals gen-
eration. In case of Moore type interpreted Petri net, ψm is an
elementary conjunction of affirmation of some output variables
form the set Y . Each such conjunction ψm is associated to place
pm. If the place pm is marked the output variables from cor-
responding conjunction ψm are being set otherwise they are
being reset. In case of Mealy type interpreted Petri net ψs is
an elementary conjunction of affirmation or negation of some
output variables form the set Y . When transition ts is fired
variables from corresponding conjunction ψs are being set if
their affirmation belongs to this conjunction and they are being
reset if their negation belongs to this conjunction. The value
of non used variables in corresponding conjunction ψs remain
unchanged.

2.3. Interpreted Colored Petri Net A Petri net can be also
enhanced by assigning colors to places and transitions [14, 22].
Such Petri net is called colored Petri net or colored interpreted
Petri net if both enhancements are applied [1]. These colors
help to intuitively and formally validate the consistency of all

sequential processes in the Petri net under consideration. Each
color recognizes one state machine module. The rules for Petri
net coloring are as follows [1, 21]:

• each place and transition must have at least one color,
• if the place has a color each of its input and output transitions

must have the same color,
• input places of each transition must hold different colors,
• output places of each transition must hold different colors,
• input and output places of transition must share the same set

of colors,
• initially marked places cannot share exactly the same set of

colors,
• number of different colors which are shared by the places

initially marked is equal to the total number of colors.

Control interpreted Petri net is defined as colored interpreted
Petri net that is safe and live, additionally. The Petri net is
safe if it is one-bounded. k-bounded Petri net does not contain
more than k tokens in all reachable markings, so one-bounded
means that each place pm can contain only one marker. The
Petri net is live when all transitions are live. A transition ts is
live if for any marking M′, reachable from initial marking M0,
a sequence of transitions exists friable from M′ which contains
transition ts [23].

y3 y4

y5

y2y1

x1

x2

x0

ST
R

SV1 SV2

x9

x3
x4

x5
x6

y7

y9 y8

x7 x8
y6

SV3

WC
W

MV1 MV2

y0

Fig. 1. Object of discrete control system

3. Sample Application for Logic Controller
The logic controller has ten inputs (X = {x0, . . . ,x9}) and ten
outputs (Y = {y0, . . . ,y9}). Input x0 is driven by start button.
The controlled object (Fig. 1) consists of five tanks and pumps,
which are fitted with valves (y1–y5) and equipped with level
sensors (x1–x6) to detect their "fill" and "empty" states. The
main tank, which serves as a chemical reactor is integrated
with a stirrer (y7). The product is transported by a tank - car-
riage (movement left - y9, right - y8). Output y0 says that chem-
ical installation is ready for work. The tank-carriage is filled

2 Bull. Pol. Ac.: Tech. XX(Y) 2016

.
An interpreted Petri net has a condition φs associated to every
transition tS. The condition φs is defined as Boolean function of
the input or internal variables form sets X and Z. In particular
case the condition φs can be equal to 1 (always true). Now, tran-
sition tS can be fired if all its input places (●tS) are marked and
current value of corresponding Boolean function φs is equal to
1. Interpreted Petri nets of Mealy and Moore type, like FSMs,
differs in the method of output signals generation. In case of
Moore type interpreted Petri net, ψm is an elementary conjunc-
tion of affirmation of some output variables form the set Y.
Each such conjunction ψm is associated to place pm. If the place
pm is marked the output variables from corresponding conjunc-

tion ψm are being set otherwise they are being reset. In case of
Mealy type interpreted Petri net ψs is an elementary conjunction
of affirmation or negation of some output variables form the
set Y. When transition tS is fired variables from corresponding
conjunction ψs are being set if their affirmation belongs to this
conjunction and they are being reset if their negation belongs
to this conjunction. The value of non used variables in corre-
sponding conjunction ψs remain unchanged.

2.3. Interpreted colored Petri net. A Petri net can also be en-
hanced by assigning colors to places and transitions [14, 22].
Such Petri net is called colored Petri net or colored interpreted
Petri net if both enhancements are applied [1]. These colors
help to intuitively and formally validate the consistency of all
sequential processes in the Petri net under consideration. Each
color recognizes one state machine module. The rules for Petri
net coloring are as follows [1, 21]:
●	 each place and transition must have at least one color,
●	 if the place has a color each of its input and output transi-

tions must have the same color,
●	 input places of each transition must hold different colors,
●	 output places of each transition must hold different colors,
●	 input and output places of transition must share the same

set of colors,
●	 initially marked places cannot share exactly the same set

of colors,
●	 number of different colors which are shared by the places

initially marked is equal to the total number of colors.
Control interpreted Petri net is defined as colored interpret-

ed Petri net that is safe and live. The Petri net is safe if it is
one-bounded. k-bounded Petri net does not contain more than
k tokens in all reachable markings, so one-boundedness means
that each place pm can contain only one marker. The Petri net
is live when all transitions are live. A transition tS is live if for
any marking

Sets of input and output places of a transition ts ∈ T are de-
fined respectively as follows:

•ts = {pm ∈ P : (pm, ts) ∈ F},
ts• = {pm ∈ P : (ts, pm) ∈ F}.

A marking of a Petri net is defined as a function:

M : P → N.

It describes a number of tokens M(pm) situated in a place pm.
When a place or a set of places contains a token it is marked.
A transition ts can be fired if all its input places are marked.
Firing of a transition removes tokens from its input places and
puts one token in each output place. There can be specified the
initial marking M0, then the Petri net is defined as a tupe:

PN = (P,T,F,M0). (2)

2.2. Interpreted Petri Net An interpreted Petri net is the
one enhanced with feature for information exchange [1, 20].
This exchange is made by use of binary signals. Interpreted
Petri nets are used as models of concurrent logic controllers
[21]. Two types of interpreted Petri nets can be distinguished:
Moore type and Mealy type.

The Boolean variables occurring in the interpreted Petri net
can be divided into three sets:

X is a set of input variables, X = {x1, . . . ,xL},
Y is a set of output variables, Y = {y1, . . . ,yN},
Z is a set of internal communication variables, typically it is

not used and Z =∅.

An interpreted Petri net has a condition ϕs associated to every
transition ts. The condition ϕs is defined as Boolean function
of the input or internal variables form sets X and Z. In par-
ticular case the condition ϕs can be equal to 1 (always true).
Now, transition ts can be fired if all its input places (•ts) are
marked and current value of corresponding Boolean function
ϕs is equal to 1. Interpreted Petri nets of Mealy and Moore
type, like FSMs, differs in the method of output signals gen-
eration. In case of Moore type interpreted Petri net, ψm is an
elementary conjunction of affirmation of some output variables
form the set Y . Each such conjunction ψm is associated to place
pm. If the place pm is marked the output variables from cor-
responding conjunction ψm are being set otherwise they are
being reset. In case of Mealy type interpreted Petri net ψs is
an elementary conjunction of affirmation or negation of some
output variables form the set Y . When transition ts is fired
variables from corresponding conjunction ψs are being set if
their affirmation belongs to this conjunction and they are being
reset if their negation belongs to this conjunction. The value
of non used variables in corresponding conjunction ψs remain
unchanged.

2.3. Interpreted Colored Petri Net A Petri net can be also
enhanced by assigning colors to places and transitions [14, 22].
Such Petri net is called colored Petri net or colored interpreted
Petri net if both enhancements are applied [1]. These colors
help to intuitively and formally validate the consistency of all

sequential processes in the Petri net under consideration. Each
color recognizes one state machine module. The rules for Petri
net coloring are as follows [1, 21]:

• each place and transition must have at least one color,
• if the place has a color each of its input and output transitions

must have the same color,
• input places of each transition must hold different colors,
• output places of each transition must hold different colors,
• input and output places of transition must share the same set

of colors,
• initially marked places cannot share exactly the same set of

colors,
• number of different colors which are shared by the places

initially marked is equal to the total number of colors.

Control interpreted Petri net is defined as colored interpreted
Petri net that is safe and live, additionally. The Petri net is
safe if it is one-bounded. k-bounded Petri net does not contain
more than k tokens in all reachable markings, so one-bounded
means that each place pm can contain only one marker. The
Petri net is live when all transitions are live. A transition ts is
live if for any marking M′, reachable from initial marking M0,
a sequence of transitions exists friable from M′ which contains
transition ts [23].

y3 y4

y5

y2y1

x1

x2

x0

ST
R

SV1 SV2

x9

x3
x4

x5
x6

y7

y9 y8

x7 x8
y6

SV3

WC
W

MV1 MV2

y0

Fig. 1. Object of discrete control system

3. Sample Application for Logic Controller
The logic controller has ten inputs (X = {x0, . . . ,x9}) and ten
outputs (Y = {y0, . . . ,y9}). Input x0 is driven by start button.
The controlled object (Fig. 1) consists of five tanks and pumps,
which are fitted with valves (y1–y5) and equipped with level
sensors (x1–x6) to detect their "fill" and "empty" states. The
main tank, which serves as a chemical reactor is integrated
with a stirrer (y7). The product is transported by a tank - car-
riage (movement left - y9, right - y8). Output y0 says that chem-
ical installation is ready for work. The tank-carriage is filled

2 Bull. Pol. Ac.: Tech. XX(Y) 2016

, reachable from initial marking M0, a sequence
of transitions exists friable from

Sets of input and output places of a transition ts ∈ T are de-
fined respectively as follows:

•ts = {pm ∈ P : (pm, ts) ∈ F},
ts• = {pm ∈ P : (ts, pm) ∈ F}.

A marking of a Petri net is defined as a function:

M : P → N.

It describes a number of tokens M(pm) situated in a place pm.
When a place or a set of places contains a token it is marked.
A transition ts can be fired if all its input places are marked.
Firing of a transition removes tokens from its input places and
puts one token in each output place. There can be specified the
initial marking M0, then the Petri net is defined as a tupe:

PN = (P,T,F,M0). (2)

2.2. Interpreted Petri Net An interpreted Petri net is the
one enhanced with feature for information exchange [1, 20].
This exchange is made by use of binary signals. Interpreted
Petri nets are used as models of concurrent logic controllers
[21]. Two types of interpreted Petri nets can be distinguished:
Moore type and Mealy type.

The Boolean variables occurring in the interpreted Petri net
can be divided into three sets:

X is a set of input variables, X = {x1, . . . ,xL},
Y is a set of output variables, Y = {y1, . . . ,yN},
Z is a set of internal communication variables, typically it is

not used and Z =∅.

An interpreted Petri net has a condition ϕs associated to every
transition ts. The condition ϕs is defined as Boolean function
of the input or internal variables form sets X and Z. In par-
ticular case the condition ϕs can be equal to 1 (always true).
Now, transition ts can be fired if all its input places (•ts) are
marked and current value of corresponding Boolean function
ϕs is equal to 1. Interpreted Petri nets of Mealy and Moore
type, like FSMs, differs in the method of output signals gen-
eration. In case of Moore type interpreted Petri net, ψm is an
elementary conjunction of affirmation of some output variables
form the set Y . Each such conjunction ψm is associated to place
pm. If the place pm is marked the output variables from cor-
responding conjunction ψm are being set otherwise they are
being reset. In case of Mealy type interpreted Petri net ψs is
an elementary conjunction of affirmation or negation of some
output variables form the set Y . When transition ts is fired
variables from corresponding conjunction ψs are being set if
their affirmation belongs to this conjunction and they are being
reset if their negation belongs to this conjunction. The value
of non used variables in corresponding conjunction ψs remain
unchanged.

2.3. Interpreted Colored Petri Net A Petri net can be also
enhanced by assigning colors to places and transitions [14, 22].
Such Petri net is called colored Petri net or colored interpreted
Petri net if both enhancements are applied [1]. These colors
help to intuitively and formally validate the consistency of all

sequential processes in the Petri net under consideration. Each
color recognizes one state machine module. The rules for Petri
net coloring are as follows [1, 21]:

• each place and transition must have at least one color,
• if the place has a color each of its input and output transitions

must have the same color,
• input places of each transition must hold different colors,
• output places of each transition must hold different colors,
• input and output places of transition must share the same set

of colors,
• initially marked places cannot share exactly the same set of

colors,
• number of different colors which are shared by the places

initially marked is equal to the total number of colors.

Control interpreted Petri net is defined as colored interpreted
Petri net that is safe and live, additionally. The Petri net is
safe if it is one-bounded. k-bounded Petri net does not contain
more than k tokens in all reachable markings, so one-bounded
means that each place pm can contain only one marker. The
Petri net is live when all transitions are live. A transition ts is
live if for any marking M′, reachable from initial marking M0,
a sequence of transitions exists friable from M′ which contains
transition ts [23].

y3 y4

y5

y2y1

x1

x2

x0

ST
R

SV1 SV2

x9

x3
x4

x5
x6

y7

y9 y8

x7 x8
y6

SV3

WC
W

MV1 MV2

y0

Fig. 1. Object of discrete control system

3. Sample Application for Logic Controller
The logic controller has ten inputs (X = {x0, . . . ,x9}) and ten
outputs (Y = {y0, . . . ,y9}). Input x0 is driven by start button.
The controlled object (Fig. 1) consists of five tanks and pumps,
which are fitted with valves (y1–y5) and equipped with level
sensors (x1–x6) to detect their "fill" and "empty" states. The
main tank, which serves as a chemical reactor is integrated
with a stirrer (y7). The product is transported by a tank - car-
riage (movement left - y9, right - y8). Output y0 says that chem-
ical installation is ready for work. The tank-carriage is filled

2 Bull. Pol. Ac.: Tech. XX(Y) 2016

 which contains transition
tS [23].

3.	 Sample application for logic controller

The logic controller has ten inputs (X = fx0, …, x9g) and ten
outputs (Y = fy0, …, y9g). Input x0 is driven by start button. The
controlled object (Fig. 1) consists of five tanks and pumps,
which are fitted with valves (y1– y5) and equipped with level
sensors (x1– x6) to detect their “fill” and “empty” states. The
main tank, which serves as a chemical reactor is integrated
with a stirrer (y7). The product is transported by a tank-carriage
(movement left – y9, right – y8. Output y0 says that chemical
installation is ready for work. The tank-carriage is filled in the
left station (x7) and emptied in the right station (x8). Its level
sensor (x9) triggers detection if the carriage is empty. Boolean
expressions called guards describe the external conditions for
transitions to be enabled. In the example in figure 2 [20] the
Petri net places (p1, p2, and p16) stands for the local states of
concurrent state machine with inputs from the set X and outputs
from the set Y. The transitions T = ft1, …, t9g describe global

469Bull. Pol. Ac.: Tech. 64(3) 2016

Dual synthesis of Petri net based application specific logic controllers with increased safety

state changes in terms of local changes of the partial states in
the Petri net space. The implicit configuration (coordination)
places MP = fmp1, …, mp11g detect the Petri net subnets which
they dominate. The basic net was reduced to the macronet with

macroplaces MP. Transitions with more than one input place
or more than one output place, such as t1, t4, t10, t11, and t13
are called border transitions. Other transitions with one input
and one output places are hidden inside first order macroplaces
mp1–mp7 and mp9. The macroplaces mp1 and mp2 are paral-
lel and form second order macroplace mp10. The second order
macroplace mp11 is built from two parallel macroplaces mp4
and mp5. The configuration place mp8, which can be redundant
during next steps of logic design, points to the third order sub-
net. The configuration places {mp3, mp6, mp7, mp9, mp10, mp11}
are sufficient to represent the activity of all Petri net places,
which are dominated by them.

4.	 Logic controller with increased safety
architecture

In the definition [11], the outputs of device with increased safe-
ty should be set in the known state in case of accident. Sec-
ondly, the device should work properly in normal conditions.
This means that ASLC should be designed without any errors
and should be able to detect any self-accident. The condition of
controller safety state should be secured by properly designed
hardware. The known safety state should be achieved auto-
matically after self-accident detection, regardless of algorithm
realization by ASCL.

Presented design of ASCL with increased safety is based on
duplicated control units architecture (Fig. 3). The duplication
of control units is applied in order to detect hardware failure.
The similar approach was introduced in [11, 19, 24] for design
of PLC. Both control units, A and B, are obtained during dual
synthesis and implementation processes from the same Petri net
model. For each control a different synthesis method is applied,
which is described in next sections. It means that both control

Fig. 1. Object of discrete control system

y3 y4

y5

y2y1

x1

x2

x0

ST
R

SV1 SV2

x9

x3
x4

x5
x6

y7

y9 y8

x7 x8
y6

SV3

WC
W

MV1 MV2

y0

Fig. 2. Control interpreted Petri net

7

2

4

3

5

8

x0

[2]

[1 3]

[1]

t5

t4

t3t2

t6 /x5

x3x1

6

13

15

16

t9

t12

x5 x6

9

11

10

12

[2]

t8/x2t7 /x4

14

t13

t11

t10

t1

[4]

[4]

[1 2 4]

[1 2 3 4]

[1 2 3 4]

[1 3]

[2]

[3][3]

y1 y2
y9

y3 y4

y5

y7

y8

y6

x8

/x9

x7

[1]

[1] [2]

1[1 2 3 4] y0

Fig. 3. Architecture of ASCL with increased safety

CONTROL UNIT
A

CONTROL UNIT
B

COMPARATOR

ASLC WITH INCREASED SAFETY

X

Y

OK

YA

YB

units realized the same algorithm. They are also connected to
the same input signals X. The output signals YA and YB are com-
pared in the comparator unit. If the comparison is correct then
the OK status signal is generated and output signals Y are set
to correct values, otherwise output signals Y are reset and the
OK status signal is also reset – it indicates an error.

470 Bull. Pol. Ac.: Tech. 64(3) 2016

J. Tkacz, A. Bukowiec, and M. Adamski

5.	 Design flow for dependable logic controller
with increased safety

Special design flow is proposed (Fig. 4) for such ASCL with
increased safety.The entry to the process is well designed con-
trol algorithm as a control interpreted Petri net. The Petri net
should be initially colored. The coloring algorithm is proposed
in next section but different ones can be also considered. First,
the dual synthesis is performed. In this process independently
two different synthesis methods are used. Each method gener-
ates logic description of the control algorithm in hardware de-
scription language (HDL). This description is platform-indepen-

Most of them (excluding the manual coloring) can be fully
automated and included into design process of ASCL. They
discover all possible colorings and for most cases the complex-
ity and time of execution is not acceptable for application in
design tools. These methods are typically used for the purpose
of verification of heuristic methods. In this case, in respect of
the design process of ASCL the best solution is to apply one of
heuristic methods of coloring which gives one of the possible
satisfied solutions. We decide to apply the heuristic method with
backwards in our design process of ASCL.

During the reduction procedure a Petri net is converted into
a more general hierarchical description [26]. The following two
reduction procedures are the most useful: Fusion of Series Plac-
es (FSP) and Fusion of Parallel Places (FPP) [1, 2, 9, 20–22].
Starting from FSP both techniques are used recursively until the
macronet becomes irreducible. The second order macronet is
presented in figure 5. It can be colored. It should be noted, that

Fig. 5. Colored hierarchical macronet

MP7

MP10

MP11

MP3

MP6

MP9

t1

t4

t11

t10

x0

/x6

[1 2 3 4]

[1 2 3]

[4]

[3]

[1 2]

[1 2 4]

[1 2 3 4]

[1 2 3]

[1 2 4]

[1 2 3 4]

MP7

MP2

MP5

MP3

MP6

MP9

t1

t4

t11

t10

x0

/x6

[1 2 3 4]

[2]

[4]

[3]

[2]

[1 2 4]

[1 2 3 4]

[1 2 3]

[1 2 4]

[1 2 3 4]

MP1 [1 3]

MP4[1]

MP10

MP11

Q1

Q2

a)

b)

[3]

[4]

MP8
Fig. 4. Design Flow for ASCL with increased safety

PETRI
NET

DUAL
SYNTHESIS

MODEL
A

MODEL
B

SYNTHESIS

SYNTHESIS

CONTROL
UNIT
A

CONTROL
UNIT
B

VENDOR
LIBRARY

IMPLEMENTATION
ASLC

VENDOR
LIBRARY

COMPARATOR

dent at this stage. The first one is based on modular microstate
encoding and logic description in obtained single module. The
second one is based on architectural and parallel decomposition
and logic description is divided into several modules. Addition-
ally, to increase reliability, generated models are described in
different HDLs – VHDL and Verilog. Then, both models can
be passed transferred to the third party synthesis tools. At this
stage the device has to be chosen and a suitable vendor library
has to be used. Both modules have to be synthesized separately
as black boxes. After this, the top level module and comparator
should be created. The top level instantiates black boxes of both
modules and comparator. Such design is transferred to undergo
implementation process. After that the bitstream is obtained.

6.	 Algorithm of Petri net coloring

There are many different coloring algorithms [20, 22, 25], in-
cluding:
●	 manual coloring during specification,
●	 coloring based on topological structure of the net,
●	 coloring from concurrency hypergraph made with the use

of deduction methods,
●	 coloring with the use of siphons and traps,
●	 coloring of discrete space of the net.

471Bull. Pol. Ac.: Tech. 64(3) 2016

Dual synthesis of Petri net based application specific logic controllers with increased safety

the macroplaces which are painted with disjoint set of colors
are concurrent to each other. The macroplaces sharing the same
color are sequentially related to each other.

The recursive SM-coloring with backwards is done ac-
cording to the rules described in chapter 2.3. The colors
C = fc1, … , c4g (in pictures marked as [i], where i is an index
of color), which paints the Petri net places in figure 2 separates
four partially overlapping concurrent sequences of local state
changes.

The recently developed computer system iCPN efficiently
reduces the net as well as finds the suitable SM cover of the
net from topological structure of interpreted Petri net graph
described in the general PNML format. As an another option
formal reasoning about Petri net space, which is described in
Gentzen propositional logic, makes it possible for the option to
paint the net with minimal number of colors.

7.	 Algorithms of synthesis of Petri net

The automated design flow starts with dual synthesis of de-
signed and initially colored Petri net. Two different synthesis
methods are proposed in order to receive two different logic de-
scription of the same algorithm. The different logic descriptions
are used to implement two control units of ASLC with increased
safety. Because outputs of both control units are compared it
is required that they produce their outputs at the same time. To
satisfy this condition the HDL models have to be prepared in
a proper way:
●	 The state registers of both control units have to be trigged by

the same edge of the same clock signal. In proposed solution
the rising edge is chosen.

●	 The outputs have to be registered to avoid mismatch in com-
parison. The output register usees the same clock that the
state register does but it is trigged by the opposite edge in-
stead of registers. It allows to generate outputs in one clock
cycle. In proposed solution the falling edge has to be used.

●	 Both control units have to be reset in the same way. Because
the state registers are topically built from standard D-type
flip-flops the asynchronous reset is used. For the output reg-
ister the synchronous reset should be always used in order
to generate outputs in the same period of time.

7.1. Monolithic modular logic synthesis. Proposed synthesis
method allows to implement control algorithm described by
Petri net as a modular logic circuit (Fig. 6). The modular tran-
sition coder (MTC) is responsible for the generation of events.
The register RGQ holds encoded global and local states. The
Q signal represents encoded global states and the signal YP

represents encoded by output signals local states. The register
RGY is used for synchronization purpose and it holds values
of output signals. It is trigged by opposite edge instead of the
register RGQ.

Proposed macrostate encoding is done at second level of
hierarchy by means of using the minimal number of coordinates
Q1 and Q2 (Fig. 5b):

Dual Synthesis of Petri Net Based Application Specific Logic Controllers with Increased Safety

The recently developed computer system iCPN efficiently
reduces the net as well as finds the suitable SM cover of the
net from topological structure of interpreted Petri net graph
described in the general PNML format. As an another option
formal reasoning about Petri net space, which is described in
Gentzen propositional logic, makes it possible for the option
to paint the net with minimal number of colors.

7. Algorithms of Synthesis of Petri Net

The automated design flow starts with dual synthesis of de-
signed and initially colored Petri net. Two different synthesis
methods are proposed in order to receive two different logic
description of the same algorithm. The different logic descrip-
tions are used to implement two control units of ASLC with
increased safety. Because outputs of both control units are
compared it is required that they produce their outputs at the
same time. To satisfy this condition the HDL models have to
be prepared in a proper way:

• The state registers of both control units have to be trigged by
the same edge of the same clock signal. In proposed solution
the rising edge is chosen.

• The outputs have to be registered to avoid mismatch in com-
parison. The output register usees the same clock that the
state register does but it is trigged by the opposite edge in-
stead of registers. It allows to generate outputs in one clock
cycle. In proposed solution the falling edge has to be used.

• Both control units have to be reset in the same way. Because
the state registers are topically built from standard D-type
flip-flops the asynchronous reset is used. For the output reg-
ister the synchronous reset should be always used in order to
generate outputs in the same period of time.

7.1. Monolithic Modular Logic Synthesis Proposed synthe-
sis method allows to implement control algorithm described by
Petri net as a modular logic circuit (Fig. 6). The modular tran-

MTC
X

RGQ
T RGY

YP

Q
Y

Fig. 6. Modular logic circuit of Petri net

sition coder (MTC) is responsible for the generation of events.
The register RGQ holds encoded global and local states. The Q
signal represents encoded global states and the signal YP repre-
sents encoded by output signals local states. The register RGY
is used for synchronization purpose and it holds values of out-
put signals. It is trigged by opposite edge instead of the register
RGQ.

Proposed macrostate encoding is done at second level of hi-
erarchy by means of using the minimal number of coordinates

Q1 and Q2 (Fig. 5b):

mp3 = Q1; mp11 = Q1 ∧Q2;
mp6 = Q2; mp9 = Q1 ∧Q2;= y5;
mp10 = Q1 ∧Q2; mp7 = Q1 ∧Q2;

Encoded macrostate changes are described only with use of
selected macrostete codes and its boundary transitions:

@Q1 ⇐ Q1 ⊕ (t4 ⊕ t11);
@Q2 ⇐ Q2 ⊕ (t1 ⊕ t10);

For simplicity, local places encoding is based on registered
controller outputs:

p1 = y0; p2 = y1; p3 = y2;
p4 = y1; p5 = y2; . . . ; p16 = y6;

Excitations of boundary transitions depend on input
macroplaces, local places and guards. After substitution
of coding terms for macroplaces and local places the
expressions takes a form:

t1 ⇐ mp7 ∧ p1 ∧ x0 = Q1 ∧Q2 ∧ y0 ∧ x0;
t4 ⇐ mp10 ∧ p4 ∧ p5 = Q1 ∧Q2 ∧ y1 ∧ y2;

t10 ⇐ mp11 ∧mp6 ∧ p11 ∧ p12 ∧ p13

= Q1 ∧Q2 ∧ y3 ∧ y4 ∧ y9;
t11 ⇐ mp3 ∧mp9 ∧ p8 ∧ p14 ∧ x6

= ∧Q2 ∧ y7 ∧ y5 ∧ x6;

Given as an example the local transitions for macroplace mp10
are:

t2 ⇐ mp10 ∧ p2 ∧ x1 = Q1 ∧Q2 ∧ y1 ∧ x1;
t3 ⇐ mp10 ∧ p3 ∧ x3 = Q1 ∧Q2 ∧ y2 ∧ x3;

Local state changes for places nested in macroplace mp10 are
as follows:

@p2 ⇐ (p2 ∧mp10)⊕ (t1 ⊕ t2);
@p3 ⇐ (p3 ∧mp10)⊕ (t1 ⊕ t3);
@p4 ⇐ (p4 ∧mp10)⊕ (t2 ⊕ t4);
@p5 ⇐ (p4 ∧mp10)⊕ (t3 ⊕ t4);

For description of local state changes inside macroplace mp10
after encoding only two equations are required:

@y1 ⇐ (y1 ∧Q1 ∧Q2)⊕ (t1 ⊕ t2);
@y2 ⇐ (y2 ∧Q1 ∧Q2)⊕ (t1 ⊕ t3);

The logic circuit is described in single HDL model in VHDL
(Fig. 7). According to the architecture presented in the fig-
ure 6 the MTC is described with the use of continuous assign-
ments, the register RGQ is described by the FF process, and the
RGY register is described by the YY process. Preconditions of
global and local transitions are described as simple continu-
ous assignments. The FF process is responsible for the gen-
eration of codes of next macro and local states. Because the
local states are encoded with the use of output variables there

Bull. Pol. Ac.: Tech. XX(Y) 2016 5

Encoded macrostate changes are described only with use of
selected macrostete codes and its boundary transitions:

Dual Synthesis of Petri Net Based Application Specific Logic Controllers with Increased Safety

The recently developed computer system iCPN efficiently
reduces the net as well as finds the suitable SM cover of the
net from topological structure of interpreted Petri net graph
described in the general PNML format. As an another option
formal reasoning about Petri net space, which is described in
Gentzen propositional logic, makes it possible for the option
to paint the net with minimal number of colors.

7. Algorithms of Synthesis of Petri Net

The automated design flow starts with dual synthesis of de-
signed and initially colored Petri net. Two different synthesis
methods are proposed in order to receive two different logic
description of the same algorithm. The different logic descrip-
tions are used to implement two control units of ASLC with
increased safety. Because outputs of both control units are
compared it is required that they produce their outputs at the
same time. To satisfy this condition the HDL models have to
be prepared in a proper way:

• The state registers of both control units have to be trigged by
the same edge of the same clock signal. In proposed solution
the rising edge is chosen.

• The outputs have to be registered to avoid mismatch in com-
parison. The output register usees the same clock that the
state register does but it is trigged by the opposite edge in-
stead of registers. It allows to generate outputs in one clock
cycle. In proposed solution the falling edge has to be used.

• Both control units have to be reset in the same way. Because
the state registers are topically built from standard D-type
flip-flops the asynchronous reset is used. For the output reg-
ister the synchronous reset should be always used in order to
generate outputs in the same period of time.

7.1. Monolithic Modular Logic Synthesis Proposed synthe-
sis method allows to implement control algorithm described by
Petri net as a modular logic circuit (Fig. 6). The modular tran-

MTC
X

RGQ
T RGY

YP

Q
Y

Fig. 6. Modular logic circuit of Petri net

sition coder (MTC) is responsible for the generation of events.
The register RGQ holds encoded global and local states. The Q
signal represents encoded global states and the signal YP repre-
sents encoded by output signals local states. The register RGY
is used for synchronization purpose and it holds values of out-
put signals. It is trigged by opposite edge instead of the register
RGQ.

Proposed macrostate encoding is done at second level of hi-
erarchy by means of using the minimal number of coordinates

Q1 and Q2 (Fig. 5b):

mp3 = Q1; mp11 = Q1 ∧Q2;
mp6 = Q2; mp9 = Q1 ∧Q2;= y5;
mp10 = Q1 ∧Q2; mp7 = Q1 ∧Q2;

Encoded macrostate changes are described only with use of
selected macrostete codes and its boundary transitions:

@Q1 ⇐ Q1 ⊕ (t4 ⊕ t11);
@Q2 ⇐ Q2 ⊕ (t1 ⊕ t10);

For simplicity, local places encoding is based on registered
controller outputs:

p1 = y0; p2 = y1; p3 = y2;
p4 = y1; p5 = y2; . . . ; p16 = y6;

Excitations of boundary transitions depend on input
macroplaces, local places and guards. After substitution
of coding terms for macroplaces and local places the
expressions takes a form:

t1 ⇐ mp7 ∧ p1 ∧ x0 = Q1 ∧Q2 ∧ y0 ∧ x0;
t4 ⇐ mp10 ∧ p4 ∧ p5 = Q1 ∧Q2 ∧ y1 ∧ y2;

t10 ⇐ mp11 ∧mp6 ∧ p11 ∧ p12 ∧ p13

= Q1 ∧Q2 ∧ y3 ∧ y4 ∧ y9;
t11 ⇐ mp3 ∧mp9 ∧ p8 ∧ p14 ∧ x6

= ∧Q2 ∧ y7 ∧ y5 ∧ x6;

Given as an example the local transitions for macroplace mp10
are:

t2 ⇐ mp10 ∧ p2 ∧ x1 = Q1 ∧Q2 ∧ y1 ∧ x1;
t3 ⇐ mp10 ∧ p3 ∧ x3 = Q1 ∧Q2 ∧ y2 ∧ x3;

Local state changes for places nested in macroplace mp10 are
as follows:

@p2 ⇐ (p2 ∧mp10)⊕ (t1 ⊕ t2);
@p3 ⇐ (p3 ∧mp10)⊕ (t1 ⊕ t3);
@p4 ⇐ (p4 ∧mp10)⊕ (t2 ⊕ t4);
@p5 ⇐ (p4 ∧mp10)⊕ (t3 ⊕ t4);

For description of local state changes inside macroplace mp10
after encoding only two equations are required:

@y1 ⇐ (y1 ∧Q1 ∧Q2)⊕ (t1 ⊕ t2);
@y2 ⇐ (y2 ∧Q1 ∧Q2)⊕ (t1 ⊕ t3);

The logic circuit is described in single HDL model in VHDL
(Fig. 7). According to the architecture presented in the fig-
ure 6 the MTC is described with the use of continuous assign-
ments, the register RGQ is described by the FF process, and the
RGY register is described by the YY process. Preconditions of
global and local transitions are described as simple continu-
ous assignments. The FF process is responsible for the gen-
eration of codes of next macro and local states. Because the
local states are encoded with the use of output variables there

Bull. Pol. Ac.: Tech. XX(Y) 2016 5

For simplicity, local places encoding is based on registered con-
troller outputs:

Dual Synthesis of Petri Net Based Application Specific Logic Controllers with Increased Safety

The recently developed computer system iCPN efficiently
reduces the net as well as finds the suitable SM cover of the
net from topological structure of interpreted Petri net graph
described in the general PNML format. As an another option
formal reasoning about Petri net space, which is described in
Gentzen propositional logic, makes it possible for the option
to paint the net with minimal number of colors.

7. Algorithms of Synthesis of Petri Net

The automated design flow starts with dual synthesis of de-
signed and initially colored Petri net. Two different synthesis
methods are proposed in order to receive two different logic
description of the same algorithm. The different logic descrip-
tions are used to implement two control units of ASLC with
increased safety. Because outputs of both control units are
compared it is required that they produce their outputs at the
same time. To satisfy this condition the HDL models have to
be prepared in a proper way:

• The state registers of both control units have to be trigged by
the same edge of the same clock signal. In proposed solution
the rising edge is chosen.

• The outputs have to be registered to avoid mismatch in com-
parison. The output register usees the same clock that the
state register does but it is trigged by the opposite edge in-
stead of registers. It allows to generate outputs in one clock
cycle. In proposed solution the falling edge has to be used.

• Both control units have to be reset in the same way. Because
the state registers are topically built from standard D-type
flip-flops the asynchronous reset is used. For the output reg-
ister the synchronous reset should be always used in order to
generate outputs in the same period of time.

7.1. Monolithic Modular Logic Synthesis Proposed synthe-
sis method allows to implement control algorithm described by
Petri net as a modular logic circuit (Fig. 6). The modular tran-

MTC
X

RGQ
T RGY

YP

Q
Y

Fig. 6. Modular logic circuit of Petri net

sition coder (MTC) is responsible for the generation of events.
The register RGQ holds encoded global and local states. The Q
signal represents encoded global states and the signal YP repre-
sents encoded by output signals local states. The register RGY
is used for synchronization purpose and it holds values of out-
put signals. It is trigged by opposite edge instead of the register
RGQ.

Proposed macrostate encoding is done at second level of hi-
erarchy by means of using the minimal number of coordinates

Q1 and Q2 (Fig. 5b):

mp3 = Q1; mp11 = Q1 ∧Q2;
mp6 = Q2; mp9 = Q1 ∧Q2;= y5;
mp10 = Q1 ∧Q2; mp7 = Q1 ∧Q2;

Encoded macrostate changes are described only with use of
selected macrostete codes and its boundary transitions:

@Q1 ⇐ Q1 ⊕ (t4 ⊕ t11);
@Q2 ⇐ Q2 ⊕ (t1 ⊕ t10);

For simplicity, local places encoding is based on registered
controller outputs:

p1 = y0; p2 = y1; p3 = y2;
p4 = y1; p5 = y2; . . . ; p16 = y6;

Excitations of boundary transitions depend on input
macroplaces, local places and guards. After substitution
of coding terms for macroplaces and local places the
expressions takes a form:

t1 ⇐ mp7 ∧ p1 ∧ x0 = Q1 ∧Q2 ∧ y0 ∧ x0;
t4 ⇐ mp10 ∧ p4 ∧ p5 = Q1 ∧Q2 ∧ y1 ∧ y2;

t10 ⇐ mp11 ∧mp6 ∧ p11 ∧ p12 ∧ p13

= Q1 ∧Q2 ∧ y3 ∧ y4 ∧ y9;
t11 ⇐ mp3 ∧mp9 ∧ p8 ∧ p14 ∧ x6

= ∧Q2 ∧ y7 ∧ y5 ∧ x6;

Given as an example the local transitions for macroplace mp10
are:

t2 ⇐ mp10 ∧ p2 ∧ x1 = Q1 ∧Q2 ∧ y1 ∧ x1;
t3 ⇐ mp10 ∧ p3 ∧ x3 = Q1 ∧Q2 ∧ y2 ∧ x3;

Local state changes for places nested in macroplace mp10 are
as follows:

@p2 ⇐ (p2 ∧mp10)⊕ (t1 ⊕ t2);
@p3 ⇐ (p3 ∧mp10)⊕ (t1 ⊕ t3);
@p4 ⇐ (p4 ∧mp10)⊕ (t2 ⊕ t4);
@p5 ⇐ (p4 ∧mp10)⊕ (t3 ⊕ t4);

For description of local state changes inside macroplace mp10
after encoding only two equations are required:

@y1 ⇐ (y1 ∧Q1 ∧Q2)⊕ (t1 ⊕ t2);
@y2 ⇐ (y2 ∧Q1 ∧Q2)⊕ (t1 ⊕ t3);

The logic circuit is described in single HDL model in VHDL
(Fig. 7). According to the architecture presented in the fig-
ure 6 the MTC is described with the use of continuous assign-
ments, the register RGQ is described by the FF process, and the
RGY register is described by the YY process. Preconditions of
global and local transitions are described as simple continu-
ous assignments. The FF process is responsible for the gen-
eration of codes of next macro and local states. Because the
local states are encoded with the use of output variables there

Bull. Pol. Ac.: Tech. XX(Y) 2016 5

Excitations of boundary transitions depend on input macroplac-
es, local places and guards. After substitution of coding terms
for macroplaces and local places the expressions takes a form:

Dual Synthesis of Petri Net Based Application Specific Logic Controllers with Increased Safety

The recently developed computer system iCPN efficiently
reduces the net as well as finds the suitable SM cover of the
net from topological structure of interpreted Petri net graph
described in the general PNML format. As an another option
formal reasoning about Petri net space, which is described in
Gentzen propositional logic, makes it possible for the option
to paint the net with minimal number of colors.

7. Algorithms of Synthesis of Petri Net

The automated design flow starts with dual synthesis of de-
signed and initially colored Petri net. Two different synthesis
methods are proposed in order to receive two different logic
description of the same algorithm. The different logic descrip-
tions are used to implement two control units of ASLC with
increased safety. Because outputs of both control units are
compared it is required that they produce their outputs at the
same time. To satisfy this condition the HDL models have to
be prepared in a proper way:

• The state registers of both control units have to be trigged by
the same edge of the same clock signal. In proposed solution
the rising edge is chosen.

• The outputs have to be registered to avoid mismatch in com-
parison. The output register usees the same clock that the
state register does but it is trigged by the opposite edge in-
stead of registers. It allows to generate outputs in one clock
cycle. In proposed solution the falling edge has to be used.

• Both control units have to be reset in the same way. Because
the state registers are topically built from standard D-type
flip-flops the asynchronous reset is used. For the output reg-
ister the synchronous reset should be always used in order to
generate outputs in the same period of time.

7.1. Monolithic Modular Logic Synthesis Proposed synthe-
sis method allows to implement control algorithm described by
Petri net as a modular logic circuit (Fig. 6). The modular tran-

MTC
X

RGQ
T RGY

YP

Q
Y

Fig. 6. Modular logic circuit of Petri net

sition coder (MTC) is responsible for the generation of events.
The register RGQ holds encoded global and local states. The Q
signal represents encoded global states and the signal YP repre-
sents encoded by output signals local states. The register RGY
is used for synchronization purpose and it holds values of out-
put signals. It is trigged by opposite edge instead of the register
RGQ.

Proposed macrostate encoding is done at second level of hi-
erarchy by means of using the minimal number of coordinates

Q1 and Q2 (Fig. 5b):

mp3 = Q1; mp11 = Q1 ∧Q2;
mp6 = Q2; mp9 = Q1 ∧Q2;= y5;
mp10 = Q1 ∧Q2; mp7 = Q1 ∧Q2;

Encoded macrostate changes are described only with use of
selected macrostete codes and its boundary transitions:

@Q1 ⇐ Q1 ⊕ (t4 ⊕ t11);
@Q2 ⇐ Q2 ⊕ (t1 ⊕ t10);

For simplicity, local places encoding is based on registered
controller outputs:

p1 = y0; p2 = y1; p3 = y2;
p4 = y1; p5 = y2; . . . ; p16 = y6;

Excitations of boundary transitions depend on input
macroplaces, local places and guards. After substitution
of coding terms for macroplaces and local places the
expressions takes a form:

t1 ⇐ mp7 ∧ p1 ∧ x0 = Q1 ∧Q2 ∧ y0 ∧ x0;
t4 ⇐ mp10 ∧ p4 ∧ p5 = Q1 ∧Q2 ∧ y1 ∧ y2;

t10 ⇐ mp11 ∧mp6 ∧ p11 ∧ p12 ∧ p13

= Q1 ∧Q2 ∧ y3 ∧ y4 ∧ y9;
t11 ⇐ mp3 ∧mp9 ∧ p8 ∧ p14 ∧ x6

= ∧Q2 ∧ y7 ∧ y5 ∧ x6;

Given as an example the local transitions for macroplace mp10
are:

t2 ⇐ mp10 ∧ p2 ∧ x1 = Q1 ∧Q2 ∧ y1 ∧ x1;
t3 ⇐ mp10 ∧ p3 ∧ x3 = Q1 ∧Q2 ∧ y2 ∧ x3;

Local state changes for places nested in macroplace mp10 are
as follows:

@p2 ⇐ (p2 ∧mp10)⊕ (t1 ⊕ t2);
@p3 ⇐ (p3 ∧mp10)⊕ (t1 ⊕ t3);
@p4 ⇐ (p4 ∧mp10)⊕ (t2 ⊕ t4);
@p5 ⇐ (p4 ∧mp10)⊕ (t3 ⊕ t4);

For description of local state changes inside macroplace mp10
after encoding only two equations are required:

@y1 ⇐ (y1 ∧Q1 ∧Q2)⊕ (t1 ⊕ t2);
@y2 ⇐ (y2 ∧Q1 ∧Q2)⊕ (t1 ⊕ t3);

The logic circuit is described in single HDL model in VHDL
(Fig. 7). According to the architecture presented in the fig-
ure 6 the MTC is described with the use of continuous assign-
ments, the register RGQ is described by the FF process, and the
RGY register is described by the YY process. Preconditions of
global and local transitions are described as simple continu-
ous assignments. The FF process is responsible for the gen-
eration of codes of next macro and local states. Because the
local states are encoded with the use of output variables there

Bull. Pol. Ac.: Tech. XX(Y) 2016 5

Given as an example the local transitions for macroplace mp10
are:

Dual Synthesis of Petri Net Based Application Specific Logic Controllers with Increased Safety

The recently developed computer system iCPN efficiently
reduces the net as well as finds the suitable SM cover of the
net from topological structure of interpreted Petri net graph
described in the general PNML format. As an another option
formal reasoning about Petri net space, which is described in
Gentzen propositional logic, makes it possible for the option
to paint the net with minimal number of colors.

7. Algorithms of Synthesis of Petri Net

The automated design flow starts with dual synthesis of de-
signed and initially colored Petri net. Two different synthesis
methods are proposed in order to receive two different logic
description of the same algorithm. The different logic descrip-
tions are used to implement two control units of ASLC with
increased safety. Because outputs of both control units are
compared it is required that they produce their outputs at the
same time. To satisfy this condition the HDL models have to
be prepared in a proper way:

• The state registers of both control units have to be trigged by
the same edge of the same clock signal. In proposed solution
the rising edge is chosen.

• The outputs have to be registered to avoid mismatch in com-
parison. The output register usees the same clock that the
state register does but it is trigged by the opposite edge in-
stead of registers. It allows to generate outputs in one clock
cycle. In proposed solution the falling edge has to be used.

• Both control units have to be reset in the same way. Because
the state registers are topically built from standard D-type
flip-flops the asynchronous reset is used. For the output reg-
ister the synchronous reset should be always used in order to
generate outputs in the same period of time.

7.1. Monolithic Modular Logic Synthesis Proposed synthe-
sis method allows to implement control algorithm described by
Petri net as a modular logic circuit (Fig. 6). The modular tran-

MTC
X

RGQ
T RGY

YP

Q
Y

Fig. 6. Modular logic circuit of Petri net

sition coder (MTC) is responsible for the generation of events.
The register RGQ holds encoded global and local states. The Q
signal represents encoded global states and the signal YP repre-
sents encoded by output signals local states. The register RGY
is used for synchronization purpose and it holds values of out-
put signals. It is trigged by opposite edge instead of the register
RGQ.

Proposed macrostate encoding is done at second level of hi-
erarchy by means of using the minimal number of coordinates

Q1 and Q2 (Fig. 5b):

mp3 = Q1; mp11 = Q1 ∧Q2;
mp6 = Q2; mp9 = Q1 ∧Q2;= y5;
mp10 = Q1 ∧Q2; mp7 = Q1 ∧Q2;

Encoded macrostate changes are described only with use of
selected macrostete codes and its boundary transitions:

@Q1 ⇐ Q1 ⊕ (t4 ⊕ t11);
@Q2 ⇐ Q2 ⊕ (t1 ⊕ t10);

For simplicity, local places encoding is based on registered
controller outputs:

p1 = y0; p2 = y1; p3 = y2;
p4 = y1; p5 = y2; . . . ; p16 = y6;

Excitations of boundary transitions depend on input
macroplaces, local places and guards. After substitution
of coding terms for macroplaces and local places the
expressions takes a form:

t1 ⇐ mp7 ∧ p1 ∧ x0 = Q1 ∧Q2 ∧ y0 ∧ x0;
t4 ⇐ mp10 ∧ p4 ∧ p5 = Q1 ∧Q2 ∧ y1 ∧ y2;

t10 ⇐ mp11 ∧mp6 ∧ p11 ∧ p12 ∧ p13

= Q1 ∧Q2 ∧ y3 ∧ y4 ∧ y9;
t11 ⇐ mp3 ∧mp9 ∧ p8 ∧ p14 ∧ x6

= ∧Q2 ∧ y7 ∧ y5 ∧ x6;

Given as an example the local transitions for macroplace mp10
are:

t2 ⇐ mp10 ∧ p2 ∧ x1 = Q1 ∧Q2 ∧ y1 ∧ x1;
t3 ⇐ mp10 ∧ p3 ∧ x3 = Q1 ∧Q2 ∧ y2 ∧ x3;

Local state changes for places nested in macroplace mp10 are
as follows:

@p2 ⇐ (p2 ∧mp10)⊕ (t1 ⊕ t2);
@p3 ⇐ (p3 ∧mp10)⊕ (t1 ⊕ t3);
@p4 ⇐ (p4 ∧mp10)⊕ (t2 ⊕ t4);
@p5 ⇐ (p4 ∧mp10)⊕ (t3 ⊕ t4);

For description of local state changes inside macroplace mp10
after encoding only two equations are required:

@y1 ⇐ (y1 ∧Q1 ∧Q2)⊕ (t1 ⊕ t2);
@y2 ⇐ (y2 ∧Q1 ∧Q2)⊕ (t1 ⊕ t3);

The logic circuit is described in single HDL model in VHDL
(Fig. 7). According to the architecture presented in the fig-
ure 6 the MTC is described with the use of continuous assign-
ments, the register RGQ is described by the FF process, and the
RGY register is described by the YY process. Preconditions of
global and local transitions are described as simple continu-
ous assignments. The FF process is responsible for the gen-
eration of codes of next macro and local states. Because the
local states are encoded with the use of output variables there

Bull. Pol. Ac.: Tech. XX(Y) 2016 5

Local state changes for places nested in macroplace mp10 are
as follows:

Dual Synthesis of Petri Net Based Application Specific Logic Controllers with Increased Safety

The recently developed computer system iCPN efficiently
reduces the net as well as finds the suitable SM cover of the
net from topological structure of interpreted Petri net graph
described in the general PNML format. As an another option
formal reasoning about Petri net space, which is described in
Gentzen propositional logic, makes it possible for the option
to paint the net with minimal number of colors.

7. Algorithms of Synthesis of Petri Net

The automated design flow starts with dual synthesis of de-
signed and initially colored Petri net. Two different synthesis
methods are proposed in order to receive two different logic
description of the same algorithm. The different logic descrip-
tions are used to implement two control units of ASLC with
increased safety. Because outputs of both control units are
compared it is required that they produce their outputs at the
same time. To satisfy this condition the HDL models have to
be prepared in a proper way:

• The state registers of both control units have to be trigged by
the same edge of the same clock signal. In proposed solution
the rising edge is chosen.

• The outputs have to be registered to avoid mismatch in com-
parison. The output register usees the same clock that the
state register does but it is trigged by the opposite edge in-
stead of registers. It allows to generate outputs in one clock
cycle. In proposed solution the falling edge has to be used.

• Both control units have to be reset in the same way. Because
the state registers are topically built from standard D-type
flip-flops the asynchronous reset is used. For the output reg-
ister the synchronous reset should be always used in order to
generate outputs in the same period of time.

7.1. Monolithic Modular Logic Synthesis Proposed synthe-
sis method allows to implement control algorithm described by
Petri net as a modular logic circuit (Fig. 6). The modular tran-

MTC
X

RGQ
T RGY

YP

Q
Y

Fig. 6. Modular logic circuit of Petri net

sition coder (MTC) is responsible for the generation of events.
The register RGQ holds encoded global and local states. The Q
signal represents encoded global states and the signal YP repre-
sents encoded by output signals local states. The register RGY
is used for synchronization purpose and it holds values of out-
put signals. It is trigged by opposite edge instead of the register
RGQ.

Proposed macrostate encoding is done at second level of hi-
erarchy by means of using the minimal number of coordinates

Q1 and Q2 (Fig. 5b):

mp3 = Q1; mp11 = Q1 ∧Q2;
mp6 = Q2; mp9 = Q1 ∧Q2;= y5;
mp10 = Q1 ∧Q2; mp7 = Q1 ∧Q2;

Encoded macrostate changes are described only with use of
selected macrostete codes and its boundary transitions:

@Q1 ⇐ Q1 ⊕ (t4 ⊕ t11);
@Q2 ⇐ Q2 ⊕ (t1 ⊕ t10);

For simplicity, local places encoding is based on registered
controller outputs:

p1 = y0; p2 = y1; p3 = y2;
p4 = y1; p5 = y2; . . . ; p16 = y6;

Excitations of boundary transitions depend on input
macroplaces, local places and guards. After substitution
of coding terms for macroplaces and local places the
expressions takes a form:

t1 ⇐ mp7 ∧ p1 ∧ x0 = Q1 ∧Q2 ∧ y0 ∧ x0;
t4 ⇐ mp10 ∧ p4 ∧ p5 = Q1 ∧Q2 ∧ y1 ∧ y2;

t10 ⇐ mp11 ∧mp6 ∧ p11 ∧ p12 ∧ p13

= Q1 ∧Q2 ∧ y3 ∧ y4 ∧ y9;
t11 ⇐ mp3 ∧mp9 ∧ p8 ∧ p14 ∧ x6

= ∧Q2 ∧ y7 ∧ y5 ∧ x6;

Given as an example the local transitions for macroplace mp10
are:

t2 ⇐ mp10 ∧ p2 ∧ x1 = Q1 ∧Q2 ∧ y1 ∧ x1;
t3 ⇐ mp10 ∧ p3 ∧ x3 = Q1 ∧Q2 ∧ y2 ∧ x3;

Local state changes for places nested in macroplace mp10 are
as follows:

@p2 ⇐ (p2 ∧mp10)⊕ (t1 ⊕ t2);
@p3 ⇐ (p3 ∧mp10)⊕ (t1 ⊕ t3);
@p4 ⇐ (p4 ∧mp10)⊕ (t2 ⊕ t4);
@p5 ⇐ (p4 ∧mp10)⊕ (t3 ⊕ t4);

For description of local state changes inside macroplace mp10
after encoding only two equations are required:

@y1 ⇐ (y1 ∧Q1 ∧Q2)⊕ (t1 ⊕ t2);
@y2 ⇐ (y2 ∧Q1 ∧Q2)⊕ (t1 ⊕ t3);

The logic circuit is described in single HDL model in VHDL
(Fig. 7). According to the architecture presented in the fig-
ure 6 the MTC is described with the use of continuous assign-
ments, the register RGQ is described by the FF process, and the
RGY register is described by the YY process. Preconditions of
global and local transitions are described as simple continu-
ous assignments. The FF process is responsible for the gen-
eration of codes of next macro and local states. Because the
local states are encoded with the use of output variables there

Bull. Pol. Ac.: Tech. XX(Y) 2016 5

For description of local state changes inside macroplace mp10
after encoding only two equations are required:

Dual Synthesis of Petri Net Based Application Specific Logic Controllers with Increased Safety

The recently developed computer system iCPN efficiently
reduces the net as well as finds the suitable SM cover of the
net from topological structure of interpreted Petri net graph
described in the general PNML format. As an another option
formal reasoning about Petri net space, which is described in
Gentzen propositional logic, makes it possible for the option
to paint the net with minimal number of colors.

7. Algorithms of Synthesis of Petri Net

The automated design flow starts with dual synthesis of de-
signed and initially colored Petri net. Two different synthesis
methods are proposed in order to receive two different logic
description of the same algorithm. The different logic descrip-
tions are used to implement two control units of ASLC with
increased safety. Because outputs of both control units are
compared it is required that they produce their outputs at the
same time. To satisfy this condition the HDL models have to
be prepared in a proper way:

• The state registers of both control units have to be trigged by
the same edge of the same clock signal. In proposed solution
the rising edge is chosen.

• The outputs have to be registered to avoid mismatch in com-
parison. The output register usees the same clock that the
state register does but it is trigged by the opposite edge in-
stead of registers. It allows to generate outputs in one clock
cycle. In proposed solution the falling edge has to be used.

• Both control units have to be reset in the same way. Because
the state registers are topically built from standard D-type
flip-flops the asynchronous reset is used. For the output reg-
ister the synchronous reset should be always used in order to
generate outputs in the same period of time.

7.1. Monolithic Modular Logic Synthesis Proposed synthe-
sis method allows to implement control algorithm described by
Petri net as a modular logic circuit (Fig. 6). The modular tran-

MTC
X

RGQ
T RGY

YP

Q
Y

Fig. 6. Modular logic circuit of Petri net

sition coder (MTC) is responsible for the generation of events.
The register RGQ holds encoded global and local states. The Q
signal represents encoded global states and the signal YP repre-
sents encoded by output signals local states. The register RGY
is used for synchronization purpose and it holds values of out-
put signals. It is trigged by opposite edge instead of the register
RGQ.

Proposed macrostate encoding is done at second level of hi-
erarchy by means of using the minimal number of coordinates

Q1 and Q2 (Fig. 5b):

mp3 = Q1; mp11 = Q1 ∧Q2;
mp6 = Q2; mp9 = Q1 ∧Q2;= y5;
mp10 = Q1 ∧Q2; mp7 = Q1 ∧Q2;

Encoded macrostate changes are described only with use of
selected macrostete codes and its boundary transitions:

@Q1 ⇐ Q1 ⊕ (t4 ⊕ t11);
@Q2 ⇐ Q2 ⊕ (t1 ⊕ t10);

For simplicity, local places encoding is based on registered
controller outputs:

p1 = y0; p2 = y1; p3 = y2;
p4 = y1; p5 = y2; . . . ; p16 = y6;

Excitations of boundary transitions depend on input
macroplaces, local places and guards. After substitution
of coding terms for macroplaces and local places the
expressions takes a form:

t1 ⇐ mp7 ∧ p1 ∧ x0 = Q1 ∧Q2 ∧ y0 ∧ x0;
t4 ⇐ mp10 ∧ p4 ∧ p5 = Q1 ∧Q2 ∧ y1 ∧ y2;

t10 ⇐ mp11 ∧mp6 ∧ p11 ∧ p12 ∧ p13

= Q1 ∧Q2 ∧ y3 ∧ y4 ∧ y9;
t11 ⇐ mp3 ∧mp9 ∧ p8 ∧ p14 ∧ x6

= ∧Q2 ∧ y7 ∧ y5 ∧ x6;

Given as an example the local transitions for macroplace mp10
are:

t2 ⇐ mp10 ∧ p2 ∧ x1 = Q1 ∧Q2 ∧ y1 ∧ x1;
t3 ⇐ mp10 ∧ p3 ∧ x3 = Q1 ∧Q2 ∧ y2 ∧ x3;

Local state changes for places nested in macroplace mp10 are
as follows:

@p2 ⇐ (p2 ∧mp10)⊕ (t1 ⊕ t2);
@p3 ⇐ (p3 ∧mp10)⊕ (t1 ⊕ t3);
@p4 ⇐ (p4 ∧mp10)⊕ (t2 ⊕ t4);
@p5 ⇐ (p4 ∧mp10)⊕ (t3 ⊕ t4);

For description of local state changes inside macroplace mp10
after encoding only two equations are required:

@y1 ⇐ (y1 ∧Q1 ∧Q2)⊕ (t1 ⊕ t2);
@y2 ⇐ (y2 ∧Q1 ∧Q2)⊕ (t1 ⊕ t3);

The logic circuit is described in single HDL model in VHDL
(Fig. 7). According to the architecture presented in the fig-
ure 6 the MTC is described with the use of continuous assign-
ments, the register RGQ is described by the FF process, and the
RGY register is described by the YY process. Preconditions of
global and local transitions are described as simple continu-
ous assignments. The FF process is responsible for the gen-
eration of codes of next macro and local states. Because the
local states are encoded with the use of output variables there

Bull. Pol. Ac.: Tech. XX(Y) 2016 5

Fig. 6. Modular logic circuit of Petri net

MTC
X

RGQ
T RGY

YP

Q
Y

472 Bull. Pol. Ac.: Tech. 64(3) 2016

J. Tkacz, A. Bukowiec, and M. Adamski

The logic circuit is described in single HDL model in VHDL
(Fig. 7). According to the architecture presented in the figure 6
the MTC is described with the use of continuous assignments,
the register RGQ is described by the FF process, and the RGY
register is described by the YY process. Preconditions of global
and local transitions are described as simple continuous as-

signments. The FF process is responsible for the generation of
codes of next macro and local states. Because the local states
are encoded with the use of output variables there are declared
internal copies of these variables, then in the YY process they
are synchronously transferred (according to the requirement)
to the outputs of control unit. This process is trigged by the
opposite edge instead of the FF process. It allows outputs to be
generated in one clock cycle without any glitches.

7.2. Architectural distributed synthesis. The entry point to
the synthesis method is colored interpreted Petri net of Moore
type. This could be achieved by symbolic Petri net coloring
from hypergraph of concurrency described in previous section.
Places are encoded in concurrent subsets. Since subsets are state
machine type, they are recognized by one particular color of
colored Petri net. Operations assigned to places are stored in
single memory. The memory could be of partitioned into flex-
ible concurrent parts [17]. The logic circuit is realized as dis-
tributed two-level architecture (Fig. 8), where the combinational
circuits (CCi) of first level are responsible for the generation of
excitation functions:

Fig. 7. Part of VHDL file

are declared internal copies of these variables, then in the YY
process they are synchronously transferred (according to the
requirement) to the outputs of control unit. This process is
trigged by the opposite edge instead of the FF process. It al-
lows outputs to be generated in one clock cycle without any
glitches.

7.2. Architectural Distributed Synthesis The entry point to
the synthesis method is colored interpreted Petri net of Moore
type. This could be achieved by symbolic Petri net coloring
from hypergraph of concurrency described in previous section.
Places are encoded in concurrent subsets. Since subsets are

state machine type, they are recognized by one particular color
of colored Petri net. Operations assigned to places are stored
in single memory. The memory could be of partitioned into
flexible concurrent parts [17]. The logic circuit is realized as
distributed two-level architecture (Fig. 8), where the combina-
tional circuits (CCi) of first level are responsible for the gener-
ation of excitation functions:

Di = Di(X ,Q), (3)

where Q = Q1 ∪Q2 ∪ ·· · ∪QI is set of variables used to store
the codes of marked places. The memory of the circuit is build
from I D-type registers RGi which hold a current state of each
subnet. Where,i = 1,2, . . . , I and I is a number of colors in a
Petri net. The second level common decoder Y is responsible
for the generation of operations and it is implemented using
memory blocks. Its functionality can by described by function:

Y = Y (Q). (4)

Such approach allows for balanced usage of different kind of
resources available in modern FPGA devices like LUTs and
embedded memories.

CC1 RG1

Y

QD1X

Y
CC2 RG2

CCI RGI

D2

DI

Q1

Q2

QI

Fig. 8. Distributed logic circuit of Petri net

The entry point to the synthesis method is the colored inter-
preted Petri net of Moore type with extracted SM subnets. This
could be achieved by symbolic Petri net coloring from hyper-
graph of concurrency described in previous section. The whole
synthesis process includes following steps:

Encoding of places. The purpose of this step is to assign a
binary code to each place. The encoding is being done on min-
imal number of required bits. One-hot encoding [13] is not
acceptable in this method because the place code is also an
address of operation memory. Let assume that Petri net is col-
ored with I different colors. Places are encoded separately in
each subnet, determined by one color. Let start from the first
color (i = 1) and assign binary codes to each place colored by
it according to the following rules:

• If all places belonging to the Ci color create a marked cycle
(marked cycle is a cycle where one place, which belongs to
it, is always marked) it is required to use

Ri = �log2 |Pi|� (5)

6 Bull. Pol. Ac.: Tech. XX(Y) 2016

� (3)

where Q = Q1[Q2[…[Q I is set of variables used to store
the codes of marked places. The memory of the circuit is build
from I D-type registers RGi which hold a current state of each
subnet. Where, i = 1, 2, …, I and I is a number of colors in a
Petri net. The second level common decoder Y is responsible
for the generation of operations and it is implemented using
memory blocks. Its functionality can by described by function:

Fig. 7. Part of VHDL file

are declared internal copies of these variables, then in the YY
process they are synchronously transferred (according to the
requirement) to the outputs of control unit. This process is
trigged by the opposite edge instead of the FF process. It al-
lows outputs to be generated in one clock cycle without any
glitches.

7.2. Architectural Distributed Synthesis The entry point to
the synthesis method is colored interpreted Petri net of Moore
type. This could be achieved by symbolic Petri net coloring
from hypergraph of concurrency described in previous section.
Places are encoded in concurrent subsets. Since subsets are

state machine type, they are recognized by one particular color
of colored Petri net. Operations assigned to places are stored
in single memory. The memory could be of partitioned into
flexible concurrent parts [17]. The logic circuit is realized as
distributed two-level architecture (Fig. 8), where the combina-
tional circuits (CCi) of first level are responsible for the gener-
ation of excitation functions:

Di = Di(X ,Q), (3)

where Q = Q1 ∪Q2 ∪ ·· · ∪QI is set of variables used to store
the codes of marked places. The memory of the circuit is build
from I D-type registers RGi which hold a current state of each
subnet. Where,i = 1,2, . . . , I and I is a number of colors in a
Petri net. The second level common decoder Y is responsible
for the generation of operations and it is implemented using
memory blocks. Its functionality can by described by function:

Y = Y (Q). (4)

Such approach allows for balanced usage of different kind of
resources available in modern FPGA devices like LUTs and
embedded memories.

CC1 RG1

Y

QD1X

Y
CC2 RG2

CCI RGI

D2

DI

Q1

Q2

QI

Fig. 8. Distributed logic circuit of Petri net

The entry point to the synthesis method is the colored inter-
preted Petri net of Moore type with extracted SM subnets. This
could be achieved by symbolic Petri net coloring from hyper-
graph of concurrency described in previous section. The whole
synthesis process includes following steps:

Encoding of places. The purpose of this step is to assign a
binary code to each place. The encoding is being done on min-
imal number of required bits. One-hot encoding [13] is not
acceptable in this method because the place code is also an
address of operation memory. Let assume that Petri net is col-
ored with I different colors. Places are encoded separately in
each subnet, determined by one color. Let start from the first
color (i = 1) and assign binary codes to each place colored by
it according to the following rules:

• If all places belonging to the Ci color create a marked cycle
(marked cycle is a cycle where one place, which belongs to
it, is always marked) it is required to use

Ri = �log2 |Pi|� (5)

6 Bull. Pol. Ac.: Tech. XX(Y) 2016

� (4)

Such approach allows for balanced usage of different kind of
resources available in modern FPGA devices like LUTs and
embedded memories.

The entry point to the synthesis method is the colored in-
terpreted Petri net of Moore type with extracted SM subnets.
This could be achieved by symbolic Petri net coloring from
hypergraph of concurrency described in previous section. The
whole synthesis process includes following steps:

Fig. 7. Part of VHDL file
Fig. 7. Part of VHDL file

are declared internal copies of these variables, then in the YY
process they are synchronously transferred (according to the
requirement) to the outputs of control unit. This process is
trigged by the opposite edge instead of the FF process. It al-
lows outputs to be generated in one clock cycle without any
glitches.

7.2. Architectural Distributed Synthesis The entry point to
the synthesis method is colored interpreted Petri net of Moore
type. This could be achieved by symbolic Petri net coloring
from hypergraph of concurrency described in previous section.
Places are encoded in concurrent subsets. Since subsets are

state machine type, they are recognized by one particular color
of colored Petri net. Operations assigned to places are stored
in single memory. The memory could be of partitioned into
flexible concurrent parts [17]. The logic circuit is realized as
distributed two-level architecture (Fig. 8), where the combina-
tional circuits (CCi) of first level are responsible for the gener-
ation of excitation functions:

Di = Di(X ,Q), (3)

where Q = Q1 ∪Q2 ∪ ·· · ∪QI is set of variables used to store
the codes of marked places. The memory of the circuit is build
from I D-type registers RGi which hold a current state of each
subnet. Where,i = 1,2, . . . , I and I is a number of colors in a
Petri net. The second level common decoder Y is responsible
for the generation of operations and it is implemented using
memory blocks. Its functionality can by described by function:

Y = Y (Q). (4)

Such approach allows for balanced usage of different kind of
resources available in modern FPGA devices like LUTs and
embedded memories.

CC1 RG1

Y

QD1X

Y
CC2 RG2

CCI RGI

D2

DI

Q1

Q2

QI

Fig. 8. Distributed logic circuit of Petri net

The entry point to the synthesis method is the colored inter-
preted Petri net of Moore type with extracted SM subnets. This
could be achieved by symbolic Petri net coloring from hyper-
graph of concurrency described in previous section. The whole
synthesis process includes following steps:

Encoding of places. The purpose of this step is to assign a
binary code to each place. The encoding is being done on min-
imal number of required bits. One-hot encoding [13] is not
acceptable in this method because the place code is also an
address of operation memory. Let assume that Petri net is col-
ored with I different colors. Places are encoded separately in
each subnet, determined by one color. Let start from the first
color (i = 1) and assign binary codes to each place colored by
it according to the following rules:

• If all places belonging to the Ci color create a marked cycle
(marked cycle is a cycle where one place, which belongs to
it, is always marked) it is required to use

Ri = �log2 |Pi|� (5)

6 Bull. Pol. Ac.: Tech. XX(Y) 2016

Fig. 8. Distributed logic circuit of Petri net

CC1 RG1

Y

QD1X

Y
CC2 RG2

CCI RGI

D2

DI

Q1

Q2

QI

473Bull. Pol. Ac.: Tech. 64(3) 2016

Dual synthesis of Petri net based application specific logic controllers with increased safety

Encoding of places. The purpose of this step is to assign a bi-
nary code to each place. The encoding is being done on minimal
number of required bits. One-hot encoding [13] is not accept-
able in this method because the place code is also an address
of operation memory. Let assume that Petri net is colored with
I different colors. Places are encoded separately in each subnet,
determined by one color. Let start from the first color (i = 1)
and assign binary codes to each place colored by it according
to the following rules:
●	 If all places belonging to the Ci color create a marked cycle

(marked cycle is a cycle where one place, which belongs to
it, is always marked) it is required to use

Fig. 7. Part of VHDL file

are declared internal copies of these variables, then in the YY
process they are synchronously transferred (according to the
requirement) to the outputs of control unit. This process is
trigged by the opposite edge instead of the FF process. It al-
lows outputs to be generated in one clock cycle without any
glitches.

7.2. Architectural Distributed Synthesis The entry point to
the synthesis method is colored interpreted Petri net of Moore
type. This could be achieved by symbolic Petri net coloring
from hypergraph of concurrency described in previous section.
Places are encoded in concurrent subsets. Since subsets are

state machine type, they are recognized by one particular color
of colored Petri net. Operations assigned to places are stored
in single memory. The memory could be of partitioned into
flexible concurrent parts [17]. The logic circuit is realized as
distributed two-level architecture (Fig. 8), where the combina-
tional circuits (CCi) of first level are responsible for the gener-
ation of excitation functions:

Di = Di(X ,Q), (3)

where Q = Q1 ∪Q2 ∪ ·· · ∪QI is set of variables used to store
the codes of marked places. The memory of the circuit is build
from I D-type registers RGi which hold a current state of each
subnet. Where,i = 1,2, . . . , I and I is a number of colors in a
Petri net. The second level common decoder Y is responsible
for the generation of operations and it is implemented using
memory blocks. Its functionality can by described by function:

Y = Y (Q). (4)

Such approach allows for balanced usage of different kind of
resources available in modern FPGA devices like LUTs and
embedded memories.

CC1 RG1

Y

QD1X

Y
CC2 RG2

CCI RGI

D2

DI

Q1

Q2

QI

Fig. 8. Distributed logic circuit of Petri net

The entry point to the synthesis method is the colored inter-
preted Petri net of Moore type with extracted SM subnets. This
could be achieved by symbolic Petri net coloring from hyper-
graph of concurrency described in previous section. The whole
synthesis process includes following steps:

Encoding of places. The purpose of this step is to assign a
binary code to each place. The encoding is being done on min-
imal number of required bits. One-hot encoding [13] is not
acceptable in this method because the place code is also an
address of operation memory. Let assume that Petri net is col-
ored with I different colors. Places are encoded separately in
each subnet, determined by one color. Let start from the first
color (i = 1) and assign binary codes to each place colored by
it according to the following rules:

• If all places belonging to the Ci color create a marked cycle
(marked cycle is a cycle where one place, which belongs to
it, is always marked) it is required to use

Ri = �log2 |Pi|� (5)

6 Bull. Pol. Ac.: Tech. XX(Y) 2016

� (5)

bits to encode them, where Pi µ P is a set of places colored
by Ci color. Otherwise it is required to use:

Dual Synthesis of Petri Net Based Application Specific Logic Controllers with Increased Safety

Table 1
Codes of places of Petri net

Color C1 Color C2 Color C3 Color C4

Place
Code

Place
Code

Place
Code

Place
Code

q2q1q0 q5q4q3 q7q6 q9q8

p1 000 p3 001 p7 01 p6 01
p2 001 p5 010 p8 10 p13 10
p4 010 p10 011
p9 011 p12 100
p11 100
p14 101
p15 110
p16 111

bits to encode them, where Pi ⊆ P is a set of places colored
by Ci color. Otherwise it is required to use:

Ri = �log2(|Pi|+1)� (6)

bits. Variables form set Qi ⊂ Q are used to store this code,
where Q = {q0, . . . ,qR−1}, where

R =
I

∑
i=1

Ri (7)

and Qi = {qρ−Ri , . . . ,qρ−1}, where ρ = ∑i
ı=1 Rı.

• If places do not create a marked cycle the encoding of places
starts form code with value 1. The code with value 0 is re-
served for situation when none place p ∈ Pi is marked. Oth-
erwise encoding starts from code with value 0.

• If places create a marked cycle, the place p that is initially
marked (p ∈ Pi ∧ p ∈ M0) is encoded with code with value
0. If places do not create a marked cycle but any place p
is also initially marked it should be encoded with code with
having 2Ri −1 values. This rule is required to ensure suitable
method of logic circuit resetting.

Then, let encode places colored by following colors. Before
encoding places colored with next color, first, all places that
have already assigned a code are removed from corresponding
set Pi:

Pi = Pi �
i−1⋃
ı=1

(Pı ∩Pi). (8)

Then reaming places are encoded according to the same rules
as described above.

For example the Petri net the encoding starts from the color
C1. First considered color always creates marked cycle be-
cause we do not remove any places from the set P1. So, it is
required to use R1 = 3 bits, according to (5), to encode these
places. And possible encoding of these places is shown in ta-
ble 1. Next, places colored by the color C2 can be encoded.
Because places p1, p14, p15, and p16 from the set P2 are al-
ready encoded because they are in the set P1, they are removed
from the set P2, and now P2 = {p3, p5, p10, p12}, according to
(8). Now, remaining places do not create marked cycle, so
there is required to use R2 = 3 bits, according to (6), to encode
these places, and encoding starts from the code 001 (Table 1).

In the similar way there places colored by colors C3 and C4 are
encoded (Table 1).

Formation of conjunctions.Conjunctions describe places
and transitions. They are needed for easier creation of equa-
tions that describe systems (3). The conjunction describing the
place pm consists of affirmation or negation of variables qr that
are used to store the code of this place. If the code has 0 on
the r-th bit then negation is used and if it has 1 then affirmation
is used. The conjunction describing the transition ts consists
of place conjunctions of input places to this transition and a
condition ϕs assigned to this transition.

For the sample Petri net, they are denoted as:

p1 = q2 ∧q1 ∧q0,

p2 = q2 ∧q1 ∧q0,

p3 = q5 ∧q4 ∧q3,

p4 = q2 ∧q1 ∧q0,

p5 = q5 ∧q4 ∧q3,

p6 = q9 ∧q8,

p7 = q7 ∧q6,

. . . ,

p16 = q2 ∧q1 ∧q0.

Transition conjunctions are denoted as:

t1 = p1 ∧ x0,

t2 = p2 ∧ x1,

t3 = p3 ∧ x3,

t4 = p4 ∧ p5,

t5 = p8 ∧ x5 ∧ x6,

. . . ,

t13 = p16 ∧ x9.

Formation of logic equations. Logic equations describe func-
tions (3) of combinational circuits CCi. They are created base
on D flip-flop equation and they are build of transition con-
junctions and place hold conjunctions. If the variable qr is set
to 1 in the code of the place p then the sum of corresponding
variable Dr consists of transition conjunctions of all its input
transitions and the place p hold conjunctions. The place pm
hold conjunction consists of negation of sum of transition con-
junctions of all its output transitions and its place conjunction.

For example, the equation for D0 is denoted as:

D0 = t1 ∨ (t2 ∧ p2)

∨ t4 ∨ (t7 ∧ p9)

∨ t10 ∨ (t11 ∧ p14)

∨ t12 ∨ (t13 ∧ p16).

Because the variable q0 is set to 1 in the code of places p2, p9,
p14, and p16 the sum of equation D0 consists of all input tran-
sition conjunctions of these places. In this case they are: t1,
t7, t11, and t13. Additionally, there have to be added hold con-
dition for all places in the case if place code has to be stored

Bull. Pol. Ac.: Tech. XX(Y) 2016 7

� (6)

bits. Variables form set Qi ½ Q are used to store this code,
where Q = fq0, …, qR−1g, where

Dual Synthesis of Petri Net Based Application Specific Logic Controllers with Increased Safety

Table 1
Codes of places of Petri net

Color C1 Color C2 Color C3 Color C4

Place
Code

Place
Code

Place
Code

Place
Code

q2q1q0 q5q4q3 q7q6 q9q8

p1 000 p3 001 p7 01 p6 01
p2 001 p5 010 p8 10 p13 10
p4 010 p10 011
p9 011 p12 100
p11 100
p14 101
p15 110
p16 111

bits to encode them, where Pi ⊆ P is a set of places colored
by Ci color. Otherwise it is required to use:

Ri = �log2(|Pi|+1)� (6)

bits. Variables form set Qi ⊂ Q are used to store this code,
where Q = {q0, . . . ,qR−1}, where

R =
I

∑
i=1

Ri (7)

and Qi = {qρ−Ri , . . . ,qρ−1}, where ρ = ∑i
ı=1 Rı.

• If places do not create a marked cycle the encoding of places
starts form code with value 1. The code with value 0 is re-
served for situation when none place p ∈ Pi is marked. Oth-
erwise encoding starts from code with value 0.

• If places create a marked cycle, the place p that is initially
marked (p ∈ Pi ∧ p ∈ M0) is encoded with code with value
0. If places do not create a marked cycle but any place p
is also initially marked it should be encoded with code with
having 2Ri −1 values. This rule is required to ensure suitable
method of logic circuit resetting.

Then, let encode places colored by following colors. Before
encoding places colored with next color, first, all places that
have already assigned a code are removed from corresponding
set Pi:

Pi = Pi �
i−1⋃
ı=1

(Pı ∩Pi). (8)

Then reaming places are encoded according to the same rules
as described above.

For example the Petri net the encoding starts from the color
C1. First considered color always creates marked cycle be-
cause we do not remove any places from the set P1. So, it is
required to use R1 = 3 bits, according to (5), to encode these
places. And possible encoding of these places is shown in ta-
ble 1. Next, places colored by the color C2 can be encoded.
Because places p1, p14, p15, and p16 from the set P2 are al-
ready encoded because they are in the set P1, they are removed
from the set P2, and now P2 = {p3, p5, p10, p12}, according to
(8). Now, remaining places do not create marked cycle, so
there is required to use R2 = 3 bits, according to (6), to encode
these places, and encoding starts from the code 001 (Table 1).

In the similar way there places colored by colors C3 and C4 are
encoded (Table 1).

Formation of conjunctions.Conjunctions describe places
and transitions. They are needed for easier creation of equa-
tions that describe systems (3). The conjunction describing the
place pm consists of affirmation or negation of variables qr that
are used to store the code of this place. If the code has 0 on
the r-th bit then negation is used and if it has 1 then affirmation
is used. The conjunction describing the transition ts consists
of place conjunctions of input places to this transition and a
condition ϕs assigned to this transition.

For the sample Petri net, they are denoted as:

p1 = q2 ∧q1 ∧q0,

p2 = q2 ∧q1 ∧q0,

p3 = q5 ∧q4 ∧q3,

p4 = q2 ∧q1 ∧q0,

p5 = q5 ∧q4 ∧q3,

p6 = q9 ∧q8,

p7 = q7 ∧q6,

. . . ,

p16 = q2 ∧q1 ∧q0.

Transition conjunctions are denoted as:

t1 = p1 ∧ x0,

t2 = p2 ∧ x1,

t3 = p3 ∧ x3,

t4 = p4 ∧ p5,

t5 = p8 ∧ x5 ∧ x6,

. . . ,

t13 = p16 ∧ x9.

Formation of logic equations. Logic equations describe func-
tions (3) of combinational circuits CCi. They are created base
on D flip-flop equation and they are build of transition con-
junctions and place hold conjunctions. If the variable qr is set
to 1 in the code of the place p then the sum of corresponding
variable Dr consists of transition conjunctions of all its input
transitions and the place p hold conjunctions. The place pm
hold conjunction consists of negation of sum of transition con-
junctions of all its output transitions and its place conjunction.

For example, the equation for D0 is denoted as:

D0 = t1 ∨ (t2 ∧ p2)

∨ t4 ∨ (t7 ∧ p9)

∨ t10 ∨ (t11 ∧ p14)

∨ t12 ∨ (t13 ∧ p16).

Because the variable q0 is set to 1 in the code of places p2, p9,
p14, and p16 the sum of equation D0 consists of all input tran-
sition conjunctions of these places. In this case they are: t1,
t7, t11, and t13. Additionally, there have to be added hold con-
dition for all places in the case if place code has to be stored

Bull. Pol. Ac.: Tech. XX(Y) 2016 7

� (7)

and Qi = fqρ−Ri, …, qρ−1g, where ρ = ∑i
t=1Ri.

●	 If places do not create a marked cycle the encoding of plac-
es starts form code with value 1. The code with value 0 is
reserved for situation when none place p 2 Pi is marked.
Otherwise encoding starts from code with value 0.

●	 If places create a marked cycle, the place p that is initially
marked (p 2 Pi ˄ p 2 M0) is encoded with code with value
0. If places do not create a marked cycle but any place p is
also initially marked it should be encoded with code with
having 2Ri − 1 values. This rule is required to ensure suitable
method of logic circuit resetting.

Then, let encode places colored by following colors. Before en-
coding places colored with next color, first, all places that have
already assigned a code are removed from corresponding set Pi:

Dual Synthesis of Petri Net Based Application Specific Logic Controllers with Increased Safety

Table 1
Codes of places of Petri net

Color C1 Color C2 Color C3 Color C4

Place
Code

Place
Code

Place
Code

Place
Code

q2q1q0 q5q4q3 q7q6 q9q8

p1 000 p3 001 p7 01 p6 01
p2 001 p5 010 p8 10 p13 10
p4 010 p10 011
p9 011 p12 100
p11 100
p14 101
p15 110
p16 111

bits to encode them, where Pi ⊆ P is a set of places colored
by Ci color. Otherwise it is required to use:

Ri = �log2(|Pi|+1)� (6)

bits. Variables form set Qi ⊂ Q are used to store this code,
where Q = {q0, . . . ,qR−1}, where

R =
I

∑
i=1

Ri (7)

and Qi = {qρ−Ri , . . . ,qρ−1}, where ρ = ∑i
ı=1 Rı.

• If places do not create a marked cycle the encoding of places
starts form code with value 1. The code with value 0 is re-
served for situation when none place p ∈ Pi is marked. Oth-
erwise encoding starts from code with value 0.

• If places create a marked cycle, the place p that is initially
marked (p ∈ Pi ∧ p ∈ M0) is encoded with code with value
0. If places do not create a marked cycle but any place p
is also initially marked it should be encoded with code with
having 2Ri −1 values. This rule is required to ensure suitable
method of logic circuit resetting.

Then, let encode places colored by following colors. Before
encoding places colored with next color, first, all places that
have already assigned a code are removed from corresponding
set Pi:

Pi = Pi �
i−1⋃
ı=1

(Pı ∩Pi). (8)

Then reaming places are encoded according to the same rules
as described above.

For example the Petri net the encoding starts from the color
C1. First considered color always creates marked cycle be-
cause we do not remove any places from the set P1. So, it is
required to use R1 = 3 bits, according to (5), to encode these
places. And possible encoding of these places is shown in ta-
ble 1. Next, places colored by the color C2 can be encoded.
Because places p1, p14, p15, and p16 from the set P2 are al-
ready encoded because they are in the set P1, they are removed
from the set P2, and now P2 = {p3, p5, p10, p12}, according to
(8). Now, remaining places do not create marked cycle, so
there is required to use R2 = 3 bits, according to (6), to encode
these places, and encoding starts from the code 001 (Table 1).

In the similar way there places colored by colors C3 and C4 are
encoded (Table 1).

Formation of conjunctions.Conjunctions describe places
and transitions. They are needed for easier creation of equa-
tions that describe systems (3). The conjunction describing the
place pm consists of affirmation or negation of variables qr that
are used to store the code of this place. If the code has 0 on
the r-th bit then negation is used and if it has 1 then affirmation
is used. The conjunction describing the transition ts consists
of place conjunctions of input places to this transition and a
condition ϕs assigned to this transition.

For the sample Petri net, they are denoted as:

p1 = q2 ∧q1 ∧q0,

p2 = q2 ∧q1 ∧q0,

p3 = q5 ∧q4 ∧q3,

p4 = q2 ∧q1 ∧q0,

p5 = q5 ∧q4 ∧q3,

p6 = q9 ∧q8,

p7 = q7 ∧q6,

. . . ,

p16 = q2 ∧q1 ∧q0.

Transition conjunctions are denoted as:

t1 = p1 ∧ x0,

t2 = p2 ∧ x1,

t3 = p3 ∧ x3,

t4 = p4 ∧ p5,

t5 = p8 ∧ x5 ∧ x6,

. . . ,

t13 = p16 ∧ x9.

Formation of logic equations. Logic equations describe func-
tions (3) of combinational circuits CCi. They are created base
on D flip-flop equation and they are build of transition con-
junctions and place hold conjunctions. If the variable qr is set
to 1 in the code of the place p then the sum of corresponding
variable Dr consists of transition conjunctions of all its input
transitions and the place p hold conjunctions. The place pm
hold conjunction consists of negation of sum of transition con-
junctions of all its output transitions and its place conjunction.

For example, the equation for D0 is denoted as:

D0 = t1 ∨ (t2 ∧ p2)

∨ t4 ∨ (t7 ∧ p9)

∨ t10 ∨ (t11 ∧ p14)

∨ t12 ∨ (t13 ∧ p16).

Because the variable q0 is set to 1 in the code of places p2, p9,
p14, and p16 the sum of equation D0 consists of all input tran-
sition conjunctions of these places. In this case they are: t1,
t7, t11, and t13. Additionally, there have to be added hold con-
dition for all places in the case if place code has to be stored

Bull. Pol. Ac.: Tech. XX(Y) 2016 7

� (8)

Then reaming places are encoded according to the same rules
as described above.

For example the Petri net the encoding starts from the color
C1. First considered color always creates marked cycle because
we do not remove any places from the set P1. So, it is required
to use R1 = 3 bits, according to (5), to encode these places.
And possible encoding of these places is shown in table 1.
Next, places colored by the color C2 can be encoded. Because
places p1, p14, p15, and p16 from the set P2 are already encoded
because they are in the set P1, they are removed from the set P2,
and now P2 = fp3, p5, p10, p12g, according to (8). Now, remain-
ing places do not create marked cycle, so there is required to
use R2 = 3 bits, according to (6), to encode these places, and
encoding starts from the code 001 (Table 1). In the similar way
there places colored by colors C3 and C4 are encoded (Table 1).

Formation of conjunctions. Conjunctions describe places and
transitions. They are needed for easier creation of equations that
describe systems (3). The conjunction describing the place pm
consists of affirmation or negation of variables qr that are used
to store the code of this place. If the code has 0 on the r-th bit
then negation is used and if it has 1 then affirmation is used.
The conjunction describing the transition tS consists of place
conjunctions of input places to this transition and a condition
φs assigned to this transition.

For the sample Petri net, they are denoted as:

Dual Synthesis of Petri Net Based Application Specific Logic Controllers with Increased Safety

Table 1
Codes of places of Petri net

Color C1 Color C2 Color C3 Color C4

Place
Code

Place
Code

Place
Code

Place
Code

q2q1q0 q5q4q3 q7q6 q9q8

p1 000 p3 001 p7 01 p6 01
p2 001 p5 010 p8 10 p13 10
p4 010 p10 011
p9 011 p12 100
p11 100
p14 101
p15 110
p16 111

bits to encode them, where Pi ⊆ P is a set of places colored
by Ci color. Otherwise it is required to use:

Ri = �log2(|Pi|+1)� (6)

bits. Variables form set Qi ⊂ Q are used to store this code,
where Q = {q0, . . . ,qR−1}, where

R =
I

∑
i=1

Ri (7)

and Qi = {qρ−Ri , . . . ,qρ−1}, where ρ = ∑i
ı=1 Rı.

• If places do not create a marked cycle the encoding of places
starts form code with value 1. The code with value 0 is re-
served for situation when none place p ∈ Pi is marked. Oth-
erwise encoding starts from code with value 0.

• If places create a marked cycle, the place p that is initially
marked (p ∈ Pi ∧ p ∈ M0) is encoded with code with value
0. If places do not create a marked cycle but any place p
is also initially marked it should be encoded with code with
having 2Ri −1 values. This rule is required to ensure suitable
method of logic circuit resetting.

Then, let encode places colored by following colors. Before
encoding places colored with next color, first, all places that
have already assigned a code are removed from corresponding
set Pi:

Pi = Pi �
i−1⋃
ı=1

(Pı ∩Pi). (8)

Then reaming places are encoded according to the same rules
as described above.

For example the Petri net the encoding starts from the color
C1. First considered color always creates marked cycle be-
cause we do not remove any places from the set P1. So, it is
required to use R1 = 3 bits, according to (5), to encode these
places. And possible encoding of these places is shown in ta-
ble 1. Next, places colored by the color C2 can be encoded.
Because places p1, p14, p15, and p16 from the set P2 are al-
ready encoded because they are in the set P1, they are removed
from the set P2, and now P2 = {p3, p5, p10, p12}, according to
(8). Now, remaining places do not create marked cycle, so
there is required to use R2 = 3 bits, according to (6), to encode
these places, and encoding starts from the code 001 (Table 1).

In the similar way there places colored by colors C3 and C4 are
encoded (Table 1).

Formation of conjunctions.Conjunctions describe places
and transitions. They are needed for easier creation of equa-
tions that describe systems (3). The conjunction describing the
place pm consists of affirmation or negation of variables qr that
are used to store the code of this place. If the code has 0 on
the r-th bit then negation is used and if it has 1 then affirmation
is used. The conjunction describing the transition ts consists
of place conjunctions of input places to this transition and a
condition ϕs assigned to this transition.

For the sample Petri net, they are denoted as:

p1 = q2 ∧q1 ∧q0,

p2 = q2 ∧q1 ∧q0,

p3 = q5 ∧q4 ∧q3,

p4 = q2 ∧q1 ∧q0,

p5 = q5 ∧q4 ∧q3,

p6 = q9 ∧q8,

p7 = q7 ∧q6,

. . . ,

p16 = q2 ∧q1 ∧q0.

Transition conjunctions are denoted as:

t1 = p1 ∧ x0,

t2 = p2 ∧ x1,

t3 = p3 ∧ x3,

t4 = p4 ∧ p5,

t5 = p8 ∧ x5 ∧ x6,

. . . ,

t13 = p16 ∧ x9.

Formation of logic equations. Logic equations describe func-
tions (3) of combinational circuits CCi. They are created base
on D flip-flop equation and they are build of transition con-
junctions and place hold conjunctions. If the variable qr is set
to 1 in the code of the place p then the sum of corresponding
variable Dr consists of transition conjunctions of all its input
transitions and the place p hold conjunctions. The place pm
hold conjunction consists of negation of sum of transition con-
junctions of all its output transitions and its place conjunction.

For example, the equation for D0 is denoted as:

D0 = t1 ∨ (t2 ∧ p2)

∨ t4 ∨ (t7 ∧ p9)

∨ t10 ∨ (t11 ∧ p14)

∨ t12 ∨ (t13 ∧ p16).

Because the variable q0 is set to 1 in the code of places p2, p9,
p14, and p16 the sum of equation D0 consists of all input tran-
sition conjunctions of these places. In this case they are: t1,
t7, t11, and t13. Additionally, there have to be added hold con-
dition for all places in the case if place code has to be stored

Bull. Pol. Ac.: Tech. XX(Y) 2016 7

Transition conjunctions are denoted as:

Dual Synthesis of Petri Net Based Application Specific Logic Controllers with Increased Safety

Table 1
Codes of places of Petri net

Color C1 Color C2 Color C3 Color C4

Place
Code

Place
Code

Place
Code

Place
Code

q2q1q0 q5q4q3 q7q6 q9q8

p1 000 p3 001 p7 01 p6 01
p2 001 p5 010 p8 10 p13 10
p4 010 p10 011
p9 011 p12 100
p11 100
p14 101
p15 110
p16 111

bits to encode them, where Pi ⊆ P is a set of places colored
by Ci color. Otherwise it is required to use:

Ri = �log2(|Pi|+1)� (6)

bits. Variables form set Qi ⊂ Q are used to store this code,
where Q = {q0, . . . ,qR−1}, where

R =
I

∑
i=1

Ri (7)

and Qi = {qρ−Ri , . . . ,qρ−1}, where ρ = ∑i
ı=1 Rı.

• If places do not create a marked cycle the encoding of places
starts form code with value 1. The code with value 0 is re-
served for situation when none place p ∈ Pi is marked. Oth-
erwise encoding starts from code with value 0.

• If places create a marked cycle, the place p that is initially
marked (p ∈ Pi ∧ p ∈ M0) is encoded with code with value
0. If places do not create a marked cycle but any place p
is also initially marked it should be encoded with code with
having 2Ri −1 values. This rule is required to ensure suitable
method of logic circuit resetting.

Then, let encode places colored by following colors. Before
encoding places colored with next color, first, all places that
have already assigned a code are removed from corresponding
set Pi:

Pi = Pi �
i−1⋃
ı=1

(Pı ∩Pi). (8)

Then reaming places are encoded according to the same rules
as described above.

For example the Petri net the encoding starts from the color
C1. First considered color always creates marked cycle be-
cause we do not remove any places from the set P1. So, it is
required to use R1 = 3 bits, according to (5), to encode these
places. And possible encoding of these places is shown in ta-
ble 1. Next, places colored by the color C2 can be encoded.
Because places p1, p14, p15, and p16 from the set P2 are al-
ready encoded because they are in the set P1, they are removed
from the set P2, and now P2 = {p3, p5, p10, p12}, according to
(8). Now, remaining places do not create marked cycle, so
there is required to use R2 = 3 bits, according to (6), to encode
these places, and encoding starts from the code 001 (Table 1).

In the similar way there places colored by colors C3 and C4 are
encoded (Table 1).

Formation of conjunctions.Conjunctions describe places
and transitions. They are needed for easier creation of equa-
tions that describe systems (3). The conjunction describing the
place pm consists of affirmation or negation of variables qr that
are used to store the code of this place. If the code has 0 on
the r-th bit then negation is used and if it has 1 then affirmation
is used. The conjunction describing the transition ts consists
of place conjunctions of input places to this transition and a
condition ϕs assigned to this transition.

For the sample Petri net, they are denoted as:

p1 = q2 ∧q1 ∧q0,

p2 = q2 ∧q1 ∧q0,

p3 = q5 ∧q4 ∧q3,

p4 = q2 ∧q1 ∧q0,

p5 = q5 ∧q4 ∧q3,

p6 = q9 ∧q8,

p7 = q7 ∧q6,

. . . ,

p16 = q2 ∧q1 ∧q0.

Transition conjunctions are denoted as:

t1 = p1 ∧ x0,

t2 = p2 ∧ x1,

t3 = p3 ∧ x3,

t4 = p4 ∧ p5,

t5 = p8 ∧ x5 ∧ x6,

. . . ,

t13 = p16 ∧ x9.

Formation of logic equations. Logic equations describe func-
tions (3) of combinational circuits CCi. They are created base
on D flip-flop equation and they are build of transition con-
junctions and place hold conjunctions. If the variable qr is set
to 1 in the code of the place p then the sum of corresponding
variable Dr consists of transition conjunctions of all its input
transitions and the place p hold conjunctions. The place pm
hold conjunction consists of negation of sum of transition con-
junctions of all its output transitions and its place conjunction.

For example, the equation for D0 is denoted as:

D0 = t1 ∨ (t2 ∧ p2)

∨ t4 ∨ (t7 ∧ p9)

∨ t10 ∨ (t11 ∧ p14)

∨ t12 ∨ (t13 ∧ p16).

Because the variable q0 is set to 1 in the code of places p2, p9,
p14, and p16 the sum of equation D0 consists of all input tran-
sition conjunctions of these places. In this case they are: t1,
t7, t11, and t13. Additionally, there have to be added hold con-
dition for all places in the case if place code has to be stored

Bull. Pol. Ac.: Tech. XX(Y) 2016 7

Formation of logic equations. Logic equations describe func-
tions (3) of combinational circuits CCi. They are created base
on D flip-flop equation and they are build of transition conjunc-
tions and place hold conjunctions. If the variable qr is set to 1 in
the code of the place p then the sum of corresponding variable
Dr consists of transition conjunctions of all its input transitions

Table 1
Codes of places of Petri net

Dual Synthesis of Petri Net Based Application Specific Logic Controllers with Increased Safety

Table 1
Codes of places of Petri net

Color C1 Color C2 Color C3 Color C4

Place
Code

Place
Code

Place
Code

Place
Code

q2q1q0 q5q4q3 q7q6 q9q8

p1 000 p3 001 p7 01 p6 01
p2 001 p5 010 p8 10 p13 10
p4 010 p10 011
p9 011 p12 100
p11 100
p14 101
p15 110
p16 111

bits to encode them, where Pi ⊆ P is a set of places colored
by Ci color. Otherwise it is required to use:

Ri = �log2(|Pi|+1)� (6)

bits. Variables form set Qi ⊂ Q are used to store this code,
where Q = {q0, . . . ,qR−1}, where

R =
I

∑
i=1

Ri (7)

and Qi = {qρ−Ri , . . . ,qρ−1}, where ρ = ∑i
ı=1 Rı.

• If places do not create a marked cycle the encoding of places
starts form code with value 1. The code with value 0 is re-
served for situation when none place p ∈ Pi is marked. Oth-
erwise encoding starts from code with value 0.

• If places create a marked cycle, the place p that is initially
marked (p ∈ Pi ∧ p ∈ M0) is encoded with code with value
0. If places do not create a marked cycle but any place p
is also initially marked it should be encoded with code with
having 2Ri −1 values. This rule is required to ensure suitable
method of logic circuit resetting.

Then, let encode places colored by following colors. Before
encoding places colored with next color, first, all places that
have already assigned a code are removed from corresponding
set Pi:

Pi = Pi �
i−1⋃
ı=1

(Pı ∩Pi). (8)

Then reaming places are encoded according to the same rules
as described above.

For example the Petri net the encoding starts from the color
C1. First considered color always creates marked cycle be-
cause we do not remove any places from the set P1. So, it is
required to use R1 = 3 bits, according to (5), to encode these
places. And possible encoding of these places is shown in ta-
ble 1. Next, places colored by the color C2 can be encoded.
Because places p1, p14, p15, and p16 from the set P2 are al-
ready encoded because they are in the set P1, they are removed
from the set P2, and now P2 = {p3, p5, p10, p12}, according to
(8). Now, remaining places do not create marked cycle, so
there is required to use R2 = 3 bits, according to (6), to encode
these places, and encoding starts from the code 001 (Table 1).

In the similar way there places colored by colors C3 and C4 are
encoded (Table 1).

Formation of conjunctions.Conjunctions describe places
and transitions. They are needed for easier creation of equa-
tions that describe systems (3). The conjunction describing the
place pm consists of affirmation or negation of variables qr that
are used to store the code of this place. If the code has 0 on
the r-th bit then negation is used and if it has 1 then affirmation
is used. The conjunction describing the transition ts consists
of place conjunctions of input places to this transition and a
condition ϕs assigned to this transition.

For the sample Petri net, they are denoted as:

p1 = q2 ∧q1 ∧q0,

p2 = q2 ∧q1 ∧q0,

p3 = q5 ∧q4 ∧q3,

p4 = q2 ∧q1 ∧q0,

p5 = q5 ∧q4 ∧q3,

p6 = q9 ∧q8,

p7 = q7 ∧q6,

. . . ,

p16 = q2 ∧q1 ∧q0.

Transition conjunctions are denoted as:

t1 = p1 ∧ x0,

t2 = p2 ∧ x1,

t3 = p3 ∧ x3,

t4 = p4 ∧ p5,

t5 = p8 ∧ x5 ∧ x6,

. . . ,

t13 = p16 ∧ x9.

Formation of logic equations. Logic equations describe func-
tions (3) of combinational circuits CCi. They are created base
on D flip-flop equation and they are build of transition con-
junctions and place hold conjunctions. If the variable qr is set
to 1 in the code of the place p then the sum of corresponding
variable Dr consists of transition conjunctions of all its input
transitions and the place p hold conjunctions. The place pm
hold conjunction consists of negation of sum of transition con-
junctions of all its output transitions and its place conjunction.

For example, the equation for D0 is denoted as:

D0 = t1 ∨ (t2 ∧ p2)

∨ t4 ∨ (t7 ∧ p9)

∨ t10 ∨ (t11 ∧ p14)

∨ t12 ∨ (t13 ∧ p16).

Because the variable q0 is set to 1 in the code of places p2, p9,
p14, and p16 the sum of equation D0 consists of all input tran-
sition conjunctions of these places. In this case they are: t1,
t7, t11, and t13. Additionally, there have to be added hold con-
dition for all places in the case if place code has to be stored

Bull. Pol. Ac.: Tech. XX(Y) 2016 7

474 Bull. Pol. Ac.: Tech. 64(3) 2016

J. Tkacz, A. Bukowiec, and M. Adamski

and the place p hold conjunctions. The place pm hold conjunc-
tion consists of negation of sum of transition conjunctions of
all its output transitions and its place conjunction.

For example, the equation for D0 is denoted as:

Dual Synthesis of Petri Net Based Application Specific Logic Controllers with Increased Safety

Table 1
Codes of places of Petri net

Color C1 Color C2 Color C3 Color C4

Place
Code

Place
Code

Place
Code

Place
Code

q2q1q0 q5q4q3 q7q6 q9q8

p1 000 p3 001 p7 01 p6 01
p2 001 p5 010 p8 10 p13 10
p4 010 p10 011
p9 011 p12 100
p11 100
p14 101
p15 110
p16 111

bits to encode them, where Pi ⊆ P is a set of places colored
by Ci color. Otherwise it is required to use:

Ri = �log2(|Pi|+1)� (6)

bits. Variables form set Qi ⊂ Q are used to store this code,
where Q = {q0, . . . ,qR−1}, where

R =
I

∑
i=1

Ri (7)

and Qi = {qρ−Ri , . . . ,qρ−1}, where ρ = ∑i
ı=1 Rı.

• If places do not create a marked cycle the encoding of places
starts form code with value 1. The code with value 0 is re-
served for situation when none place p ∈ Pi is marked. Oth-
erwise encoding starts from code with value 0.

• If places create a marked cycle, the place p that is initially
marked (p ∈ Pi ∧ p ∈ M0) is encoded with code with value
0. If places do not create a marked cycle but any place p
is also initially marked it should be encoded with code with
having 2Ri −1 values. This rule is required to ensure suitable
method of logic circuit resetting.

Then, let encode places colored by following colors. Before
encoding places colored with next color, first, all places that
have already assigned a code are removed from corresponding
set Pi:

Pi = Pi �
i−1⋃
ı=1

(Pı ∩Pi). (8)

Then reaming places are encoded according to the same rules
as described above.

For example the Petri net the encoding starts from the color
C1. First considered color always creates marked cycle be-
cause we do not remove any places from the set P1. So, it is
required to use R1 = 3 bits, according to (5), to encode these
places. And possible encoding of these places is shown in ta-
ble 1. Next, places colored by the color C2 can be encoded.
Because places p1, p14, p15, and p16 from the set P2 are al-
ready encoded because they are in the set P1, they are removed
from the set P2, and now P2 = {p3, p5, p10, p12}, according to
(8). Now, remaining places do not create marked cycle, so
there is required to use R2 = 3 bits, according to (6), to encode
these places, and encoding starts from the code 001 (Table 1).

In the similar way there places colored by colors C3 and C4 are
encoded (Table 1).

Formation of conjunctions.Conjunctions describe places
and transitions. They are needed for easier creation of equa-
tions that describe systems (3). The conjunction describing the
place pm consists of affirmation or negation of variables qr that
are used to store the code of this place. If the code has 0 on
the r-th bit then negation is used and if it has 1 then affirmation
is used. The conjunction describing the transition ts consists
of place conjunctions of input places to this transition and a
condition ϕs assigned to this transition.

For the sample Petri net, they are denoted as:

p1 = q2 ∧q1 ∧q0,

p2 = q2 ∧q1 ∧q0,

p3 = q5 ∧q4 ∧q3,

p4 = q2 ∧q1 ∧q0,

p5 = q5 ∧q4 ∧q3,

p6 = q9 ∧q8,

p7 = q7 ∧q6,

. . . ,

p16 = q2 ∧q1 ∧q0.

Transition conjunctions are denoted as:

t1 = p1 ∧ x0,

t2 = p2 ∧ x1,

t3 = p3 ∧ x3,

t4 = p4 ∧ p5,

t5 = p8 ∧ x5 ∧ x6,

. . . ,

t13 = p16 ∧ x9.

Formation of logic equations. Logic equations describe func-
tions (3) of combinational circuits CCi. They are created base
on D flip-flop equation and they are build of transition con-
junctions and place hold conjunctions. If the variable qr is set
to 1 in the code of the place p then the sum of corresponding
variable Dr consists of transition conjunctions of all its input
transitions and the place p hold conjunctions. The place pm
hold conjunction consists of negation of sum of transition con-
junctions of all its output transitions and its place conjunction.

For example, the equation for D0 is denoted as:

D0 = t1 ∨ (t2 ∧ p2)

∨ t4 ∨ (t7 ∧ p9)

∨ t10 ∨ (t11 ∧ p14)

∨ t12 ∨ (t13 ∧ p16).

Because the variable q0 is set to 1 in the code of places p2, p9,
p14, and p16 the sum of equation D0 consists of all input tran-
sition conjunctions of these places. In this case they are: t1,
t7, t11, and t13. Additionally, there have to be added hold con-
dition for all places in the case if place code has to be stored

Bull. Pol. Ac.: Tech. XX(Y) 2016 7

Because the variable q0 is set to 1 in the code of places p2, p9,
p14, and p16 the sum of equation D0 consists of all input transi-
tion conjunctions of these places. In this case they are: t1, t7, t11,
and t13. Additionally, there have to be added hold condition for
all places in the case if place code has to be stored for longer
period than one clock cycle. This hold condition is denoted as
conjunction of sum of negation of all output transition conjunc-
tions and place conjunction, and, for example, for the place p2 it
is denoted as  ͞t2 ˄ p2. In the similar way the remaining equations
from D1 to D9 are formed. Of course, these equations can be
minimized after putting conjunctions instead of correspond-
ing variables. But this manipulation will be done automatically
during synthesis & implementation process.

Formation of memory content. The memory content can
be described as table or as equations according to the system
(4). The table consists of two columns. First column is an
address and it is described by variables qr 2 Q. It should be
mentioned that these variables represent superposition of codes
of all states from all subnets, not only allowed markings. The
second column is an operation. The operation is represented by
output variables from the set Y. It should only set these vari-
ables that are in elementary conjunctions ψm that are associated
to the places included in superposition of current address. This
table is very often long because it has 2R lines. The other way
to describe this memory is the creation of one logic equation
to describe each output variable. It describes output variable
as a sum of place conjunctions of places corresponding to the
elementary conjunctions ψm that consist of corresponding out-
put variable.

Because the table describing memory for the example Petri
net should have 1024 lines it was decided to create equations to
describe each output. In this case, they are denoted as:

for longer period than one clock cycle. This hold condition is
denoted as conjunction of sum of negation of all output transi-
tion conjunctions and place conjunction, and, for example, for
the place p2 it is denoted as t2 ∧ p2. In the similar way the re-
maining equations from D1 to D9 are formed. Of course, these
equations can be minimized after putting conjunctions instead
of corresponding variables. But this manipulation will be done
automatically during synthesis & implementation process.

Formation of memory content. The memory content can be
described as table or as equations according to the system (4).
The table consists of two columns. First column is an address
and it is described by variables qr ∈ Q. It should be men-
tioned that these variables represent superposition of codes of
all states from all subnets, not only allowed markings. The
second column is an operation. The operation is represented
by output variables from the set Y . It should only set these
variables that are in elementary conjunctions ψm that are as-
sociated to the places included in superposition of current ad-
dress. This table is very often long because it has 2R lines.
The other way to describe this memory is the creation of one
logic equation to describe each output variable. It describes
output variable as a sum of place conjunctions of places cor-
responding to the elementary conjunctions ψm that consist of
corresponding output variable.

Because the table describing memory for the example Petri
net should have 1024 lines it was decided to create equations
to describe each output. In this case, they are denoted as:

y0 = p1,

y1 = p2,

. . . ,

y9 = p6.

The transformation of equations into the memory table will
be done automatically during the synthesis & implementation
process.

Formation of logic circuit and implementation. This step
describes the rules of creation of Petri net HDL model in Ver-
ilog and its implementation into FPGA device. Bottom-up ap-
proach is applied. Places and transitions conjunctions can be
described using standard bit-wise operators. Then logic equa-
tions can be described with the use of these conjunctions also
using bit-wise operators. There should be created a separate
module for each circuit CCi with inputs X and Q and outputs
Di. As place and transition conjunctions are going to be used
in several files one include file cons.vh is created that defines
their equations (Fig. 9). Then, modules describing combina-
tional circuits using command are created (Fig. 10).

The RGi register should be described as Ri-bits D-type reg-
ister with asynchronous reset or set. The typical synthesis tem-
plate can be used. The rules of choosing set or reset are fol-
lowing:

• if places from the set Pi create a marked cycle or any place

Fig. 9. Part of cons.vh file

Fig. 10. Part of CC1.v file

Fig. 11. RG1.v file

is not initially marked the register should have an asyn-
chronous reset,

• if places from the set Pi do not create a marked cycle but any
place p is initially marked it should have an asynchronous
set.

In our case all register should have reset signal (Fig. 11). Of
course, we need to create only two registers one 3-bits and
one 2-bits and then create two instantiation of each one. The
global reset of Petri net logic circuit will be connected to these
reset/set inputs. It will assure suitable initialization of circuit.

The Y memory can be also described with logic equations.
To synthesize it as memory it is required to add special syn-
thesis directive. The syntax of this directive depends on FPGA
vendor. Because, typically, embedded memory blocks are syn-
chronous it is also required to create a clock input and syn-
chronous reset. In our case it is targeted on Xilinix devices
and it is described using logic equations. The block
with clock signal on the sensitivity list is used and
synthesis attribute is set to value (Fig. 12).

The top-level module (Fig. 13) should describe connections

8 Bull. Pol. Ac.: Tech. XX(Y) 2016

The transformation of equations into the memory table will
be done automatically during the synthesis & implementation
process.

Formation of logic circuit and implementation. This step de-
scribes the rules of creation of Petri net HDL model in Verilog

and its implementation into FPGA device. Bottom-up approach
is applied. Places and transitions conjunctions can be described
using standard bit-wise operators. Then logic equations can be
described with the use of these conjunctions also using bit-wise
operators. There should be created a separate module for each
circuit CCi with inputs X and Q and outputs Di. As place and
transition conjunctions are going to be used in several files
one include file cons.vh is created that defines their equations
(Fig. 9). Then, modules describing combinational circuits using
assign command are created (Fig. 10).

Fig. 9. Part of cons.vh file

for longer period than one clock cycle. This hold condition is
denoted as conjunction of sum of negation of all output transi-
tion conjunctions and place conjunction, and, for example, for
the place p2 it is denoted as t2 ∧ p2. In the similar way the re-
maining equations from D1 to D9 are formed. Of course, these
equations can be minimized after putting conjunctions instead
of corresponding variables. But this manipulation will be done
automatically during synthesis & implementation process.

Formation of memory content. The memory content can be
described as table or as equations according to the system (4).
The table consists of two columns. First column is an address
and it is described by variables qr ∈ Q. It should be men-
tioned that these variables represent superposition of codes of
all states from all subnets, not only allowed markings. The
second column is an operation. The operation is represented
by output variables from the set Y . It should only set these
variables that are in elementary conjunctions ψm that are as-
sociated to the places included in superposition of current ad-
dress. This table is very often long because it has 2R lines.
The other way to describe this memory is the creation of one
logic equation to describe each output variable. It describes
output variable as a sum of place conjunctions of places cor-
responding to the elementary conjunctions ψm that consist of
corresponding output variable.

Because the table describing memory for the example Petri
net should have 1024 lines it was decided to create equations
to describe each output. In this case, they are denoted as:

y0 = p1,

y1 = p2,

. . . ,

y9 = p6.

The transformation of equations into the memory table will
be done automatically during the synthesis & implementation
process.

Formation of logic circuit and implementation. This step
describes the rules of creation of Petri net HDL model in Ver-
ilog and its implementation into FPGA device. Bottom-up ap-
proach is applied. Places and transitions conjunctions can be
described using standard bit-wise operators. Then logic equa-
tions can be described with the use of these conjunctions also
using bit-wise operators. There should be created a separate
module for each circuit CCi with inputs X and Q and outputs
Di. As place and transition conjunctions are going to be used
in several files one include file cons.vh is created that defines
their equations (Fig. 9). Then, modules describing combina-
tional circuits using command are created (Fig. 10).

The RGi register should be described as Ri-bits D-type reg-
ister with asynchronous reset or set. The typical synthesis tem-
plate can be used. The rules of choosing set or reset are fol-
lowing:

• if places from the set Pi create a marked cycle or any place

Fig. 9. Part of cons.vh file

Fig. 10. Part of CC1.v file

Fig. 11. RG1.v file

is not initially marked the register should have an asyn-
chronous reset,

• if places from the set Pi do not create a marked cycle but any
place p is initially marked it should have an asynchronous
set.

In our case all register should have reset signal (Fig. 11). Of
course, we need to create only two registers one 3-bits and
one 2-bits and then create two instantiation of each one. The
global reset of Petri net logic circuit will be connected to these
reset/set inputs. It will assure suitable initialization of circuit.

The Y memory can be also described with logic equations.
To synthesize it as memory it is required to add special syn-
thesis directive. The syntax of this directive depends on FPGA
vendor. Because, typically, embedded memory blocks are syn-
chronous it is also required to create a clock input and syn-
chronous reset. In our case it is targeted on Xilinix devices
and it is described using logic equations. The block
with clock signal on the sensitivity list is used and
synthesis attribute is set to value (Fig. 12).

The top-level module (Fig. 13) should describe connections

8 Bull. Pol. Ac.: Tech. XX(Y) 2016

Fig. 10. Part of CC1.v file

for longer period than one clock cycle. This hold condition is
denoted as conjunction of sum of negation of all output transi-
tion conjunctions and place conjunction, and, for example, for
the place p2 it is denoted as t2 ∧ p2. In the similar way the re-
maining equations from D1 to D9 are formed. Of course, these
equations can be minimized after putting conjunctions instead
of corresponding variables. But this manipulation will be done
automatically during synthesis & implementation process.

Formation of memory content. The memory content can be
described as table or as equations according to the system (4).
The table consists of two columns. First column is an address
and it is described by variables qr ∈ Q. It should be men-
tioned that these variables represent superposition of codes of
all states from all subnets, not only allowed markings. The
second column is an operation. The operation is represented
by output variables from the set Y . It should only set these
variables that are in elementary conjunctions ψm that are as-
sociated to the places included in superposition of current ad-
dress. This table is very often long because it has 2R lines.
The other way to describe this memory is the creation of one
logic equation to describe each output variable. It describes
output variable as a sum of place conjunctions of places cor-
responding to the elementary conjunctions ψm that consist of
corresponding output variable.

Because the table describing memory for the example Petri
net should have 1024 lines it was decided to create equations
to describe each output. In this case, they are denoted as:

y0 = p1,

y1 = p2,

. . . ,

y9 = p6.

The transformation of equations into the memory table will
be done automatically during the synthesis & implementation
process.

Formation of logic circuit and implementation. This step
describes the rules of creation of Petri net HDL model in Ver-
ilog and its implementation into FPGA device. Bottom-up ap-
proach is applied. Places and transitions conjunctions can be
described using standard bit-wise operators. Then logic equa-
tions can be described with the use of these conjunctions also
using bit-wise operators. There should be created a separate
module for each circuit CCi with inputs X and Q and outputs
Di. As place and transition conjunctions are going to be used
in several files one include file cons.vh is created that defines
their equations (Fig. 9). Then, modules describing combina-
tional circuits using command are created (Fig. 10).

The RGi register should be described as Ri-bits D-type reg-
ister with asynchronous reset or set. The typical synthesis tem-
plate can be used. The rules of choosing set or reset are fol-
lowing:

• if places from the set Pi create a marked cycle or any place

Fig. 9. Part of cons.vh file

Fig. 10. Part of CC1.v file

Fig. 11. RG1.v file

is not initially marked the register should have an asyn-
chronous reset,

• if places from the set Pi do not create a marked cycle but any
place p is initially marked it should have an asynchronous
set.

In our case all register should have reset signal (Fig. 11). Of
course, we need to create only two registers one 3-bits and
one 2-bits and then create two instantiation of each one. The
global reset of Petri net logic circuit will be connected to these
reset/set inputs. It will assure suitable initialization of circuit.

The Y memory can be also described with logic equations.
To synthesize it as memory it is required to add special syn-
thesis directive. The syntax of this directive depends on FPGA
vendor. Because, typically, embedded memory blocks are syn-
chronous it is also required to create a clock input and syn-
chronous reset. In our case it is targeted on Xilinix devices
and it is described using logic equations. The block
with clock signal on the sensitivity list is used and
synthesis attribute is set to value (Fig. 12).

The top-level module (Fig. 13) should describe connections

8 Bull. Pol. Ac.: Tech. XX(Y) 2016

The RG i register should be described as Ri-bits D-type
register with asynchronous reset or set. The typical synthesis
template can be used. The rules of choosing set or reset are
following:
●	 if places from the set Pi create a marked cycle or any place

is not initially marked the register should have an asyn-
chronous reset,

●	 if places from the set Pi do not create a marked cycle but
any place p is initially marked it should have an asynchro-
nous set.

In our case all register should have reset signal (Fig. 11). Of
course, we need to create only two registers one 3-bits and
one 2-bits and then create two instantiation of each one. The
global reset of Petri net logic circuit will be connected to these
reset/set inputs. It will assure suitable initialization of circuit.
The Y memory can be also described with logic equations. To
synthesize it as memory it is required to add special synthesis

475Bull. Pol. Ac.: Tech. 64(3) 2016

Dual synthesis of Petri net based application specific logic controllers with increased safety

directive. The syntax of this directive depends on FPGA vendor.
Because, typically, embedded memory blocks are synchronous
it is also required to create a clock input and synchronous reset.
In our case it is targeted on Xilinix devices and it is described
using logic equations. The always block with clock signal on
the sensitivity list is used and bram_map synthesis attribute is
set to value yes (Fig. 12).

7.3. Dual verification. The control algorithm can be verified
by applying dual verification procedure (Fig. 14). This proce-
dure is based on simultaneous simulation of both models [10].

Fig. 14. Dual Verification Flow

PETRI
NET

DUAL SYNTHESIS

MODULAR
SYNTHESIS

ARCHITECTURAL
SYNTHESIS

MODEL
A

MODEL
B

TEST
BENCH

DUAL VERYFICATION

DUAL SIMULATION

RESULTS
A

RESULTS
B

COMPARISION

O.K. ?

Fig. 11. RG1.v file

for longer period than one clock cycle. This hold condition is
denoted as conjunction of sum of negation of all output transi-
tion conjunctions and place conjunction, and, for example, for
the place p2 it is denoted as t2 ∧ p2. In the similar way the re-
maining equations from D1 to D9 are formed. Of course, these
equations can be minimized after putting conjunctions instead
of corresponding variables. But this manipulation will be done
automatically during synthesis & implementation process.

Formation of memory content. The memory content can be
described as table or as equations according to the system (4).
The table consists of two columns. First column is an address
and it is described by variables qr ∈ Q. It should be men-
tioned that these variables represent superposition of codes of
all states from all subnets, not only allowed markings. The
second column is an operation. The operation is represented
by output variables from the set Y . It should only set these
variables that are in elementary conjunctions ψm that are as-
sociated to the places included in superposition of current ad-
dress. This table is very often long because it has 2R lines.
The other way to describe this memory is the creation of one
logic equation to describe each output variable. It describes
output variable as a sum of place conjunctions of places cor-
responding to the elementary conjunctions ψm that consist of
corresponding output variable.

Because the table describing memory for the example Petri
net should have 1024 lines it was decided to create equations
to describe each output. In this case, they are denoted as:

y0 = p1,

y1 = p2,

. . . ,

y9 = p6.

The transformation of equations into the memory table will
be done automatically during the synthesis & implementation
process.

Formation of logic circuit and implementation. This step
describes the rules of creation of Petri net HDL model in Ver-
ilog and its implementation into FPGA device. Bottom-up ap-
proach is applied. Places and transitions conjunctions can be
described using standard bit-wise operators. Then logic equa-
tions can be described with the use of these conjunctions also
using bit-wise operators. There should be created a separate
module for each circuit CCi with inputs X and Q and outputs
Di. As place and transition conjunctions are going to be used
in several files one include file cons.vh is created that defines
their equations (Fig. 9). Then, modules describing combina-
tional circuits using command are created (Fig. 10).

The RGi register should be described as Ri-bits D-type reg-
ister with asynchronous reset or set. The typical synthesis tem-
plate can be used. The rules of choosing set or reset are fol-
lowing:

• if places from the set Pi create a marked cycle or any place

Fig. 9. Part of cons.vh file

Fig. 10. Part of CC1.v file

Fig. 11. RG1.v file

is not initially marked the register should have an asyn-
chronous reset,

• if places from the set Pi do not create a marked cycle but any
place p is initially marked it should have an asynchronous
set.

In our case all register should have reset signal (Fig. 11). Of
course, we need to create only two registers one 3-bits and
one 2-bits and then create two instantiation of each one. The
global reset of Petri net logic circuit will be connected to these
reset/set inputs. It will assure suitable initialization of circuit.

The Y memory can be also described with logic equations.
To synthesize it as memory it is required to add special syn-
thesis directive. The syntax of this directive depends on FPGA
vendor. Because, typically, embedded memory blocks are syn-
chronous it is also required to create a clock input and syn-
chronous reset. In our case it is targeted on Xilinix devices
and it is described using logic equations. The block
with clock signal on the sensitivity list is used and
synthesis attribute is set to value (Fig. 12).

The top-level module (Fig. 13) should describe connections

8 Bull. Pol. Ac.: Tech. XX(Y) 2016

Fig. 12. Part of Y.v file

Dual Synthesis of Petri Net Based Application Specific Logic Controllers with Increased Safety

Fig. 12. Part of Y.v file

Fig. 13. topPN1.v file

of all modules according to the logic scheme presented in fig-
ure 8. Additionally the global reset signal should be connected
to reset/set inputs of registers and reset of memory. The global
clock signal should be connected to registers and memory. The
memory should be trigged by the opposite edge instead of reg-
isters. It allows operations to be generated in one clock cy-
cle when the state register value is stabilized. Model of logic
circuit created in this way can be transferred to a third-party
synthesis tool.

7.3. Dual Verification The control algorithm can be verified
by applying dual verification procedure (Fig. 14). This proce-
dure is based on simultaneous simulation of both models [10].

For the simulation, a testbench is used. The testbench gen-
erates the same input signals for both models at the same time.
Additionally, it compares the output signals. If the comparison
process does not detect any differences it means that control

PETRI
NET

DUAL SYNTHESIS

MODULAR
SYNTHESIS

ARCHITECTURAL
SYNTHESIS

MODEL
A

MODEL
B

TEST
BENCH

DUAL VERYFICATION

DUAL SIMULATION

RESULTS
A

RESULTS
B

COMPARISION

O.K. ?

Fig. 14. Dual Verification Flow

Fig. 16. tbrc.v file

algorithm is a proper design. Because two different formal
methods of synthesis are used, mathematically proofed, there
are no possibility to obtain wrong models. If the comparison
process detects any differences it means that Petri net model is
ambivalence and it has to be corrected by the designer.

The part of dual simulation of a sample Petri net PN1 is
shown in waveform in figure 15. To obtain these results a re-
sult comparison testbench was prepared (Fig. 16). There are
instantiated both models as unit under tests (UUTs): UUT1
and UUT2. The STIMUL process generates all input signals
(CLK, RES, and X) and they are connected to both UUTs. It

Bull. Pol. Ac.: Tech. XX(Y) 2016 9

Fig. 13. topPN1.v file

Dual Synthesis of Petri Net Based Application Specific Logic Controllers with Increased Safety

Fig. 12. Part of Y.v file

Fig. 13. topPN1.v file

of all modules according to the logic scheme presented in fig-
ure 8. Additionally the global reset signal should be connected
to reset/set inputs of registers and reset of memory. The global
clock signal should be connected to registers and memory. The
memory should be trigged by the opposite edge instead of reg-
isters. It allows operations to be generated in one clock cy-
cle when the state register value is stabilized. Model of logic
circuit created in this way can be transferred to a third-party
synthesis tool.

7.3. Dual Verification The control algorithm can be verified
by applying dual verification procedure (Fig. 14). This proce-
dure is based on simultaneous simulation of both models [10].

For the simulation, a testbench is used. The testbench gen-
erates the same input signals for both models at the same time.
Additionally, it compares the output signals. If the comparison
process does not detect any differences it means that control

PETRI
NET

DUAL SYNTHESIS

MODULAR
SYNTHESIS

ARCHITECTURAL
SYNTHESIS

MODEL
A

MODEL
B

TEST
BENCH

DUAL VERYFICATION

DUAL SIMULATION

RESULTS
A

RESULTS
B

COMPARISION

O.K. ?

Fig. 14. Dual Verification Flow

Fig. 16. tbrc.v file

algorithm is a proper design. Because two different formal
methods of synthesis are used, mathematically proofed, there
are no possibility to obtain wrong models. If the comparison
process detects any differences it means that Petri net model is
ambivalence and it has to be corrected by the designer.

The part of dual simulation of a sample Petri net PN1 is
shown in waveform in figure 15. To obtain these results a re-
sult comparison testbench was prepared (Fig. 16). There are
instantiated both models as unit under tests (UUTs): UUT1
and UUT2. The STIMUL process generates all input signals
(CLK, RES, and X) and they are connected to both UUTs. It

Bull. Pol. Ac.: Tech. XX(Y) 2016 9
The top-level module (Fig. 13) should describe connections

of all modules according to the logic scheme presented in fig-
ure 8. Additionally the global reset signal should be connected
to reset/set inputs of registers and reset of memory. The glob-
al clock signal should be connected to registers and memory.
The memory should be trigged by the opposite edge instead
of registers. It allows operations to be generated in one clock
cycle when the state register value is stabilized. Model of logic
circuit created in this way can be transferred to a third-party
synthesis tool.

476 Bull. Pol. Ac.: Tech. 64(3) 2016

J. Tkacz, A. Bukowiec, and M. Adamski

For the simulation, a testbench is used. The testbench gen-
erates the same input signals for both models at the same time.
Additionally, it compares the output signals. If the comparison
process does not detect any differences it means that control al-
gorithm is a proper design. Because two different formal meth-
ods of synthesis are used, mathematically proofed, there are no
possibility to obtain wrong models. If the comparison process
detects any differences it means that Petri net model is ambiv-
alence and it has to be corrected by the designer.

The part of dual simulation of a sample Petri net PN1 is
shown in waveform in figure 15. To obtain these results a re-
sult comparison testbench was prepared (Fig. 16). There are
instantiated both models as unit under tests (UUTs): UUT1 and
UUT2. The STIMUL process generates all input signals (CLK,
RES, and X) and they are connected to both UUTs. It ensures
that both model are stimulated by the same values at the same
time. The obtained results are stored in two different variables:
Y1, Y2. Then, these variables are compared in the RESCOMP
process. If their values are different the OK signal is set to false
(represented by 0).

8.	 Implementation of ASLC

The top-level ASLC was constructed based on the architec-
ture presented in figure 3. The HDL description of control unit
A and B were obtained during the logic synthesis process. It
is required to create additional comparator module. It was de-
scribed in Verilog HDL (Fig. 18) as a synchronous circuit. The
comparator has to be synchronous because both control units
could have different delays in setup of output signals. If a com-
parator detects any differences in respect of compared signals
then it sets value of the status signal OK to false and sets all

Fig. 15. Dual simulation of Petri net PN1

Fig. 16. tbrc.v file

Fig. 15. Dual simulation of Petri net PN1

Fig. 17. Comp.v file

ensures that both model are stimulated by the same values at
the same time. The obtained results are stored in two different
variables: Y1, Y2. Then, these variables are compared in the
RESCOMP process. If their values are different the OK signal
is set to false (represented by 0).

In presented the case where one scenario of one full cycle of
industrial process was tested. The results obtained from both
models are the same.

8. Implementation of ASLC
The top-level of ASLC was constructed based on the archi-
tecture presented in figure 3. The HDL description of control
unit A and B were obtained during the logic synthesis process.
It is required to create additional comparator module. It was
described in Verilog HDL (18) as a synchronous circuit. The
comparator has to be synchronous because both control units
could have different delays in setup of output signals. If a com-
parator detects any differences in respect of compared signals
then it sets value of the status signal OK to false and sets all
outputs of the controller to safety state (defined as low values
of all outputs). Additionally it holds this output state until the
reset of the ASLC takes place.

The top-level module (18) was designed in block diagram
editor of Active-HDL environment and then converted into
Verilog description. Both control units are trigged by the ris-
ing edge of the clock signal but they set outputs on the falling
edge. The comparator compares these signals also on the ris-

Fig. 18. Top-level of ASLC for Petri net PN1

Table 2
Synthesis of Petri net PN1

Resource
Utilization

Model A Model B ASLC

Slices 17 17 42
Flip-flop 22 10 43
4 input LUT 23 33 71

Block RAM – 3 3

ing edge. The usages of both edges allows the final date to be
ready in one cycle.

The design of ASLC was simulated in Active-HDL environ-
ment with the use of a testbench. The obtained results of the
simulation are shown in figure 19. One faultless simulation is
presented in the figure 19a and one simulation with injected
temporary fault into the YA signal in the figure 19b. Although
it could be observed even when the YA signal returns to the
correct values the output of the ASLC are still held in the safety
state.

The whole design was synthesized & implemented into Xil-
nix Virtex V50 device with the use of Xilnix ISE with XST.
Both control unites were synthesized separately and top-level
module was synthesized together with a comparator and black
box instantiation of control units. The netlists of control unites
were attached to implementation process. Such approach al-
lows for an easy replacement of any control unit. The results
of implementation of a sample Petri net are shown in table 2.

After the implementation the simulation was repeated with
the use of a timing model. During the simulation delays of
internal and output signals were observed. The Y1 signal is
generated after the falling edge of CLK with 2699 ps aver-
age delay, similarly the Y2 signal has 4776 ps average delays.
This differences do not affect properly work of controller be-

10 Bull. Pol. Ac.: Tech. XX(Y) 2016

In presented the case where one scenario of one full cycle
of industrial process was tested. The results obtained from both
models are the same. Fig. 18. Top-level of ASLC for Petri net PN1

Fig. 17. Comp.v file

Fig. 15. Dual simulation of Petri net PN1

Fig. 17. Comp.v file

ensures that both model are stimulated by the same values at
the same time. The obtained results are stored in two different
variables: Y1, Y2. Then, these variables are compared in the
RESCOMP process. If their values are different the OK signal
is set to false (represented by 0).

In presented the case where one scenario of one full cycle of
industrial process was tested. The results obtained from both
models are the same.

8. Implementation of ASLC
The top-level of ASLC was constructed based on the archi-
tecture presented in figure 3. The HDL description of control
unit A and B were obtained during the logic synthesis process.
It is required to create additional comparator module. It was
described in Verilog HDL (18) as a synchronous circuit. The
comparator has to be synchronous because both control units
could have different delays in setup of output signals. If a com-
parator detects any differences in respect of compared signals
then it sets value of the status signal OK to false and sets all
outputs of the controller to safety state (defined as low values
of all outputs). Additionally it holds this output state until the
reset of the ASLC takes place.

The top-level module (18) was designed in block diagram
editor of Active-HDL environment and then converted into
Verilog description. Both control units are trigged by the ris-
ing edge of the clock signal but they set outputs on the falling
edge. The comparator compares these signals also on the ris-

Fig. 18. Top-level of ASLC for Petri net PN1

Table 2
Synthesis of Petri net PN1

Resource
Utilization

Model A Model B ASLC

Slices 17 17 42
Flip-flop 22 10 43
4 input LUT 23 33 71

Block RAM – 3 3

ing edge. The usages of both edges allows the final date to be
ready in one cycle.

The design of ASLC was simulated in Active-HDL environ-
ment with the use of a testbench. The obtained results of the
simulation are shown in figure 19. One faultless simulation is
presented in the figure 19a and one simulation with injected
temporary fault into the YA signal in the figure 19b. Although
it could be observed even when the YA signal returns to the
correct values the output of the ASLC are still held in the safety
state.

The whole design was synthesized & implemented into Xil-
nix Virtex V50 device with the use of Xilnix ISE with XST.
Both control unites were synthesized separately and top-level
module was synthesized together with a comparator and black
box instantiation of control units. The netlists of control unites
were attached to implementation process. Such approach al-
lows for an easy replacement of any control unit. The results
of implementation of a sample Petri net are shown in table 2.

After the implementation the simulation was repeated with
the use of a timing model. During the simulation delays of
internal and output signals were observed. The Y1 signal is
generated after the falling edge of CLK with 2699 ps aver-
age delay, similarly the Y2 signal has 4776 ps average delays.
This differences do not affect properly work of controller be-

10 Bull. Pol. Ac.: Tech. XX(Y) 2016

477Bull. Pol. Ac.: Tech. 64(3) 2016

Dual synthesis of Petri net based application specific logic controllers with increased safety

outputs of the controller to safety state (defined as low values
of all outputs). Additionally it holds this output state until the
reset of the ASLC takes place.

The top-level module (Fig. 18) was designed in block di-
agram editor of Active-HDL environment and then converted
into Verilog description. Both control units are trigged by the
rising edge of the clock signal but they set outputs on the fall-
ing edge. The comparator compares these signals also on the
rising edge. The usages of both edges allows the final date to
be ready in one cycle.

The design of ASLC was simulated in Active-HDL envi-
ronment with the use of a testbench. The obtained results of
the simulation are shown in figure 19. One faultless simulation
is presented in the figure 19a and one simulation with injected
temporary fault into the YA signal in the figure 19b. Although it
could be observed even when the YA signal returns to the correct
values the output of the ASLC are still held in the safety state.

The whole design was synthesized & implemented into Xil-
nix Virtex V50 device with the use of Xilnix ISE with XST.
Both control unites were synthesized separately and top-level
module was synthesized together with a comparator and black
box instantiation of control units. The netlists of control unites
were attached to implementation process. Such approach al-
lows for an easy replacement of any control unit. The results
of implementation of a sample Petri net are shown in table 2.

After the implementation the simulation was repeated with
the use of a timing model. During the simulation delays of in-
ternal and output signals were observed. The Y1 signal is gen-
erated after the falling edge of CLK with 2699 ps average delay,
similarly the Y2 signal has 4776 ps average delays. This differ-
ences do not affect properly work of controller because they are
compared synchronously, after half clock cycle, on rising edge
of CLK. The output Y signal of the ASLC is generated after the
rising edge of CLK with 8481 ps average delay.

9.	 Conclusions

Digital controllers for safety critical applications are an import-
ant research field. In the presented approach two models are
obtained from one specification in different HDLs to ensure that
two different synthesis methods are used: monolithic modular
synthesis and architectural distributed synthesis. In addition,
different description styles are applied: assertion rule-based
style [15, 27], and structural RTL description style [4, 19].

The advantages of the proposed solution is that possibility
two different models directly from the one specification can
be obtained. The dual synthesis process is fully automated. It
allows to obtain the architecture of ASLC for systems with
increased safety with redundant hardware of control units by
one team of designers. In addition to that, the dual simulation
is performed to increase reliability of the control algorithm.

References
	 [1]	 K. Biliński, M. Adamski, J. Saul, and E. Dagless, “Petri-net-based

algorithms for parallel-controller synthesis”, IEEE Proceedings
– Computers and Digital Techniques 141 (6), 405–412 (1994).

	 [2]	 C. Girault and R. Valk, Petri Nets for System Engineering:
A Guide to Modeling, Verification, and Applications Springer-
Verlag, Berlin/Heidelberg (2003).

Table 2
Synthesis of Petri net PN1

Fig. 15. Dual simulation of Petri net PN1

Fig. 17. Comp.v file

ensures that both model are stimulated by the same values at
the same time. The obtained results are stored in two different
variables: Y1, Y2. Then, these variables are compared in the
RESCOMP process. If their values are different the OK signal
is set to false (represented by 0).

In presented the case where one scenario of one full cycle of
industrial process was tested. The results obtained from both
models are the same.

8. Implementation of ASLC
The top-level of ASLC was constructed based on the archi-
tecture presented in figure 3. The HDL description of control
unit A and B were obtained during the logic synthesis process.
It is required to create additional comparator module. It was
described in Verilog HDL (18) as a synchronous circuit. The
comparator has to be synchronous because both control units
could have different delays in setup of output signals. If a com-
parator detects any differences in respect of compared signals
then it sets value of the status signal OK to false and sets all
outputs of the controller to safety state (defined as low values
of all outputs). Additionally it holds this output state until the
reset of the ASLC takes place.

The top-level module (18) was designed in block diagram
editor of Active-HDL environment and then converted into
Verilog description. Both control units are trigged by the ris-
ing edge of the clock signal but they set outputs on the falling
edge. The comparator compares these signals also on the ris-

Fig. 18. Top-level of ASLC for Petri net PN1

Table 2
Synthesis of Petri net PN1

Resource
Utilization

Model A Model B ASLC

Slices 17 17 42
Flip-flop 22 10 43
4 input LUT 23 33 71

Block RAM – 3 3

ing edge. The usages of both edges allows the final date to be
ready in one cycle.

The design of ASLC was simulated in Active-HDL environ-
ment with the use of a testbench. The obtained results of the
simulation are shown in figure 19. One faultless simulation is
presented in the figure 19a and one simulation with injected
temporary fault into the YA signal in the figure 19b. Although
it could be observed even when the YA signal returns to the
correct values the output of the ASLC are still held in the safety
state.

The whole design was synthesized & implemented into Xil-
nix Virtex V50 device with the use of Xilnix ISE with XST.
Both control unites were synthesized separately and top-level
module was synthesized together with a comparator and black
box instantiation of control units. The netlists of control unites
were attached to implementation process. Such approach al-
lows for an easy replacement of any control unit. The results
of implementation of a sample Petri net are shown in table 2.

After the implementation the simulation was repeated with
the use of a timing model. During the simulation delays of
internal and output signals were observed. The Y1 signal is
generated after the falling edge of CLK with 2699 ps aver-
age delay, similarly the Y2 signal has 4776 ps average delays.
This differences do not affect properly work of controller be-

10 Bull. Pol. Ac.: Tech. XX(Y) 2016

Fig. 19. Simulation of ASCL for Petri net PN1 (a) without error (b) with error

a)

b)

478 Bull. Pol. Ac.: Tech. 64(3) 2016

J. Tkacz, A. Bukowiec, and M. Adamski

	 [3]	 A. Khamis, D. Zydek, G. Borowik, and D. S. Naidu, “Control
system design based on modern embedded systems”, Lecture
Notes in Computer Science 8112 , 491–498, Springer-Verlag,
Berlin/ Heidelberg (2013).

	 [4]	 R. Wiśniewski, A. Barkalov, L. Titarenko, and W. Halang,
“Design of microprogrammed controllers to be implemented
in FPGAs”, International Journal of Applied Mathematics and
Computer Science 21 (2), 401–412 (2011).

	 [5]	 A. Milik and E. Hrynkiewicz, “On translation of LD, IL and
SFC given according to IEC-61131 for hardware synthesis of
reconfigurable controller”, Proceedings of the 19th IFAC World
Congress, 4477–4483, IFAC (2014).

	 [6]	 J. Mocha and D. Kania, “Sprzętowa realizacja programu sterow-
ania w strukturach FPGA”, Przegląd Elektrotechniczny 88 (12a),
95–100 (2012).

	 [7]	 A. Milik, “On ladder diagrams compilation and synthesis to
FPGA implemented reconfigurable logic controller”, Advances
in Electrical and Electronic Engineering 12 (5), 443–451
(2014).

	 [8]	 M. Rawski, P. Tomaszewicz, G. Borowik, and T. Łuba, “Logic
synthesis method of digital circuits designed for implementation
with embedded memory blocks of FPGAs”, Lecture Notes in
Electrical Engineering 79, 121–144 (2011).

	 [9]	 N. Chang, W. H. Kwon, and J. Park, “Hardware implementation
of real-time Petri-net-based controllers”, Control Engineering
Practice 6 (7), 889–895 (1998).

	[10]	 M. Węgrzyn, “Implementation of safety critical logic controller
by means of FPGA”, Annual Reviews in Control 27 (1), 55–61
(2003).

	[11]	 W. A. Halang, M. Śnieżek, and S.-K. Jung, “A real-time com-
puting architecture for applications with high safety and predict-
ability requirements”, 1st IEEE International Workshop on Real-
Time Computing System and Applications RTCSA'94, 153–157,
Seoul, South Korea (1994).

	[12]	 W. A. Halang and M. Adamski, “A programmable electronic sys-
tem for safety related control applications”, Advances in safe-
ty and reliability: Proceedings of the International Conference
ESREL'97, 349–355, Oxford, Pergamon (1997).

	[13]	 N. Marranghello, J. Mirkowski, and K. Bilinski, “Synthesis
of synchronous digital systems specified by Petri nets” in A.
Yakovlev, L. Gomes, and L. Lavagno (edts.), Hardware Design
and Petri Nets, 129–150, Kluwer Academic Publishers, Boston
(2000).

	[14]	 T. Murata, “Petri nets: Properties, analysis and applications”,
Proceedings of the IEEE 77(4), 541–580 (1989).

	[15]	 M. Adamski and J. Tkacz, “Formal reasoning in logic design
of reconfigurable controllers” in Proceedings of 11th IFAC/
IEEE International Conference on Programmable Devices and
Embedded Systems, 1–6, Brno, Czech Rep. (2012).

	[16]	 A. Bukowiec and M. Adamski, “Logic synthesis for FPGAs
of interpreted Petri net with common operation memory”, 11th
IFAC/IEEE International Conference on Programmable Devices
and Embedded Systems PDeS 2012, 57–62 (2012).

	[17]	 A. Bukowiec and M. Adamski, “Synthesis of Petri nets into
FPGA with operation flexible memories” in Proceedings of the
IEEE 15th International Symposium on Design and Diagnostics
of Electronic Circuits and Systems DDECS'12, 16–21, Tallinn,
Estonia (2012).

	[18]	 G. Borowik, T. Łuba, and B. J. Falkowski, “Logic synthesis method
for pattern matching circuits implementation in FPGA with embed-
ded memories”, in 12th International Symposium on Design and
Diagnostics of Electronic Circuits Systems 2009, 230–233 (2009).

	[19]	 A. Bukowiec and M. Węgrzyn, “Design of safety critical logic
controller using devices integrated microprocessor with FPGA”,
Proceedings of SPIE 5775, 377–384 (2005).

	[20]	 A. Karatkevich, “Dynamic analysis of Petri net-based discrete
systems”, Lecture Notes in Control and Information Sciences
356 (2007).

	[21]	 T. Kozłowski, E. Dagless, J. Saul, M. Adamski, and J. Szajna,
“Parallel controller synthesis using Petri nets”, IEEE Proceedings
– Computers and Digital Techniques, 142 (4), 263–271 (1995).

	[22]	 K. Jensen, K. Kristensen, and L. Wells, “Coloured Petri nets and
CPN tools for modelling and validation of concurrent systems”,
International Journal on Software Tools for Technology Transfer
9 (3), 213–254 (2007).

	[23]	 V. Savi and X. Xie, “Liveness and boundedness analysis for pe-
tri nets with event graph modules”, Lecture Notes in Computer
Science 616, 328–347 (1992).

	[24]	 M. Sałamaj, “Conception of a control unit for critical systems”,
International Journal of Electronics and Telecommunications 59
(4), 363–368 (2013).

	[25]	 J. Tkacz, “State machine type colouring of Petri net by means of
using a symbolic deduction method”, Measurement Automation
and Monitoring 53 (5), 120–122 (2007).

	[26]	 M. Doligalski, “Behavioral specification of the logic controllers
by means of the hierarchical configurable Petri nets”, Proceedings
of 11th IFAC/IEEE International Conference on Programmable
Devices and Embedded Systems, 80–83, Brno (2012).

	[27]	 H. Foster, A. Krolnik, and D. Lacey, Assertion-Based Design,
Kluwer Academic Publishers, Norwell (2004).

