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PAWEŁ STĄPÓR ∗

APPLICATION OF XFEM WITH SHIFTED-BASIS APPROXIMATION
TO COMPUTATION OF STRESS INTENSITY FACTORS

The essential parameters for structure integrity assessment in Linear Elastic
Fracture Mechanics (LEFM) are Stress Intensity Factors (SIFs). The estimation of
SIFs can be done by analytical or numerical techniques. The analytical estimation
of SIFs is limited to simple structures with non-complicated boundaries, loads and
supports. An effective numerical technique for analyzing problems with singular
fields, such as fracture mechanics problems, is the extended finite element method
(XFEM).

In the paper, XFEM is applied to compute an actual stress field in a two-
dimensional cracked body. The XFEM is based on the idea of enriching the ap-
proximation in the vicinity of the discontinuity. As a result, the numerical model
consists of three types of elements: non-enriched elements, fully enriched elements
(the domain of whom is cut by a discontinuity), and partially enriched elements (the
so-called blending elements). In a blending element, some but not all of the nodes
are enriched, which adds to the approximation parasitic term.

The error caused by the parasitic terms is partly responsible for the degrada-
tion of the convergence rate. It also limits the accuracy of the method. Eliminating
blending elements from approximation space and replacing them with standard el-
ements, together with applying shifted-basis enrichment, makes it possible to avoid
the problem. The numerical examples show improvements in results when compared
with the standard XFEM approach.

1. Introduction

The extended finite element method, first introduced by Belytschko and
Black [2] and Möes et al. [6], provides an effective tool for analyzing discon-
tinues and singular problems. It operates through augmenting standard finite
element approximation with additional functions containing the information
about the solution. In the XFEM, the enriched domain is limited only to the
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vicinity of a crack, and differently than in the standard finite element method,
the mesh does not have to align with a discontinuity. However, the method
is not free from drawbacks. The main source of error arises from unwanted
terms in blending elements, which are partially enriched, thus the enrichment
function cannot form a partition of unity. Chessa et al. [3] eliminated the
parasitic terms by applying the assumed strain method in blending element.
Degrees of freedom gathering technique and higher order elements have also
been shown to improve the accuracy in the blending elements, Laborde et al.
[5]. Tarancòn et al. [8] proposed enhanced blending elements with a fixed
enrichment area. A linearly decreasing weight function over transition layer
eliminates the partially enriched elements, so that partition of unity property
can be satisfied everywhere, Fries [4].

In the paper, the shifted-basis enrichment (Ventura et al. [9], Zi et al.
[11]) is applied together with modification of the approximation in blend-
ing elements. The shifted-basis enrichment is introduced in order to make
the degrees of freedom of a node in a fully enriched element the physical
solution of the nodal displacement. Thus, the approximation in blending
elements can be reduced to standard finite element approximation as long as
the enrichment function is the same or of a lower order than the partition
of the unity function. Nevertheless, for higher order functions, the following
modifications together with removing the enriched parts in blending elements
provide an improvement in computed values of SIFs. To extract the SIFs,
a well known in fracture mechanics J-integral, Rice [7], and the domain
form of the interaction integral, Yau et al. [10], are applied. For the purposes
of the analysis, a corresponding MATLAB program is developed. A classic
problem of fracture mechanics is used as a benchmark.

In Section 2, the model problem considered is defined, which is relative
to the equilibrium of a cracked body in plane linear elasticity. Section 3 and
4 describes standard and shifted-basis XFEM approximation for the problem,
respectively. The properties of the approximation in blending elements are
presented in Section 5. In the next Section 6, simple patch test is described.
Section 7 presents the method of calculation of stress intensity factors. The
results of the test for the benchmark problems are presented in Section 8.

2. Problem formulation

A linear elasticity problem is addressed, with isotropic homogeneous
material, on a two-dimensional cracked domain Ω. On the part of the bound-
ary ΓD, the Dirichlet condition is prescribed, and the Neumann condition is
defined on ΓN . The crack ΓC is assumed to be traction free. The boundary
Γ is composed of the sets ΓD, ΓN and ΓC , such that Γ = ΓD ∪ ΓN ∪ ΓC .
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In order to describe the displacement asymptotic field near the crack tip,
local polar co-ordinates (r, θ) defined at the crack tip are introduced (Fig. 1),
where denotes the distance from the crack tip.

Fig. 1. A cracked body with polar co-ordinates relative to the crack tip

The equilibrium of the body is expressed by the virtual work principle:
∫

Ω

σ (u) : ε (w) dΩ =

∫

Ω

p · wdΩ +

∫

ΓN

t · wds (1)

where
σ (u), ε (w) – stress and strain tensors,
p, t – force densities on Ω and ΓN , respectively.
The constitutive relation is given by the Hooke’s law:

σ (u) = C : ε (w) (2)

where C is the Hooke tensor.
In the present study, small strains and displacements are considered,

expressed by the strain-displacement relation:

ε (u) = ∇(u) (3)

where ∇ is the symmetric part of the gradient operator.

3. Standard XFEM approach

The XFEM approximation consists of a standard finite element part
u (x)C and the enriched part u (x)E that enables the approximation to capture
solution characteristic in the vicinity of the discontinuity

u (x) = u (x)C + u (x)E (4)

where
u (x)C =

∑

i∈I
Ni(x)qi (5)
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The enrichment term u (x)E combines the partition of unity (PU) function
with the enrichment functions

u (x)E =
∑

j∈J

n∑

α=1

N j(x) Ψα(x)aαj (6)

where Ψα(x) are enrichment functions, N j(x) are the PU functions, J is the
set of nodes enriched by Ψα(x) and aαj are the unknowns associated with the
node j and the enrichment functions Ψα(x). I is the set of all nodes.

Application of XFEM to LEFM problems relies on enriching standard FE
displacement approximation with two additional types of functions, namely,
Heaviside step function H(x), which represents the discontinuity across the
crack, and the function F(x) which spans approximately the Wastergaard so-
lution of the crack tip asymptotic displacement field. The Haeviside function
is defined as

H(x) =


−1 if ϕ(x) < 0
+1 if ϕ(x) ≥ 0

(7)

where ϕ(x) is the signed distance function, usually determined with the help
of Level Set Method, Ventura et al. [9]. Wastergaard solution is represented
by four basis functions in the form

F (x) =

{√
r sin

θ

2
,
√

r cos
θ

2
,
√

r sin
θ

2
sin θ,

√
r cos

θ

2
sin θ

}
(8)

where r and θ are the local polar coordinates.
Figure 2 presents enrichment strategy on the example of a rectangular

mesh with an arbitrary crack.
The enrichment strategy is governed by two rules. If an element contains

the crack tip, all the nodes are additionally enriched by F (x) (the crack tip
element, Fig. 2). The elements which are entirely cut by the crack, but do not
adjoin the crack tip element, are enriched by H(x) function. The enrichment
in the rest of elements depends on the type of nodes belonging to an element.
In the case, when an element contains nodes enriched by F (x) or H(x) (in
some cases F (x) and H(x)), the approximation takes it into account.

The approximation for non-enriched elements takes the standard FE form

u (x) =
∑

i∈I
Ni(x)qi (9)

where Ni(x) are the classical FE shape functions and I ∈ {1, 2, 3, 4} is the set
of all nodes in an element, Fig. 3a.
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Fig. 2. The enrichment strategy

Fig. 3. Types of elements in a mesh
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If the element is entirely cut by a crack, all the nodes are additionally
enriched with Heaviside function H(x), Fig. 3b

u (x) =
∑

i∈I
Ni(x)qi +

∑

i∈I
Ni(x)H(x)bi (10)

where bi are Heaviside enrichment degrees of freedom.
For the element which contains the crack tip, the discontinuity is rep-

resented by Westergaard’s solution, the approximation in this case takes the
form, Fig. 3c

u (x) =
∑

i∈I
Ni(x)qi +

∑

i∈I

4∑

α=1

Ni(x) Fα(x)aαi (11)

where aαi are the corresponding degrees of freedom for a node i (four in each
direction).

The transition elements contain both kinds of enrichment, some nodes
are additionally enriched by Heaviside function and some nodes are enriched
by Wastergaard’s basis function. Figure 3d shows an example element of that
type. The approximation now takes the following form

u (x) =
∑

i∈I
Ni(x)qi +

∑

i∈I
N j(x)H(x)b j +

∑

k∈K

4∑

α=1

Nk(x) Fα(x)aαk (12)

where sets J ∈ {1, 4} and K ∈ {2, 3} contain the nodes enriched with H(x)
and Fα(x), respectively.

The sets of nodes enriched in blending elements do not contain all el-
ement’s nodes. The approximation formula for blending elements partially
enriched by H(x), Fig. 3e takes the form of Eqn (12) with J ∈ {1, 2, 4} and
K ∈ {empty}, for blending elements partially enriched with both H(x) and
Fα(x) Fig. 3f the sets are: J ∈ {4}, K ∈ {1, 2} and for blending elements
partially enriched by Fα(x):J ∈ {empty}, K ∈ {1, 4}, Fig. 3g.

4. Shifted basis approximation

Standard FE approximation fulfils the Kronecker property, which leads to
desirable features, namely the computed unknowns qi are directly the values
of displacement at the node i, thus imposing the Dirichlet boundary condition
uD(x) is simple qi = uD(xi). In the standard XFEM approximation, these
conditions do not hold. That can be achieved by modifying the enrichment
function Ψ(x) as

ΨShi f t (x) = Ψ (x) −Ψ
(
x j

)
(13)
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which shifts the basis functions to zero point at each enriched node
(ΨShi f t

(
x j

)
= 0). Now, the enrichment term is given by

u (x)E =
∑

j∈J

4∑

α=1

N j (x) Ψα
Shi f t (x) aαj (14)

which leads to the desired property u (x)E = 0.

5. Blending elements

In elements where only some of their nodes are enriched, functions N j (x)
do not build a partition of unity, i.e.

∑

j∈J
N j (x) , 1 (15)

In consequence, the enrichment function cannot be reproduced exactly in
these elements, which can lead to large errors and poor global convergence.
In particular, when XFEM is applied to linear elastic fracture mechanics,
the parasitic terms in the approximation space of blending elements yield
a decrease in accuracy of computed stress intensity factors. The enriched
part in approximation formula, Eqn (12), generates pathological term, which
cannot be compensated by standard FE approximation.

However, in blending elements partially enriched by H(x), Heaviside
enrichment part occurs only. In such a case, Heaviside function has always
the same sign at each integration point of the element, i.e. H(x) = +1 or
H(x) = −1. Applying shifted-basis approximation leads to the fallowing
formula

u (x) =
∑

i∈I
Ni (x) qi +

∑

j∈J
N j (x)

(
H (x) − H

(
x j

))
b j (16)

Thus, in the expression (16) the term H(x)−H(x j) is always 0, what resolves
the problem with parasitic terms in that kind of elements.

For blending elements partially enriched by F(x) the pathological terms
consist of the higher order function. In the paper, that term is eliminated,
what is equivalent to removing the blending elements and replacing them
with non-enriched elements. Unfortunately, that leads to a non-conforming
mesh. However, applying, at the same time, the shifted-basis approximation,
enforces continuity of the displacement at nodes connecting totally enriched
elements with non-enriched elements.
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6. Bi-material bar: patch test

In order to demonstrate the difference between standard XFEM approach
and the XFEM with the proposed modification, one dimensional bi-material
bar is considered, Fig. 4. The bar of the length L and the cross section area
A is made of two materials defined by Young’s module E1 in the left part
of the bar, and E2 in the right part. The interface runs through the point
x∗ = L/2. Concentrated force P acts at x = L and the displacement u(0) = 0
is prescribed.

Fig. 4. Bi-material bar

The exact solution to the problem is shown in Fig. 5. The displacement
u(x) is represented by a piecewise linear function, with a kink at x∗.

Fig. 5. Analytical solution

6.1. Standard XFEM solution

The domain is divided into five equal-length finite elements, Fig. 6.
Discontinuity goes across element 3, so nodes 3 and 4 are enriched. Thus,
the elements 2 and 4 are blending elements. The enriched nodes are marked
with square.

For the standard XFEM, the global enrichment function is chosen in the
form

ψ (x) = |x − x∗| (17)
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Fig. 6. Discretized domain

The PU functions are the classical FE linear shape functions

N (x) =

[
1 − x − de

le
x − de

le

]
(18)

where de and le are the coordinate transformation coefficient and the length
of an element, respectively.

One can notice, that the enriched part of the approximation in blending
elements is a quadratic function, whereas analytical solution is linear. For
example in element 2, the approximation formula consists of

u2 (x) =

(
1 − x − d2

l2

)
q2 +

x − d2

l2
q3 + |x − x∗| x − d2

l2
a3 (19)

The quadratic term in the expression (19) cannot be compensated by the
linear FE shape functions. In the reproducing element 3 the approximation
formula takes the form

u3 (x) =

(
1 − x − d3

l3

)
q3+

x − d3

l3
q4+|x − x∗|

(
1 − x − d3

l3

)
a3+|x − x∗| x − d3

l3
a4

(20)
In this case, the quadratic parts can be compensated if the condition a3 = a4
is satisfied.

The solution obtained with standard XFEM without any modification in
blending elements is shown in Fig. 7.

Fig. 7. Standard XFEM solution

As it seen from Fig. 7, the strain distribution exceeds acceptable error
limits.
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6.2. Modified XFEM solution

Applying shifted-basis approximation redefines the global enrichment
function in the following way

ψ j (x) = |x − x∗| −
∣∣∣x j − x∗

∣∣∣ (21)

Additionally, blending elements 2 and 4, are replaced with non-enriched
elements. In this way, the PU condition is satisfied everywhere. In one-
dimensional case the continuity of displacement is fully preserved due to
shifting the basis of enrichment function. This property allows us to repro-
duce linear solution in the overall domain. Results of computation are exactly
the same as it is shown in Fig. 5. For this case, the modified XFEM gives
the excellent results for any number of elements.

7. Stress intensity factors computation

To extract the stress intensity factors (SIFs), the well-known J-integral
is used. For an arbitrary closed path Γ around the tip of the crack, Fig. 8,
the J-integral is given by

J =

∫

Γ

(
Wδ1 j − σi j

∂ui

∂x1

)
n jdΓ (22)

where W = 1
2σi jεi j is strain energy, n j are the components of the unit vector

normal to Γ and δ1 j is the Kronecker delta.

Fig. 8. Arbitrary contour around the tip of a crack

For a linear elastic material, the relation between J-integral and SIFs for
mixed mode problem takes the form

J =
K2

I + K2
II

E∗
(23)

where E∗ = E for plane stress, and E∗ = E/(1− v) for plane strain condition.
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The calculation of the mixed mode SIFs requires superimposing two
states of a cracked body. The state 1

(
σ(1)

i j , ε
(1)
i j , u

(1)
i

)
is the actual state obtained

from the XFEM analysis, and the state 2
(
σ(2)

i j , ε
(2)
i j , u

(2)
i

)
is an auxiliary state.

The auxiliary state is chosen to be the asymptotic fields for modes I and
II, Anderson [1]. Inserting the sum of the actual and auxiliary states in the
J-integral formula gives

J =

∫

Γ

[
1
2

(
σ(1)

i j + σ(2)
i j

) (
ε(1)

i j + ε(2)
i j

)]
n j −


(
σ(1)

i j + σ(2)
i j

) ∂
(
u(1)

i + u(2)
i

)

∂x1

 n jdΓ

(24)
Rearranging terms in Eqn (24) leads to separation of the J-integral for

the pure state 1J (1) and the auxiliary state 2J (2), from an interaction term
I (1,2)

J = J (1) + J (2) + I (1,2) (25)

The interaction integral for states 1 and 2 takes the form

I (1,2) =

∫

Γ

W (1,2)δ1 j − σ(1)
i j

∂u(2)
i

∂x1
− σ(2)

i j

∂u(1)
i

∂x1

n jdΓ (26)

where W (1,2) = σ(1)
i j ε

(2)
i j is the interaction strain energy.

For combined states, Eqn (23) is

J (1+2) =

(
K (1)

I

)2
+

(
K (1)

II

)2

E∗
+

(
K (2)

I

)2
+

(
K (2)

II

)2

E∗
+

2
E∗

(
K (1)

I + K (2)
I + K (1)

II + K (2)
II

)

(27)
Comparing Eqn (25) with Eqn (27) leads to the expression for the interaction
integral expressed in terms of SIFs

I (1,2) =
2
E∗

(
K (1)

I + K (2)
I + K (1)

II + K (2)
II

)
(28)

Assuming the state 2 as the pure mode I with K (2)
I = 1 and K (2)

II = 0 enables
one to solve Eqn (28) for mode I stress intensity factor of state 1

K (1)
I =

E∗

2
I (1, Mode I) (29)

The same approach is applied to find mode II stress intensity factor of state
1. Inserting K (2)

I = 0 and K (2)
II = 1 to Eqn (28) leads to the following formula

K (1)
II =

E∗

2
I (1, Mode II) (30)
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Finite element calculation of the interaction integral, Eqn (26), needs to
reformulate the integral into an area form. Introducing a smoothing function
ϑ(x), which takes value of 1 on the innermost contour, and the value of 0, on
the outermost contour, and using the divergence theorem, give the fallowing
equation for interaction integral

I (1,2) =

"

A

σ(1)
i j

∂u(2)
i

∂x1
+ σ(2)

i j

∂u(1)
i

∂x1
−W (1,2)δ1 j


ϑ (x)
∂x j

dx1dx2 (31)

Figure 9 shows elements selected around the crack tip and values of the
smoothing function ϑ(x) for a domain radius rd.

Fig. 9. Elements selected for calculation of the interaction integral

To approximate the smoothing function ϑ(x) inside elements, the stan-
dard FE shape functions are used

ϑ (x) =
∑

i∈I
Ni (x)ϑi (32)

Since ϑ(x) = 1 in the interior elements, the derivatives of the smoothing
function take the zero value for all elements inside the domain radius

∂ϑ (x)
∂x j

= 0 (33)

Thus, the elements selected for calculation of the interaction integral are
limited only to those which are cut by the contour Γ (transition elements in
Fig. 9).
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8. Numerical examples

8.1. Beam with an edge crack

The proposed approach has been applied to compute stress intensity
factors for a beam in the plane stress state, with an edge crack, as shown in
Fig. 10, where geometrical and material data for the test are also presented.

Fig. 10. Beam with an edge crack under concentrated force

The linear three-nodes finite elements are used. Deformed mesh with
313 elements is presented in Fig. 11, with the deformation scale factor set
to 3 · 104.

Fig. 11. Deformed mesh with 313 triangular elements

Numerical calculations of SIFs are carried out using the domain form of
the interaction integral with a given domain size radius rd . Table 1 shows the
values of KI and the corresponding relative errors for standard and modified
XFEM, calculated with the size of domain radius rd = 10mm. The three
different unstructured meshes are used in discretization, namely the coarse
mesh with 313 triangular elements, medium mesh with 871 elements, and
fine mesh with 2613 elements. The abbreviations XFEM s. and XFEM m.
mean standard and modified, respectively.
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Table 1.
Numerical results

No.
of elements

KI

XFEM s. Error XFEM m. Error

313 3.8069 13.64% 3.2493 -3.00%

871 3.4674 3.50% 3.2624 -2.61%

2613 3.4401 2.69% 3.3447 -0.16%

The relative error in stress intensity factors is calculated as

Error =
KNumerical

I − KTheoretical
I

KTheoretical
I

100% (34)

with the KTheoretical
I = 3.35MPa

√
mm.

The influence of the size of the domain radius rd on calculated values
of the stress intensity factor KI is shown in Fig. 12.

Fig. 12. Error in calculated values of vs. size of the domain radius
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As it is observed in this example, the relative error for standard approach
with the medium mesh is comparable to the one obtained by the modified
approach with the coarse mesh. Next, the modified XFEM with the medium
mesh produces the comparable error to the standard XFEM with the fine
mesh. Additionally, the standard approach overestimate the theoretical solu-
tion, whereas the modified approach underestimate it. The influence of the
domain radius on the calculated SIF is similar for both approaches.

8.2. Crack inclined at an angle

The next investigated problem is a plate with an edge crack oriented at
an angle 45◦ to the loading direction. The plate is subjected to a uniformly
distributed nominal stress σ = 1 Pa. The geometry of the plate, material
properties and an example of the structured mesh with nodes selected to be
enriched are shown in Fig. 13.

The reference solution is obtained by finite element method with the use
of the degenerated elements. The mesh aligns with the crack segment and
consists 5193 nodes concentrated around the crack tip. The computed values
of stress intensity factors for the reference problem are
KTheoretical

I = 2.75917Pa
√

m, KTheoretical
II = 1.23922Pa

√
m.

Fig. 13. Tension plate with an edge crack at an angle and a structured mesh with enriched nodes
selected

Assessment of solution accuracy is made by evaluating the relative dif-
ferences from reference solution according to Eqn (34) for three structured
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meshes. Tables 2 and 3 shows relative errors obtained for KI and KII , re-
spectively.

Table 2.
Numerical results: KI for angle crack

No.
of nodes

KI

XFEM s. Error XFEM m. Error

250 3.2658 18.36% 2.9116 5.52%

490 3.1801 15.25% 2.8706 4.03%

893 3.0291 9.78% 2.7836 0.88%

Table 3.
Numerical results: KII for angle crack

No.
of nodes

KII

XFEM s. Error XFEM m. Error

250 1.3422 8.31% 1.3550 9.34%

490 1.3320 7.48% 1.3221 6.68%

893 1.2866 3.82% 1.2434 0.33%

9. Conclusions

An improvement in results is observed when the transition layer of blend-
ing elements is eliminated, and at the same time, the shifted-basis approxima-
tion is applied. This improvement is clearly manifested in models with coarse
meshes, even without any additional technique, e.g. point-wise matching,
and even for the problems with a higher order enrichment function, like the
near tip function in the crack analysis. Moreover, the proposed modification
does not introduce any additional functions and degrees of freedom to the
numerical model.

Manuscript received by Editorial Board, September 28, 2011;
final version, January 02, 2012.
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Obliczanie współczynników intensywności naprężeń rozszerzoną metodą elementów
skończonych z przesunięciem bazy aproksymacyjnej

S t r e s z c z e n i e

Kluczowymi parametrami oceny wytrzymałości konstrukcji w liniowo sprężystej mechanice
pękania są współczynniki intensywności naprężeń (ang. SIFs). Analityczne metody wyznaczania
tych współczynników ograniczone są do nieskomplikowanych konstrukcji. Jedną z technik nu-
merycznych pozwalających na efektywną analizę problemów z osobliwymi polami jest rozszerzona
metoda elementów skończonych (ang. XFEM).

W pracy zastosowano rozszerzoną metodę elementów skończonych do wyznaczania pól
naprężeń w dwu-wymiarowym ośrodku ciągłym z rysą. Zaproponowano modyfikacje standard-
owego podejścia poprzez usunięcie z przestrzeni aproksymacji elementów częściowo wzbogaconych
(ang. blending elements) z jednoczesnym przesunięciem bazy aproksymacyjnej w elementach
z pełnym wzbogaceniem węzłów. Do obliczania współczynników intensywności naprężeń zas-
tosowano znaną w mechanice pękania definicję całki J . W rozwiązywanych przykładowych prob-
lemach zaobserwowano polepszenie wartości obliczanych współczynników intensywności naprężeń
w porównaniu do standardowego podejścia z tą samą dyskretyzacją.


