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Abstract. The problem discussed in the paper is numerical modeling of thermal processes in the domain of biological tissue secured by a layer 
of protective clothing being in thermal contact with the environment. The cross-section of the forearm (2D problem) is treated as non-homoge-
neous domain in which the sub-domains of skin tissue, fat, muscle and bone are distinguished. The air gap between skin tissue and protective 
clothing is taken into account. The process of external heating is determined by Robin boundary condition and sensitivity analysis with respect 
to the perturbations of heat transfer coefficient and ambient temperature is also discussed. Both the basic boundary-initial problem and the 
sensitivity problems are solved by means of control volume method using Voronoi polygons.
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1.	 Introduction

The problem of skin tissue heating can be described by the 
system of partial differential equations (energy equations), the 
boundary condition given on the external surface of the sys-
tem, the boundary conditions between skin tissue and protective 
clothing, the boundary conditions on the surfaces limiting the 
successive sub-domains of forearm and the initial conditions. 
The transient temperature field in tissue subdomains is deter-
mined by a Fourier-type equation called the Pennes equation 
[1‒5]. This equation contains two additional components (the 
source functions) connected with the blood perfusion and me-
tabolism. In the case of tissue freezing, the third source func-
tion controlling the evolution of latent heat appears [6, 7]. The 
Pennes equation belongs to the group of the so-called macro-
scopic tissue models. It should be pointed out that the tissue 
models can also be described by the Cattaneo-Vernotte equation 
[8] or the dual phase lag equation [9, 10], but the Pennes ap-
proach is, so far, the most commonly used. The forearm domain 
is a non-homogeneous one and represents the composition of 
skin tissue, fat, muscle, bone and blood vessels (arteries and 
veins). The successive subdomains differ in the values of ther-
mal parameters; in this paper the data quoted by Fiala et al. [11] 
are applied. The parameters of textiles can be found in [12].

2.	 Mathematical description of the process

The cross section of forearm (middle part) is shown in Fig. 1 [13].

Fig. 1. Forearm cross section and simplified 2D geometrical model
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Heat transfer processes in the domain considered are de-
scribed by a system of Pennes partial differential equations.
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where e = 1, …, 4 corresponds to the successive tissue sub-do-
mains (skin, fat, muscle and bone, respectively), ce is the 
volumetric specific heat, λe is the thermal conductivity, Qper 
and Qmet are the capacities of volumetric internal heat sources 
connected with the blood perfusion and metabolism [W/m3], 
T, x = {x1, x2}, t denotes the temperature, spatial co-ordinates 
and time. The perfusion heat source is given by the formula
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where Gbe is blood perfusion [m3 blood/(s m3 tissue)], cb is blood 
volumetric specific heat and Tb artery and Tb vein are arterial and 
vein blood temperatures. Metabolic heat source Qmet (x, t) can 
be treated as a constant value.

Equation describing the transient temperature field in the 
domain of fabric takes the following form:
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while the boundary condition between skin surface and fabric is
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where R is thermal resistance of the air gap.
On the contact surface between the tissue sub-domains, the 

continuity of temperature and heat fluxes are assumed:
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where ∂ / ∂n is temperature derivative in normal direction.
On the outer surface of the fabric, the Robin boundary con-

dition is taken into account:
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where αout is heat transfer coefficient, Tamb is ambient tempera-
ture. The same type of boundary conditions is given on the 
surfaces between blood vessels and soft tissue sub-domains, 
in particular
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and
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The initial conditions are also given
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where Tsteady is temperature distribution corresponding to steady 
state conditions in the tissue – fabric domain for the initial ambient 
temperature given and initial external heat transfer coefficient.

3.	 Sensitivity model

The sensitivity analysis presented in this paper concerns the 
changes of transient temperature field in domain considered 
due to perturbations of parameters αout and Tamb appearing in the 
external Robin boundary condition (6). As it is well known, the 
sensitivity function Uk (x, t) is defined in the following way:
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Thus, the sensitivity model can be created by the differenti-
ation of energy equations and boundary-initial conditions with 
respect to the parameter considered (a direct approach – e.g. 
[14‒17]). Differentiation of the Pennes equation with respect 
to the external heat transfer coefficient gives
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or using the Schwarz theorem about mixed partial derivative 
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where ( , ) ( , ) /e e outU x t T x t= ∂ ∂α . The similar equation determines the sensitivity function 

in the domain of fabric 
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One can see that the values of thermal conductivities both for tissue sub-domains and the 

fabric are assumed to be constant. Differentiation of internal boundary conditions with 

respect to the external heat transfer coefficient leads to the equations 
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- between skin surface and fabric 
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- between tissue and blood vessels 
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where Ue(x, t) = ∂Te(x, t) / ∂αout. A similar equation determines 
sensitivity function in the domain of fabric:
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One can see that the values of thermal conductivities both for 
tissue sub-domains and the fabric are assumed to be constant. 
Differentiation of internal boundary conditions with respect to the 
external heat transfer coefficient leads to the following equations:
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– between tissue and blood vessels
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To obtain conditions (16) and (17) in the form analogous to 
Robin conditions (8) and (9), in the basic model one can write
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while blood sensitivities Ub artery and Ub vein are equal to zero. The 
forms presented above and below will allow for using the same 
computation procedure simultaneously with the basic model 
and the sensitivity model.

On the external surface of the system one has
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Introduced in the contractual way, ambient sensitivity
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leads to condition (20) in the same form as Robin boundary 
condition. One can see that the sensitivity model and the basic 
one are coupled. To determine ambient sensitivity the knowl-
edge of temporary temperature field is necessary.

The only difference in the sensitivity model concerning the 
ambient temperature is the form of condition (20), namely

( ), 1ambU x t = � (22)

4.	 Control volume method

At the stage of numerical computations the control volume 
method (CVM) is applied; in other words, the domain con-
sidered is divided into a certain number of small cells and 
the governing equations in the integral form are applied 
individually to each one of them. This procedure guaran-
tees, a priori, the conservation of physical quantities like 
mass, momentum and energy. It is also extremely flexible 
and conceptually simple. In this paper, 2D control volumes 
corresponding to Voronoi polygons (also called the Thiessen 
or Dirichlet cells in two dimensions) [18] have been used. 
Such a version of CVM was in details discussed by Ciesi-
elski and Mochnacki in [19, 20]. Here, only basic informa-
tion concerning this variant of CVM will be presented. So, 
the domain analyzed is divided into N volumes (Fig. 2) and 
the algorithm presented allows for finding the transient tem-
perature field at the set of nodes corresponding to central 
points of the control volumes.

Fig. 3. Control volume CVi

Fig. 2. Tissue and fabric sub-domains

The polygon that contains the point xi (central point) is de-
noted by CVi (Fig. 3). All of the Voronoi regions are convex 
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polygons, and each polygon is defined by lines bisecting sec-
tors between the central point and neighbouring points. The 
bisecting lines and the connection lines are perpendicular to 
each other (it is very convenient at the stage of CVM equa-
tions construction). Let us consider control volume CVi with 
the central node xi.

It should be pointed out that the mathematical model con-
cerning temperature Te(x, t) and sensitivity models are practi-
cally the same. Therefore, CVM equations concern both Te(x, t) 
and Ue(x, t) – the searched distributions of these functions will 
be denoted as We(x, t). Below it is assumed that the thermal 
capacities and capacities of the internal heat sources are con-
centrated at the nodes representing elements, while thermal 
resistances are concentrated on the sectors joining the nodes. 
Additionally, the constant values of the parameters of succes-
sive sub-domains are taken into account. The CVM equations 
result from the integration of equations (1) and (12) with re-
spect to time and volume CVi. Let us consider the time interval 
Δt = t f + 1 – t f.
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For the basic model
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while for the sensitivity one
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where Ai is the surface (perimeter) limiting CVi. The integration 
of the left-hand side of equation (26) gives
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In a similar way one can approximate the last component in 
equation (26), namely
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The term determining the fluxes between ΔVi and its neighbour-
hoods can be written in the form
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where —λi(j)
– is mean thermal conductivity between two central 

points of two adjoining control volumes with nodes i and i(j), 
while Ri(j) is thermal resistance between these nodes; in the case 
of internal control volumes it is equal to
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wherein hi(j) is distance between the nodes i and i(j) – see Fig. 3.
The CVM equation written in the convention of “explicit” 

scheme takes the form
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In order to determine the stability condition of the explicit 
differential scheme (33), the sum of the coefficients at W f

i  must 
be positive. Hence, this condition for each node i can be written 
in the following form:
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The factor −cbGbe is enclosed in the definition of formula Q f
i . 

From inequality (35) one can determine the critical time step Δt
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In the case of external CV when the boundary Ai(j) of CVi 
covers the surface Γout, Γartery or Γvein, the implementation of 
boundary conditions (6‒8) and (18‒20) must be introduced. 
For this reason the following approximation of appropriate term 
in equation (29) is used:
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where Wa is the value of ambient temperature or “ambient sen-
sitivity” and Ri(j) corresponds in this case to the thermal resis-
tance between central point of CVi and its environment in i(j) 
direction. It is defined as follows:

( )
( )0.5 1i j

i j
i

h
R = +

λ α
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wherein α = {αout, αartery, αvein}, respectively. 
In the case of control volumes bordering the layer of trapped 

air (between the skin surface and protective clothing), thermal 
resistance (30) should be increased by thermal resistance of 
the air gap.

5.	 Example of computations

The fabric-forearm domain stays in thermal contact with the en-
vironment at temperature equal to Tamb = 20°C, while heat trans-
fer coefficient αout = 3.7 W/m2K. Thermal resistance of trapped 
air is assumed to be a constant value R = 0.077 m2K/W. The 

authors have developed the procedure of the exact computation 
of temperature-dependent thermal resistance R, but the prelimi-
nary calculations show that the constant value proposed is quite 
acceptable. Additionally, the following blood temperatures are 
assumed: Tb artery = 36°C, Tb vein = 35°C, while αartery = αvein = 5000 
W/m2K.

Thermophysical parameters of the successive sub-domains 
are assumed to be constants and are presented in Table 1. Pa-
rameters of tissues and textile are taken from [11, 12].

The initial temperature distribution is found using Gauss 
method (simple iteration method). It corresponds, practically, 
to the use of the basic computer program for the optional initial 
condition and continuation of computations until the tempera-
ture field becomes stabilized. At the moment t = 0, ambient 
temperature increases to Tamb = 70°C (heat transfer coefficient 
αout = 100 W/m2K). Numerical simulation concerns the process 
of tissue heating. The basic solution (in the form of heating 
curves at the selected set of points – see Fig. 2) are shown in 
Fig. 4.

Table 1 
Thermal parameters of sub-domains

Ώi λ[W/mK] c [J/kg m3] 
= cp [J/kg K] · ρ [kg/m3]

Gb [1/s] Qmet [W/m3]

0 Fabric 0.17 240000 – –

1 Skin 0.47 3680 · 1085 1.1000·10‒3 368

2 Fat 0.16 2300 · 850 0.0036·10‒3 58

3 Muscle 0.42 3768 · 1085 0.5380·10‒3 684

4 Bone 0.75 1700 · 1357 0.0000·10‒3 0

Blood – 3650 · 1069 – –

Fig. 4. The basic solution

The next figures show the numerical solution of sensi-
tivity problems. In particular, changes of sensitivity function 
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Using this equation one can find temporary and local chang-
es of temperature due to the perturbations of the param-
eter discussed. In Fig. 8 the results concerning the value of 
∆αout = ±10W/m2K are shown, while in Fig. 9 – the results 
corresponding to ∆Tamb = ±7K.

It is also possible to estimate the changes of temperature 
due to the simultaneous perturbations of both parameters using 
formula [21] 

Fig. 5. Sensitivity with respect to heat transfer coefficient

Fig. 9. Changes of temperature due to the perturbations of TambFig. 8. Changes of temperature due to the perturbations of αout

Fig. 7. Distribution of sensitivity with respect to αout and Tamb for time 
10 min.

Fig. 6. Sensitivity with respect to ambient temperature

Ue(x, t) = ∂Te(x, t)/∂αout are shown in Fig. 5, while changes of 
Ue(x, t) = ∂Te(x, t)/∂Tamb are marked in Fig. 6. Temporary distri-
butions of sensitivity with respect to perturbations of heat trans-
fer coefficient and ambient temperature are shown in Fig. 7.

Application of Taylor formula (only the first derivative is 
taken into account) gives

T(x, t, p1,..., pk ± Δpk, ..., pn) =  
= T(x, t, p1, ..., pk, ..., pn) ± Uk(x, t )Δpk

� (39)
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is also the problem of residence time at elevated temperature 
– see: Henriques integral [16].

Sensitivity analysis provides useful information as well. 
At first, one can see that the sensitivity of temperature field 
in a system considered with respect to ambient temperature 
is much greater than the sensitivity with respect to heat 
transfer coefficient. The courses of both functions are quite 
different. Sensitivity with respect to Tamb is an increasing 
function for the relevant period of time, while sensitivity 
with respect to αout reaches its maximum value at the initial 
stages of heating and then rapidly decreases. In the tissue 
domain, sensitivity ∂Te(x, t)/∂αout is practically close to zero. 
The perturbations of ambient temperature ∆Tamb = ±7K (pos-
sible in the real world) causes essential changes of fabric 
temperature (as in Fig. 9). Summing up, the insulating prop-
erties of the protective clothing considered are too weak. 
It results from the thermophysical parameters of the fabric 
and the considerable value of external heat source. Directly 
after the start of heating process, the boundary heat flux is 
equal to about 4 kW/m2.

Further works in this field will focus on expanding the al-
gorithm presented for the case in which the parameters of bi-
ological tissue are treated as the interval numbers [23]. Such 
an approach results from the fact that tissue parameters are 
individual features dependent on the gender, age, profession 
etc., and the differences are noticeable.
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