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Abstract. Nowadays, information control systems based on databases develop dynamically worldwide. These systems are extensively imple-
mented into dispatching control systems for railways, intrusion detection systems for computer security and other domains centered on big data 
analysis. Here, one of the main tasks is the detection and prediction of temporal anomalies, which could be a signal leading to significant (and 
often critical) actionable information. This paper proposes the new anomaly prevent detection technique, which allows for determining the 
predictive temporal structures. Presented approach is based on a hybridization of stochastic Markov reward model by using fuzzy production 
rules, which allow to correct Markov information based on expert knowledge about the process dynamics as well as Markov’s intuition about 
the probable anomaly occurring. The paper provides experiments showing the efficacy of detection and prediction. In addition, the analogy 
between new framework and temporal-difference learning for sequence anomaly detection is graphically illustrated.
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The second key factor is the presence of “non-stochastic” types 
of uncertainty, which refer to noises and distortions of different 
nature and to inaccuracy of analyzed data. The above mentioned 
aspects show the difficulty of temporal data mining implemen-
tation resulting in a need for new methods elaboration.

This paper presents the hybrid fuzzy-stochastic approach for 
anomalous events prediction and specific temporal patterns de-
tection in stochastic time series of general form, which describe 
non-Markov processes. Key feature of the proposed framework 
is incorporation of fuzzy rules and drawing an analogy between 
the new technique and temporal-difference learning technique. 
In other words, the paper provides a statistical model by intel-
ligent correction according to anomalous forthcoming.

The paper is organized as follows. Section 1 discusses the 
background of sequence anomaly detection and Markov reward 
modeling. Section 2 presents fuzzy temporal detection notions and 
proves the possibility of fuzzy generalization for temporal-differ-
ence learning. Section 3 provides experimental results of bench-
marking with existing sequence anomaly detection techniques. 
Moreover, it proves the framework efficacy of anomaly predic-
tion. In Section 4, the conclusions and future work are proposed.

2.	 State of art

2.1. Anomaly detection. Anomaly detection in time series is 
referred to the problem of finding sequence patterns which con-
form (or do not conform) to the criteria of a certain task [2]. 
Sequences are ordered series of consequent events which can 
be presented by different types, such as binary, discrete and 
continuous, depending on the application domain. Real condi-
tions give the preference to discrete and continuous forms of 
representation. Note that the specific form, in which continuous 
patterns are presented when the anomaly detection task should 

1.	 Introduction

Automatic analysis, which allows for detecting specific or un-
usual temporal sets, becomes the key task in many application 
domains and research areas [1]. Here, one of the most interest-
ing and important questions is the determination and prediction 
of time structures or temporal patterns related to emergency of 
faults and unexpected events. These events are often called as 
anomalies and outliers and do not conform to expected behav-
ior. From a practical point of view, the task of unusual pattern 
detection is linked to problems of technological process control. 
The decision plays a vital role when preventing signalization 
is needed before an emergency occurs, diagnosis of technical 
devices is required before a fault appears, intrusion detection 
is necessary before a virus is received, etc.

A popular solution to this problem is using temporal data 
mining tools [2]. Temporal data mining is one of relatively 
young research directions, which comes from new directions 
of informatics and artificial intelligence domains. The main 
aim of temporal data mining is the extraction of useful infor-
mation for further usage in support decision systems. Because 
of these facts, modern temporal data mining techniques still 
require modifications and improvement.

Because of new generations of the intelligent information 
control groups based on knowledge bases, complicated systems 
such as railway transport systems face new technological prob-
lems. These problems are related to big data analysis, whose 
main objective is to determine sequences leading to abnormal 
events for trouble-free control provision [3]. Moreover, modern 
technological problems are caused by a high degree of dyna-
mism as well as soft real-time and hard real-time requirements. 
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be decided, suggest to transform them into phase space [4] or 
discrete time series [5]. Anomaly detection for discrete sequenc-
es is often called sequence anomaly detection.

The most common way for problem statement for sequence 
anomaly detection is converged to finding and/or predicting 
specific types of events, which are not expected when the nor-
mal behavior of a system is observed. Different problem in-
terpretation proposes the objectives like anomalies, outliers 
or even interesting events. Based on training data availabili-
ty, existing approaches for sequence anomaly detection can be 
merged into three groups [1]:
1.	Supervised anomaly detection. Techniques trained in super-

vised mode assume the availability of a training data set that has 
labeled instances for normal as well as anomaly class. Typical 
approach in such cases is to build a predictive model for normal 
and anomaly classes. Any unseen data instance is compared 
against the model to determine which class it belongs to [6].

2.	Semi-supervised anomaly detection. Techniques that operate 
in a semi-supervised mode assume the availability of only 
normal or abnormal class [7].

3.	Unsupervised anomaly detection. Techniques that operate 
in this mode do not require any training sequences. Unsu-
pervised approaches are commonly used for clustering [8]. 
Here, the most remote patterns are labeled as anomalous.
Proposed framework is dedicated to supervised anomaly 

detection, but it can be improved for utilizing in other modes. 
A particular problem statement for presented framework can be 
formulated as follows.

Let the initial time series data set describe the behavior of 
complex technological system when it is functioning. This set 
has some events, which are labeled as anomalies by human 
expert. There is also one assumption, according to which each 
anomaly is a result of specific patterns evolution. These patterns 
are unknown to the expert. The key task of our framework is to 
detect these patterns presence in a test set, and thus to predict 
the probable anomalous emergence.

In recent years, some data mining researches try to decide 
the above mentioned problem by the development of new tech-
niques on the basis of soft computing and machine learning in-
corporation. These techniques utilize neural networks [9], fuzzy 
sets [10] and artificial immune systems [11]. It should be noted 
that one of the popular cores of anomaly detection techniques is 
stochastic modeling, which allows for deciding the prediction 
task when uncertainty factors of stochastic type are present-
ed. Here, Markov reward models should become one of the 
most common techniques for stochastic uncertainty description. 
The proposed technique also uses the Markov reward model as 
a main core for behavior profile construction.

2.2. Markov reward model. Markov reward model (also called 
Markov reward process) can be denoted by a tuple:

	 {S, P, R}� (1)

where S = {si} (i 2 [1,n]) is state space, P = {pi, j} is transition 
probability matrix and R: x → r(x) is reward transition function 
represented by the reward vector with the length of  | S | .

Let X = {xt | t 2 ℕ} be the discrete stochastic process. This 
process is considered as generated by the Markov chain if it 
satisfies to the following assumptions [12]:
●	 the probability distribution of the state at time t depends on 

the state at time t–1 and does not depend on the previous 
states leading to the state at time t;

●	 a state transition from time t to time t + 1 is independent 
of time.
In other words, a transition probability satisfies the follow-

ing property:

	
P(xt = si | xt−1 = sj, xt−2,…, x1) = 
= P(xt = si | xt−1 = sj) = pij

.� (2)

The complete matrix P is presented as follows:
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Each element of the matrix P in case of 
discrete time is computed in the following 
way: 
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where c2
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For the sequence Y = y1, y2, …, yT, the 
reward function R can be defined as 
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where P(xi1, xi2, …, xiT(i) | xi1 = x) is the 
probability that sequence {xi1, xi2, …, xiT(i)} 
with the length of T(i) and the initial state x 
may be observed with. 
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It should be noted that one of the popular 
cores of anomaly detection techniques is 
stochastic modeling, which allows for 
deciding the prediction task when uncertainty 
factors of stochastic type are presented. Here, 
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2.2 Markov reward model. Markov reward 
model (also called Markov reward process) 
can be denoted by a tuple: 
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Each element of the matrix P in case of 
discrete time is computed in the following 
way: 
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where c2
ij represents the support of transition 

from si to sj and c1
i represents the support of 

the single state si. 
Classical approach considers support 

of pattern (state, transition) to be a number of 
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For the sequence Y = y1, y2, …, yT, the 
reward function R can be defined as 
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Methodology of preventing anomaly 
detection based on Markov reward modeling 
analyses the probability Pa(x) of evolution of 
a specific (or anomalous) sequence from the 
observed state x [13], i.e., the testing phase 
suggests the computing of future occurrence 
probability for the sequence which starts 
from the observed state x and terminated by 
the anomalous state xT, i.e. 
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where A(x) is the set of specific sequences. 

In [13], authors prove that the problem 
of computing probability of a specific pattern 
evolving from the observed state can be 
decided by discovering the value of function 
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where P(xi1, xi2, …, xiT(i) | xi1 = x) is the 
probability that sequence {xi1, xi2, …, xiT(i)} 
with the length of T(i) and the initial state x 
may be observed with. 

If Markov assumptions of a process are 
taken into account, equation (8) can be 
described by computing the probability of 
transition from the current state to anomalous 
one. It is mathematically represented in the 
following form:  
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where A(x) is the set of specific sequences.
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Fuzzy interpretation for temporal-difference learning in anomaly detection problems

In [13], authors prove that the problem of computing proba-
bility of a specific pattern evolving from the observed state can 
be decided by discovering the value of function for prediction 
of future Markov rewards:
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{xi1, xi2, …, xiT(i)} with the length of T(i) and the initial state x 
may be observed with.

If Markov assumptions of a process are taken into account, 
equation (8) can be described by computing the probability of 
transition from the current state to anomalous one. It is mathe-
matically represented in the following form:
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In this case, a state is considered as 
anomalous when a probability exceeds the 
threshold µ, which is human-established. 

Efficacy of this stochastic model is 
decreased when non-Markov transitions 
occur as well as appearance of anomalous 
rewards, which are referred to as linguistic 
uncertainties [14]. In this connection, the 
necessity for development classical Markov 
reward model arises.  

2.3 Temporal-difference learning 
approaches for Markov reward modeling. 
The particular ways to decide the problem 
development for Markov reward processes 
are presented in [13, [15]; authors present the 
temporal-difference learning based 
algorithms for Markov modeling. The main 
idea of temporal-difference learning is to 
update rewards and probability 
characteristics for an observed state based 
not only on previous, but also on consecutive 
states, which were observed in the past. It can 
be described as follows. 

Let the classical Markov transition 
support (here and hereafter, denote each 
parameter a in the time of t as a(t)) be 
computed by the next equation when the new 
state is observed:  
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From the temporal-difference 
perspective, the support of transition from si 
to sj is sensitive not only when the time 
difference between them is 1 (Δt = 1), but 
also when Δt > 1, i.e 
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where λ ∈ [0,1] is a bias-variance parameter, 
which defines the continuity of a process 
(when the bias-variance is zero, the 
continuity is Markovian).  

Similarly, the single state support may 
be computed:  
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To avoid confusion, the background of 
temporal-difference learning [13, [15] state 
that transition probability, which is computed 
by (4), in case of temporal-difference 
learning should be denoted as A.  

The reward function is also temporal-
difference learnt (denote the temporal-
difference reward vector as B). It is computed 
as follows: 
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In this case, a reward function is 
defined as the function, which characterizes 
the closeness of reward (or anomalous) state 
to previous ones. 

Temporal-difference learning also 
changes the definition of probability from 
(9). It states that current reward is defined not 
only by the previous state, but also by the 
state sequence in the past; it is computed as 
follows:  
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To decide the problem of random 
fluctuations, a memory of past state may be 
incorporated into the prediction model [16]:  

)()( 1  ta
j

jija xPBAxP  , (15) 

where α ∈ [0,1]  is memory rate. 
One of the key shortcomings is rigid 

adjustment of the technique that sometimes 
does not allow for emphasizing the patterns 
which highly affect to anomalous states. This 
shortcoming takes place because of strict 
power polynomial nature of both bias-
variance parameter and memory rate. It can 
be graphically illustrated in Fig.1. Here, the 
addition ΔB is shown for each state xt 
(Fig.1a) when the anomalous state is 
observed in time T (Fig.1b). In this case, it is 
difficult to emphasize states lying in the 
specific pattern without affecting the weights 
of the remaining states. One decision is to 
make the general so-called “reward 
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In this case, a state is considered as anomalous when a prob-
ability exceeds the threshold µ, which is human-established.

Efficacy of this stochastic model is decreased when 
non-Markov transitions occur as well as appearance of anom-
alous rewards, which are referred to as linguistic uncertainties 
[14]. In this connection, the necessity for development classical 
Markov reward model arises.

2.3. Temporal-difference learning approaches for Markov 
reward modeling. The particular ways to decide the prob-
lem development for Markov reward processes are presented 
in [13, 15]; authors present the temporal-difference learning 
based algorithms for Markov modeling. The main idea of tem-
poral-difference learning is to update rewards and probability 
characteristics for an observed state based not only on previous, 
but also on consecutive states, which were observed in the past. 
It can be described as follows.

Let the classical Markov transition support (here and hereaf-
ter, denote each parameter a in the time of t as a(t)) be computed 
by the next equation when the new state is observed:
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where λ ∈ [0,1] is a bias-variance parameter, 
which defines the continuity of a process 
(when the bias-variance is zero, the 
continuity is Markovian).  

Similarly, the single state support may 
be computed:  
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To avoid confusion, the background of 
temporal-difference learning [13, [15] state 
that transition probability, which is computed 
by (4), in case of temporal-difference 
learning should be denoted as A.  

The reward function is also temporal-
difference learnt (denote the temporal-
difference reward vector as B). It is computed 
as follows: 
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In this case, a reward function is 
defined as the function, which characterizes 
the closeness of reward (or anomalous) state 
to previous ones. 

Temporal-difference learning also 
changes the definition of probability from 
(9). It states that current reward is defined not 
only by the previous state, but also by the 
state sequence in the past; it is computed as 
follows:  
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difficult to emphasize states lying in the 
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In this case, a state is considered as 
anomalous when a probability exceeds the 
threshold µ, which is human-established. 
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decreased when non-Markov transitions 
occur as well as appearance of anomalous 
rewards, which are referred to as linguistic 
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necessity for development classical Markov 
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update rewards and probability 
characteristics for an observed state based 
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states, which were observed in the past. It can 
be described as follows. 
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From the temporal-difference 
perspective, the support of transition from si 
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where λ ∈ [0,1] is a bias-variance parameter, 
which defines the continuity of a process 
(when the bias-variance is zero, the 
continuity is Markovian).  

Similarly, the single state support may 
be computed:  
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To avoid confusion, the background of 
temporal-difference learning [13, [15] state 
that transition probability, which is computed 
by (4), in case of temporal-difference 
learning should be denoted as A.  

The reward function is also temporal-
difference learnt (denote the temporal-
difference reward vector as B). It is computed 
as follows: 
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In this case, a reward function is 
defined as the function, which characterizes 
the closeness of reward (or anomalous) state 
to previous ones. 

Temporal-difference learning also 
changes the definition of probability from 
(9). It states that current reward is defined not 
only by the previous state, but also by the 
state sequence in the past; it is computed as 
follows:  
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shortcoming takes place because of strict 
power polynomial nature of both bias-
variance parameter and memory rate. It can 
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where λ 2 [0, 1] is a bias-variance parameter, which defines the 
continuity of a process (when the bias-variance is zero, the con-
tinuity is Markovian).

Similarly, the single state support may be computed: 
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where λ ∈ [0,1] is a bias-variance parameter, 
which defines the continuity of a process 
(when the bias-variance is zero, the 
continuity is Markovian).  

Similarly, the single state support may 
be computed:  





















otherwiseif),1(
0,if,)1(

0,if,1)1(
)(

],...,1,0[

2

2

2

2

tc
sxtc

sxtc
tc

t

i

iti

iti

i 








 , (12) 

To avoid confusion, the background of 
temporal-difference learning [13, [15] state 
that transition probability, which is computed 
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In this case, a reward function is 
defined as the function, which characterizes 
the closeness of reward (or anomalous) state 
to previous ones. 

Temporal-difference learning also 
changes the definition of probability from 
(9). It states that current reward is defined not 
only by the previous state, but also by the 
state sequence in the past; it is computed as 
follows:  
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incorporated into the prediction model [16]:  
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adjustment of the technique that sometimes 
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which highly affect to anomalous states. This 
shortcoming takes place because of strict 
power polynomial nature of both bias-
variance parameter and memory rate. It can 
be graphically illustrated in Fig.1. Here, the 
addition ΔB is shown for each state xt 
(Fig.1a) when the anomalous state is 
observed in time T (Fig.1b). In this case, it is 
difficult to emphasize states lying in the 
specific pattern without affecting the weights 
of the remaining states. One decision is to 
make the general so-called “reward 
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where λ ∈ [0,1] is a bias-variance parameter, 
which defines the continuity of a process 
(when the bias-variance is zero, the 
continuity is Markovian).  
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Fig. 1. The additional rewards in case of anomalous observation
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in the specific pattern without affecting the weights of the re-
maining states. One decision is to make the general so-called 
“reward function”, which can not only occupy the power type 
(which is used by temporal-difference learning), but also pro-
vide other kinds of reward functions.

3.	 Fuzzy form of Markov reward process

3.1. Fuzzy temporal relations. Let the temporal relation τk
 for 

the temporal set X = {xt} (t 2 [1, N]) within state space S be 
defined for the observed time t as follows:
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and g are separated by k time steps in time 
period”. 

Model of temporal scenario can be 
computed for the observed time t as follows:  
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Particular presentations of past for an 
observed process may be modeled by 
emphasis on particular conjuncts from (17). 
Here, the focus is on the estimation of the 
optimal scenarios, which allow to correctly 
adjust the parameters of Markov reward 
model based on the past [17]. Fuzzy 
interpretation of (16) can be used to solve this 
problem. 

Fuzzy interpretation of temporal 
relation can be produced if parameter k from 
(16) is replaced by fuzzy value. In particular, 
if fuzzy value ≈1 “approximately one” is 
taken instead of k (the membership function 
is µ≈1(k)) then the fuzzy relation φ1: “in 
immediate past” is produced. The fuzzy 
relation is defined by membership function 
µφ within pair set S × q. In this case, the 
membership of pair (g, q) (g = xi, i ∈ [1,t]) is 
computed as follows:  
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The temporal relation φk “in several 
previous steps” is produced if k is reduced by 
fuzzy interval value, which reflects intuitive 
ideas of human experts about the qualitative 
value “several steps”. 

In general, the system Τ = {φz1, φz2, …, 
φzk} (zi ∈ [1,N]) may be used. Each element from 
Τ characterizes the time interval 
“approximately zj”. The membership 
function is produced for each fuzzy relation 
φzk and computed by the following equation:  
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where 
jz is the membership function for 

fuzzy value “approximately zj”. 
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which reflects the past evolution of an 
observed process relatively to the state q = xt, 
can be computed as follows:  
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Before equation (20) is applied, the 

procedure of preprocessing should be 
provided by a human expert to emphasize on 
interesting events in past and eliminate 
insignificant conjuncts.  

Markov model corrections are made 
based on past and described by production 
rules of the following form:  

 THEN  IFG , (21) 
where G is fuzzy model of temporal scenario 
at time t and Δ is real value, which defines 
the correction for a Markov parameter 
(transition probability, support, reward, etc.). 

Correction rules are produced by 
human expert based on his intuitive ideas 
about the temporal correlations between 
process states. Here, the antecedents are 
special variants of temporal scenarios which 
affect stochastic outcomes, thus breaking 
Markov assumptions. 

3.2 Markov chain with fuzzy production 
rules. The generalization of temporal-
difference learning approach can be done by 
incorporation of data which describes the 
non-Markov dynamics of analyzed process, 
as well as by integration of human expert 
information which comes from intuitive 
knowledge about anomalous occurrence.  

One of the ways for this problems 
decision is the foundation of hybrid fuzzy-
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Before equation (20) is applied, the procedure of prepro-
cessing should be provided by a human expert to emphasize 
on interesting events in past and eliminate insignificant con-
juncts. 

Markov model corrections are made based on past and de-
scribed by production rules of the following form: 

	 IFG THEN Δ ,� (21)

where G is fuzzy model of temporal scenario at time t and Δ is 
real value, which defines the correction for a Markov parameter 
(transition probability, support, reward, etc.).

Correction rules are produced by human expert based on his 
intuitive ideas about the temporal correlations between process 
states. Here, the antecedents are special variants of temporal 
scenarios which affect stochastic outcomes, thus breaking Mar-
kov assumptions.

3.2 Markov chain with fuzzy production rules. The general-
ization of temporal-difference learning approach can be done by 
incorporation of data which describes the non-Markov dynam-
ics of analyzed process, as well as by integration of human ex-
pert information which comes from intuitive knowledge about 
anomalous occurrence.

One of the ways for this problems decision is the founda-
tion of hybrid fuzzy-stochastic model by merging the above 
described Markov model with fuzzy production model men-
tioned in this paper.

When fuzzy production rules are incorporated into Markov 
model, it is represented by the following quadruple tuple:

	 {S, P, R, Π},� (22)

where Π is a set of fuzzy production rules used for Markov 
model correction.

Let Π contain four fuzzy rules, which are in form (21) and 
are defined by the apparent human considerations: 

	 IF gφ≈1q THEN Δi & Δit ,� (23)

	 IF gφm~q THEN –Δi & –Δit ,� (24)

	 IF gφ≈1q THEN ΔRi ,� (25)

	 IF gφm~q & t 2 A(t) THEN –ΔRi� (26)

where q is an observed state; g = xi (i 2 [1, t – 1]) is a state 
in the past of q; Δ i is a value representing the correction for 
support of state sa = g; Δi is a value representing the correction 
for support of transition from sa = g to observed state sb = q; is 
a fuzzy value “long time”; A(t) is a set of time indexes, which 
are labelled as anomalous by human expert and ΔRi is a value 
representing the correction for reward of state sa = g.

The membership functions in general case for all fuzzy val-
ues may be represented by Gaussian function (Fig. 2). It should 
be noted that power form of the membership function leads to 
temporal-difference equations discussed above.
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Fuzzy interpretation for temporal-difference learning in anomaly detection problems

Based on above mentioned, it can be concluded that when 
a new state is observed, fuzzy rules mechanism update rewards 
and supports for each state and transition.

To make a prediction of future rewards robust to non-Mar-
kov situations, the following fuzzy rule for anomalous proba-
bility can be used:

	 IF gφ≈1q THEN ΔiPa(xt)
,� (27)

where ΔiPa(xt)  is a value representing the correction for probabil-
ity of transition from observed state q to anomalous one based 
on its relation with state in the past g = xi (i 2 [1, t – 1]).

Therefore, the probability of transition from observed state 
to anomaly is computed as follows:
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Based on the above mentioned 
description, it can be concluded that 
presented technique is a theoretically 
generalized form of temporal-difference 
learning approach, and hence, it has more 
robustness for dynamics than non-Markov 
processes with regard to specific pattern 
emphasis. Moreover, it can be carefully 
adjusted because of human expert knowledge 
incorporation, and hence, it may find wider 
application than in case of original temporal-
difference framework.  

4. Computational experiments 

4.1 Intrusion detection. The experiments 
with system calls collected from MIT and 
UNM, which are often used for stochastic 
models benchmarking, were performed to 
prove the presented framework is generalized 
form of temporal-difference learning and can 
be reduced [18]. These databases include 
normal data, i.e. traces of programs obtained 
from computer system usage by real users, 
and different kinds of multi-stage cyber-
attacks (buffer overflows, symbolic link 
attacks, Trojan programs, etc.). We chose 
two databases for our research. The first one 
was collected from MIT and second one was 
from UNM. Both are called live lpr. Table 1 
shows the main details of the data. 

To make the benchmarking similar to   
previous experiments, the data was divided 
into two groups: one for training and the 
other one for testing [13, 15]. As for 
estimation, true detection rate TDR and false 
detection rate FDR were used. These rates are 
computed as follows:  
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where nad is the number of correctly identified abnormal trac-
es, na is the number of abnormal traces, nnormd is the number of 
normal traces that have been incorrectly identified as anomalies 
and nnorm is the number of normal traces.

All the experiments were implemented by using C#. The 
average time of the calculations for one sequence was 36 µs. 
The membership functions for relation “in immediate past” and 
“in long previous time” were taken in power form:

	 µ≈1(x) = λx ,� (30)

	 µm~(x) = λN–x ,� (31)

where λ is a bias-variance parameter, which is described above 
and N is a length of trace, which is considered as normal.

To make the presented framework be the same as the last 
form of temporal-difference learning approach [15], utilizing 
values were established as λ = 0.995 for MIT and λ = 0.95 for 
UNM. For both MIT and UNM N = 1000.

The results show the presented technique allows to reach 
99.8% of TDR when the FDR is zero for MIT and 100% of TDR 
when FDR is 1.29%. Therefore, it is computationally proved 
that the new framework can be reduced to temporal-difference 
learning one.

4.2. Fault prediction. To show that the presented technique 
allows not only to detect anomalous sequences in databases, but 
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≈ 1 Table 1 
MIT and UNM datasets characteristics

Property MIT UNM

Total number of normal traces 2207 1231

Total number of attack traces 1001 1001

Total number of system calls 2746655 717568

Sequence of calls per one state 6 6

Number of normal train sequences 10 10

Number of attack train sequences 20 20

Number of normal test sequences 2207 1231

Number of attack test sequences 1001 1001
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also to predict forthcoming anomalous unexpected events, this 
subsection describes the problem of fault prediction decision 
for rail hump yards (Fig. 3) [19].

Here, the fault may appear when cars with big weight 
and speed overtakes cut with cars with lower weight and 
speed. In this case, both kinds would be on one track. To 
prevent this, dispatcher should adjust braking position based 
on intuitive ideas. As empirical experiments show, the dis-
patchers usually do not find a way to prevent these faults. 
To solve this problem, a decision support system should be 
developed. Therefore, proposed technique can be a good ba-
sis for this system.

To present a temporal scenario of process on rail yard, the 
following quadruple tuple may be used:

	 {D, ΔV, W1, W2} ,� (32)

where D is distance between cuts, m; ΔV is speed difference 
between cuts, m/s; W1 is resistance to movement of back cut, 
‰ and W2 is resistance to movement of front cut, ‰.

Speed difference is computed as follows:

	 ΔV = V1 − V2 ,� (33)

where V1 is speed of back cut, m/s and V2 is speed of front 
cut, m/s.

To avoid the complicated analysis of multidimensional 
temporal sets, the following convolution is defined. Let the 
tensity of situation on hump yard be defined as the certain 
variable xt. The value of zero characterizes optimal conditions 
when a hump yard process is in normal mode. In contrast, 

Fig. 3. Hump yard of Russian railway

the value of one show that fault is observed. The Mamdani 
inference used in proposed experiments to produce this vari-
able. Here, the term sets are represented by the following 
grammars:
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Therefore, the intuitive dispatcher idea 
about the situation on a hump yard may be 
represented in a form of fuzzy rule system. 
The system produced during experimental 
yard  (it is a particular system of combination 
of (34-36) made by human experts) is 
illustrated in Fig. 4. 

 
Fig. 4. Fuzzy rules for producing 

tensity variable 

As a result of Mamdani inference, each 
pair of cuts is represented in form of curves, 
which are converged to anomalies (or 
overtaking situations). The particular 
overtaking situation is graphically depicted 
in Fig. 5. 

 
Fig. 5. Time-series representing the 

overtaking car pair 

Based on presented technique, the 
observed time series Xn = {xt(n)}, where n = 
[1, N] (N is the general number of pairs) 
undergo modeling. It was discovered that the 
rate of faults during human dispatcher work 
without support is 8%. This value is 
decreased to 5% when the framework is 
included into the decision process. It proves 
that the number of overtaking situations is 
reduced almost two times.  

5. Conclusions and future work 

The new framework for anomaly 
detection is presented, in which fuzzy 
generalization of temporal-difference 
approach for Markov reward model learning 
is proposed. To overcome the weakness of 
previous approaches, fuzzy interpretation of 
temporal-difference parameters is applied. It 
is proved that fuzzy rules not only extend the 
capabilities for non-Markov process 
modeling, but also allow to incorporate 
human expert ideas about observed process. 
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As a result of Mamdani inference, each pair of cuts is rep-
resented in form of curves, which are converged to anomalies 
(or overtaking situations). The particular overtaking situation 
is graphically depicted in Fig. 5.

Based on presented technique, the observed time series 
Xn = {xt(n)}, where n = [1, N] (N is the general number of pairs) 
undergo modeling. It was discovered that the rate of faults 
during human dispatcher work without support is 8%. This 
value is decreased to 5% when the framework is included into 
the decision process. It proves that the number of overtaking 
situations is reduced almost two times.

5.	 Conclusions and future work

The new framework for anomaly detection is presented, in 
which fuzzy generalization of temporal-difference approach for 
Markov reward model learning is proposed. To overcome the 
weakness of previous approaches, fuzzy interpretation of tem-
poral-difference parameters is applied. It is proved that fuzzy 
rules not only extend the capabilities for non-Markov process 
modeling, but also allow to incorporate human expert ideas 
about observed process. Computational experiments shows the 
technique may be applied not only for anomaly detection, but 
also for anomaly prediction.

Future research work is needed to show new and more spe-
cific applications of the proposed framework. Particularly, ef-
ficacy of other membership functions can be shown. Another 
way to extend the framework is to emphasize the dependency 
not only on one state, but also on specific sequences of events, 
i.e. applying other types of temporal scenarios.
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