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BUCKLING ANALYSIS OF COMPOSITE CYLINDRICAL SHELLS
REINFORCED BY CARBON NANOTUBES

In this paper, the authors investigate a cylindrical shell reinforced by carbon
nanotubes. The critical buckling load is calculated using analytical method when it
is subjected to compressive axial load. The Mori-Tanaka method is firstly utilized to
estimate the effective elastic modulus of composites having aligned oriented straight
CNTs. The eigenvalues of the problem are obtained by means of an analytical ap-
proach based on the optimized Rayleigh-Ritz method. There is presented a study
on the effects of CNTs volume fraction, thickness and aspect ratio of the shell,
CNTs orientation angle, and the type of supports on the buckling load of cylindrical
shells. Furthermore the effect of CNTs agglomeration is investigated when CNTs are
dispersed none uniformly in the polymer matrix. It is shown that when the CNTs
are arranged in 90◦ direction, the highest critical buckling load appears. Also, the
results are plotted for different longitudinal and circumferential mode numbers. There
is a specific value for aspect ratio of the cylinder that minimizes the buckling load.
The results reveal that for very low CNTs volume fractions, the volume fraction of
inclusions has no important effect on the critical buckling load.

Nomenclature
Em, vm Young’s modulus and Poisson’s ratio of matrix
r, θ, z cylindrical principal directions
σrr , σθθ , σzz, σθz, σrz, σrθ stress components
εrr , εθθ , εzz, γθz, γrz, γrθ strain components
Qrr ,Qrθ ,Qrz,Qθθ ,Qθz,Qzz

Gθz,Grz,Grθ
stiffness coefficients

cm, cr volume fractions of matrix and CNTs respectively
kr , lr , mr , nr , pr Hill’s elastic modulus for CNTs
[Qi j], [Qi j] stiffness matrix and reduced transformed stiffness matrix
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[T ] transformation matrix
R, L, h radius, length and thickness of cylinder respectively
x, θ, z axial, circumferential and radial coordinates respectively
V volume of cylinder or volume of the representative volume element
A portion of cylinder surface over which tractions are prescribed
{φ} displacement vector
{t} surface traction
{σ} , {ε} , [C] Stress, strain and elastic tensor of composite
k, n layer number and number of layers
U strain energy
ur0, uθ0 displacements of mid-plane in r and θ directions respectively
w lateral deflection of cylinder
Nx,Nθ ,Nxθ resultant normal forces in x and θ directions and shear force
Pr radial pressure∏

total potential energy

Anm deflection amplitude
n, m number of half sine waves in x and θ directions
Nxcr Critical axial buckling load
Vr total volume of nanotubes
V inclusion

r ,Vm
r volume of nanotubes dispersed in the inclusions and in the matrix,

respectively
ξ volume fraction of inclusions with respect to total volume of the

composite
ζ volume fraction of nanotubes in the inclusions with respect to the

total volume of nanotubes
kin, kout effective bulk modulus in the inclusions and out of the inclusions

respectively
Gin,Gout effective shear modulus in the inclusions and out of the inclusions

respectively
α, β, δr , αr , βr , ηr functions of the effective bulk and shear modulus
φ nanotube orientation angle

1. Introduction

Composites of carbon nanotubes (CNTs) dispersed in metallic or poly-
meric matrices have attracted a considerable attention in recent years [1].
CNTs with their superior stiffness and strength have been regarded as an
excellent candidate for reinforcing part in advanced composites with high
strength and low density characteristics. A number of experimental and the-
oretical studies have shown that CNTs have excellent mechanical properties,
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such as high strength and stiffness to weight ratios, very high aspect ratio
(ratio of length to diameter of CNTs), and enormous electrical and thermal
conductivities [2-4]. Therefore, the presence of the nanotubes can improve
the strength and stiffness of polymers as well as electrical and thermal con-
ductivities of polymer-based composite structures [5-9].

The buckling load of a composite cylindrical shell depends on a variety of
parameters, such as the geometry of the cylinder, properties of reinforcement,
and boundary conditions. Hilburger et al [10] presented buckling results from
a numerical study of the response of thin-walled compression-loaded quasi
isotropic laminated composite cylindrical shells with unreinforced and re-
inforced square cutouts. Dong and Mistry [11] carried out an experimental
investigation into the buckling failure of filament wound glass reinforced
plastic cylinders subjected to a combination of external pressure and axial
compression. An analytical and experimental study of the buckling behavior
of thin-walled carbon fiber reinforced polymer (CFRP) laminated shells un-
der combined axial and torsion loading is done by Meyer-Piening et al. [12].
Elghazouli et al. [13] present the results of buckling tests on laminated com-
posite cylinders made of glass fiber reinforced plastic (GFRP). The results of
this experimental study demonstrate the influence of laminate orientation on
the buckling strength of composite cylinders under axial compression. Same
authors [14] studied a numerical simulation for the buckling behaviour of
laminated glass-reinforced plastic cylinders under axial compression. Topal
[15] studied multi objective optimization of laminated cylindrical shells to
maximize a weighted sum of the frequency and buckling load under ex-
ternal load. He used the first order shear deformation theory for the finite
element formulation of the laminated shells. Chryssanthopoulos et al. [16]
give a detailed research on the numerical finite element validation for lam-
inated GFRP cylinders subjected to concentric and eccentric compression.
Both linear eigenvalue analysis and geometrically nonlinear simulations are
undertaken using a general purpose finite element program.

The Effects of CNTs volume fraction, CNTs orientation angles, and ag-
glomeration of CNTs are important for studying the buckling of structures.
Jam and Maghamikia [17] derived the buckling equations of laminated rec-
tangular plates using classical plate theory. Also the critical compressive
load in the buckling of circular and annular composite plates reinforced
with carbon nanotubes (CNTs) is calculated using finite element method by
same authors [18]. The developed model is based on the third-order shear
deformation theory for moderately thick laminated plates, and the effects of
CNTs orientation angles and thickness-to-inner radius ratio on the buckling
of composite plates are discussed. Jam et al. [19] obtained the buckling
analysis of circular annular plate reinforced by CNTs subjected to compres-
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sive and torsional loads with various axially symmetric boundary conditions.
The results illustrate that the critical buckling load decreases as a result of
non uniform dispersion of CNTs in the polymer matrix.

In this paper, the critical buckling load of a composite cylindrical shell
reinforced by CNTs is obtained by means of analytical approach based on
optimized Rayleigh-Ritz method when the composite cylinder is under axial
load. Also, the Effects of CNTs volume fraction, thickness and aspect ratio
of shell, CNTs orientation angles, and agglomeration of CNTs with different
types of boundary supports are studied on the buckling load of cylindrical
shells.

2. Effective modulus of the composite

In this section, the effective modulus of the composite cylinder reinforced
by CNTs is developed. Different methods are available to estimate the overall
properties of the composite [20]. Due to its simplicity and accuracy, even
at high volume fractions of the inclusions, the Mori-Tanaka method [21] is
employed here. Also, CNTs are assumed to be aligned and straight with the
uniform dispersion in the polymer. The matrix is assumed to be elastic and
isotropic, with the Young’s modulus Em and the Poisson’s ratio vm.

The constitutive relations for a layer of the composite with the principal
axes parallel to the r, θ and z directions are [22]:



σrr

σθθ

σzz

σθz

σrz

σrθ



=



Qrr Qrθ Qrz 0 0 0
Qrθ Qθθ Qθz 0 0 0
Qrz Qθz Qzz 0 0 0
0 0 0 Gθz 0 0
0 0 0 0 Grz 0
0 0 0 0 0 Grθ





εrr

εθθ

εzz

γθz

γrz

γrθ



(1)

where σi j, εi j and Qi j are the stress components, the strain components and
the stiffness coefficients respectively. According to the Mori-Tanaka method,
the stiffness coefficients are given by [23]:
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Qθθ =
Em{Emcm + 2kr(1 + υm)[1 + cr(1 − 2υm)]}

2(1 + υm)[Em(1 + cr − 2υm) + 2cmkr(1 − υm − 2υ2
m)]

+

Em[Emcm + 2mr(3 + cr − 4υm)(1 + υm)]
2(1 + υm){Em[cm + 4cr(1 − υm)] + 2mrcm(3 + cr − 4υ2

m)}

Qrθ = Qrz =
Em

{
cmvm [Em + 2kr (1 + v)] + 2crlr

(
1 − v2

m

)}

(1 + vm)
[
2cmkr

(
1 − vm − 2v2

m
)

+ Em (1 + cr − 2vm)
]

Qzz =
Em

{
cmvm [Em + 2kr (1 + v)] + 2crlr

(
1 − v2

m

)}

(1 + vm)
[
2cmkr

(
1 − vm − 2v2

m
)

+ Em (1 + cr − 2vm)
]

Grθ =
Em [Emcm + 2mr (3 + cr − 4vm) (1 + vm)]

2 (1 + vm)
{
Em [cm + 4cr (1 − vm)] + 2mrcm

(
3 + cr − 4v2

m
)}

Grz = Gzθ =
Em[Emcm + 2(1 + cr)pr(1 + υm)]

2(1 + υm)[Em(1 + cr) + 2cmpr(1 + υm)]

(2)

where cm and cr are the volume fractions of the matrix and the CNTs, re-
spectively, and kr , lr , mr , nr and pr are the Hill’s elastic modulus for the
CNTs [24]. kr is the plane-strain bulk modulus normal to the CNT direction,
nr is the uniaxial tension modulus in the CNT direction, lr is the associated
cross modulus, mr and pr are the shear moduli in planes normal and parallel
to the CNT direction, respectively.

The reduced transformed stiffness matrix is [22]:
[
Q̄i j

]
= [T ]

[
Qi j

]
[T ]−1 (3)

where [T ] is the transformation matrix which is given by [21]:

[T ] =



cos2 θ sin2 θ 0 0 0 − sin 2θ
sin2 θ cos2 θ 0 0 0 sin 2θ

0 0 1 0 0 0
0 0 0 cos θ sin θ 0
0 0 0 − sin θ cos θ 0

sin θ cos θ − sin θ cos θ 0 0 0 cos2 θ − sin2 θ



(4)

3. Analytical solution

The CLPT is used to work the analytical solution out, as it is simply used
for a moderate thick isotropic plates and shells. According to Fig. 1, R and L
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are respectively the radius and length of cylinder, and h denotes the thickness
of it. The boundary condition on edges can be simply supported or clamped
and the cylinder is under axial loading. In Fig. 1, the axial coordinate is x,
the circumferential coordinate is θ, and the thickness coordinate normal to
the shell surface is z.

Fig. 1. Geometry of cylindrical shell and the assumed coordinate system

3.1. Total potential energy

Total potential energy of the cylinder, due to the internal strain and the
surface traction, is given by [25]:

Π =

∫

V

{ε}T {σ}dV +

∫

A

{φ}T {t}dA (5)

The first term in Eq. (5) is the strain energy in which V denotes the
volume of the cylinder. The second term is the energy produced by surface
traction and A is the portion of cylinder surface over which tractions are
prescribed. {φ} is the displacement vector and {t}is the surface traction. The
constitutive equation relating stress and strain can be written as:

{σ} = [C] {ε} (6)

where [C] is the elastic tensor whose components are given by [22]:

C11 =

n∑

k=1

[
Qrr

]
k

C22 =

n∑

k=1

[
Qθθ

]
k

C12 =

n∑

k=1

[
Qrθ

]
k

C66 =

n∑

k=1

[
Qzz

]
k

C16 =

n∑

k=1

[
Qrz

]
k

C26 =

n∑

k=1

[
Qzθ

]
k

(7)



NUMERICAL STUDY OF THE WAVE DISK MICRO-ENGINE OPERATION 419

where k denotes the layer number and n is the number of layers. According
to Eqs (6) and (7), the strain energy can be written as:

U =
1
2

∫

V

[
εr εθ γrθ

]


Qrr Qrθ Qrz

Qrθ Qθθ Qzθ

Qrz Qzθ Qzz





εr

εθ

γrθ

 dV (8)

The relations between the strain and the displacement for the CLPT are
given by [25]:

εr =
∂ur

∂r
=
∂ur0

∂r
− z

∂2w
∂r2

εθ =
1
r
∂uθ
∂θ

+
ur

r
=

1
r
∂ur0

∂θ
+

ur0

r
− z

r2

∂2w
∂θ2 −

z
r
∂w
∂r

εrθ =
1
2

(
1
r
∂ur0

∂θ
− ∂uθ0

∂r
− uθ0

r

)
− 2z

r
∂2w
∂r∂θ

+
2z
r2

∂w
∂θ

(9)

where ur0 and uθ0 are the displacements of the mid-plane in r and θ directions,
respectively, which are assumed to be zero because there is no coupling
between the in-plane and the out-of-plane displacements. w (r, θ) indicates
the displacement in z direction or the lateral deflection of the composite
cylinder. Substituting Eq. (9) into Eq. (8) for the defined coordinate system
mentioned in Fig. 1 yields:

U =
1
2

∫

V

[
−z∂

2w
∂x2

w
R
− z

∂2w
∂θ2

1
2

( z
R

+ 1
)
∂2w
∂x∂θ

]



C11 C12 0
C21 C22 0
0 0 C66





−z∂
2w
∂x2

w
R
− z

∂2w
∂θ2

1
2

( z
R

+ 1
)
∂2w
∂x∂θ


dV

(10)

The surface traction is given by [26]:

∫ TiuidS=
∫ 2π
0

∫ L
0 (Prw)R dxdθ

Sr
−

∫ 2πR

0

∫ L

0

Nx


∂u0

∂x
+

1
2

(
∂w
∂x

)2

+Nθ


1
R
∂v0

∂θ
+

w
R

+
1
2

(
1
R
∂w
∂θ

)2 + Nxθ

[
1
R
∂u0

∂θ
+
∂v0

∂x
+ 2

(
1
R
∂w
∂θ

) (
∂w
∂x

)]R dxdθ

(11)
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where, Nx is the resultant force in the x direction and Nxθ, Nθ and Pr are
assumed to be zero. Eqs (10) and (11) are substituted into Eq. (5). Under
axial compression, the total potential energy is simplified to:

∏
=

1
2

∫ R+h

R

∫ 2π

0

∫ L

0

C11z2
(
∂2w
∂x2

)2
− 2C12z

w
R
∂2w
∂x2 + 2C12z2

(
∂2w
∂x2

) (
∂2w
∂θ2

)

+C22

(w
R

)2
− 2C22z

(w
R

) (
∂2w
∂θ2

)2
+ C22z2

(
∂2w
∂θ2

)2
+

1
4
C66

(
∂2w
∂x∂θ

)2 dzdθdx

−
∫ 2πR

0

∫ L

0
Nx


∂u0

∂x
+

1
2

(
∂w
∂x

)2Rdxdθ

(12)

Based on the levy solution [25], it is important to find a suitable function
for the lateral deflection. It is assumed that the lateral deflection is a separate
solution of x and θ variables:

w (x, θ) = f (x) g (θ) (13)

For the simply supported boundary conditions at the ends of the cylinder
(S-S), the lateral deflection is defined as [27]:

w =

∞∑

m=1

∞∑

n=1

Amn sin (αmx) cos (nθ) , αm =
mπ
L

(14)

where Anm is the deflection amplitude, n and m are the number of half sine
waves in the x and θ directions. So, Eq. (14) is satisfied with two conditions
at the ends of the composite cylinder:

w = 0 at x = 0, L
∂2w
∂x2 = 0 at x = 0, L

(15)
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Substituting the solution w(x, θ) from Eq. (14) into Eq. (12) results in:

∏
=

1
2

∫ R+h

R

∫ 2π

0

∫ L

0

{
z2 (αm)4

(
C11

) ∞∑

m=1

∞∑

n=1

(Amn sin αmx cos nθ) 2

+
2
R

z (αm)2
(
C12

) ∞∑

m=1

∞∑

n=1

(Amn sin αmx cos nθ)2 +
1
R2

(
C22

) ∞∑

m=1

∞∑

n=1

(Amn sin αmx cos nθ)2

+z2n4
(
C22

) ∞∑

m=1

∞∑

n=1

(Amn sin αmx cos nθ)2 +
1
4

(nαm)2
(
C66

) ∞∑

m=1

∞∑

n=1

(Amn cosαmx sin nθ)2

+2C12z2 (nαm)2
∞∑

m=1

∞∑

n=1

(Amn sin αmx cos nθ) 2

− 2
R

C22zn4
∞∑

m=1

∞∑

n=1

(Amn sin αmx cos nθ) 2

R dx dθ dz

−
∫ 2π

0

∫ L

0

Nx


1
2
(αm)4

∞∑

m=1

∞∑

n=1

(Amn sin αmx cos nθ) 2

R dxdθ

(16)
By the conversion of the triple integral into the double one, Eq. (16) is

simplified to Eq. (17):

∏
=

1
2

∫ 2π

0

∫ L

0

{
1
3

(
(R + h)3 − R3

)
(αm)4

(
C11

) ∞∑

m=1

∞∑

n=1

(Amn sin αmx cos nθ) 2

+
1
R

(
(R + h)2 − R2

)
(αm)2

(
C12

) ∞∑

m=1

∞∑

n=1

(Amn sin αmx cos nθ) 2

+
h
R2

(
C22

) ∞∑

m=1

∞∑

n=1

(Amn sin αmx cos nθ) 2

+
1
3

(
(R + h)3 − R3

)
n4

(
C22

) ∞∑

m=1

∞∑

n=1

(Amn sin αmx cos nθ) 2

+
h
4

(nαm)2
(
C66

) ∞∑

m=1

∞∑

n=1

(Amn cosαmx sin nθ) 2

+
2
3
C12

(
(R + h)3 − R3

)
(nαm)2

∞∑

m=1

∞∑

n=1

(Amn sin αmx cos nθ) 2

− 1
R

C22

(
(R + h)2 − R2

)
n4

∞∑

m=1

∞∑

n=1

(Amn sin αmx cos nθ) 2

− Nx

(αm)4
∞∑

m=1

∞∑

n=1

(Amn sin αmx cos nθ) 2


R dx dθ

(17)

By substituting the values of sine and cosine functions in Eq. (17) one
can see that the total energy Π is a function of Amn. Moreover, for the cylinder
to be in equilibrium, Π must be stationary with respect to Amn. So:

∂Π

∂Amn
= 0 (18)
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The buckling load Ncr is obtained by solving Eq. (18) as follows:

Ncr =

(
2

πLα4
m

) {
1
3

(
(R + h)3 − R3

)
(αm)4

(
πL
2

) (
C11

)
+

(
(R + h)2 − R2

R

)
(αm)2

(
πL
2

) (
C12

)

+
h
R2

(
πL
2

) (
C22

)
+

1
3

(
(R + h)3 − R3

)
n4

(
πL
2

) (
C22

)
+

h
4

(nαm)2
(
πL
2

) (
C66

)

+
2
3

(
πL
2

)
C12

(
(R + h)3 − R3

)
(nαm)2 − 1

R
C22

(
πL
2

) (
(R + h)2 − R2

)
n4

}

(19)
Also for the clamped boundary conditions (C-C) at the ends of the cylin-

der, the lateral deflection is defined as [27]:

w =

∞∑

m=1

∞∑

n=1

Amn (1 − cos (αmx)) cos (nθ) (20)

So, Eq. (20) is satisfied with two conditions at ends of the composite
cylinder:

w = 0 at x = 0, L
∂w
∂x

= 0 at x = 0, L
(21)

Substituting the solution w(x, y) from Eq. (20) into Eq. (21) results in:

∏
=

1
2

∫ R+h

R

∫ 2π

0

∫ L

0

{
z2 (αmx)4

(
C11

) ∞∑

m=1

∞∑

n=1

(Amn cosαmx cos nθ)2

+
2
R

z (αmx)2
(
C12

) ∞∑

m=1

∞∑

n=1

(Amn cosαmx cos nθ)2

+
1
R2

(
C22

) ∞∑

m=1

∞∑

n=1

(Amn (1 − cosαmx) cos nθ)2

+z2n4
(
C22

) ∞∑

m=1

∞∑

n=1

(Amn (1 − cosαmx) cos nθ)2

+
1
4

(nαmx)2
(
C66

) ∞∑

m=1

∞∑

n=1

(Amn sin αmx sin nθ)2

+2C12z2 (nαmx)2
∞∑

m=1

∞∑

n=1

(Amn cosαmx sin nθ)2

− 2
R

C22zn4
∞∑

m=1

∞∑

n=1

(Amn (1 − cosαmx) cos nθ)2
Rdz dθ dx

−
∫ 2π

0

∫ L

0
Nx(αmx)4


1
2

∞∑

m=1

∞∑

n=1

(Amn cosαmx cos nθ)2
Rdθdx

(22)
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The buckling load Ncr for clamped boundary condition is obtained by
solving the derivative of Eq. (22) with respect to Amn as follows:

Ncr =

(
2

πLα4
m

) {(
(R + h)3 − R3

)
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(
πL
2

) (
C11
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) (
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1
2
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R

)
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) (
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1
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)
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2

) (
C22
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(
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R
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(
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2

) (
(R + h)2 − R2

)
n4

}

(23)

3.2. The effect of agglomeration

It has been observed in carbon nanotube reinforced composites that a
large amount of the nanotubes are concentrated in agglomerates. The ag-
glomeration is due to their low bending stiffness, so the CNTs can easily
agglomerate in the polymer matrix. In fact, there are some local regions
in the composite which have higher concentration of CNTs than the aver-
age volume fraction. These regions, which have spherical shapes, are called
”inclusion”. A two-parameter micromechanics model of agglomeration is
used to determine the effect of nanotube agglomeration on the elastic prop-
erties of randomly oriented CNTs reinforced composites. The regions with
concentrated nanotubes are assumed to be spherical in shape with different
elastic properties from the surrounding material. The total volume Vr of the
nanotubes in the representative volume element V can be divided into the
following two parts [28]:

Vr = V inclusion
r + Vm

r (24)

where V inclusion
r and Vm

r denote the volumes of nanotubes dispersed in the in-
clusions and in the matrix, respectively. The two parameters used to describe
the agglomeration are defined as:

ξ =
Vinclusion

V
, ζ =

V inclusion
r

Vr
(25)

where ξ denotes the volume fraction of inclusions, with respect to total
volume of the composite, and ζ denotes the volume fraction of nanotubes in
the inclusions with respect to the total volume of nanotubes. When ξ = 1,
the nanotubes are uniformly dispersed in the matrix, and with the decrease
in ξ, the agglomeration degree increases. When ζ = 1, all the nanotubes
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are concentrated in the inclusions, and the concentration of nanotubes in the
inclusions is decreasing with decreasing ζ . When ξ = ζ , the nanotubes are
uniformly distributed within the matrix and ζ must be greater than ξ for
agglomeration to be present. The random dispersion of CNTs renders the
composite isotropic with two effective elastic modulus, namely the effective
bulk modulus and effective shear modulus [23]:

k = kout

1 +
ξ
(

kin
kout
− 1

)

1 + α(1 − ξ)
(

kin
kout
− 1)

)
 , G = Gout

1 +
ξ
(

Gin
Gout
− 1

)

1 + β(1 − ξ)
(

Gin
Gout
− 1

)
 (26)

The effective bulk modulus kin, kout and the effective shear modulus Gin
and Gout , respectively, in the inclusions and out of the inclusions are given
by:

kin = km +
(δr − 3kmαr) crζ

3 (ξ − crζ + crζαr)
, kout = km +

cr (δr − 3kmαr) (1 − ζ)
3
[
1 − ξ − cr (1 − ζ) + cr (1 − ζ)αr

]

Gin = Gm +
crζ (ηr − 2Gmβr)

2 (ξ − crζ + crζβr)
, Gout = Gm +

cr(1 − ζ)(ηr − 2Gmβr)
2[1 − ζ − cr(1 − ζ) + cr(1 − ζ)βr]

(27)
where α, β, δr , αr , βr and ηr which are functions of the effective bulk and
shear modulus, presented in Ref. [23].

4. Results and discussion

In this work, buckling of the composite cylindrical shell reinforced by
carbon nanotubes is studied using Rayleigh-Ritz method. The results are
given for two different kinds of boundary conditions (C-C & S-S) and the
effects of changing the edge supports are investigated. The cylindrical shell
is composed of polystyrene which has demonstrated good dispersion and
a strong interfacial bond with nanotubes in experimental works [28]. The
Young’s modulus and Poisson’s ratio of the matrix are Em = 1.9GPa and
vm = 0.3, respectively. The CNTs are modeled as long, transversely isotropic
fiber based on the analytical result of Popov et al. [24] and the material
properties of SWCNTs (Hill’s elastic modulus) are obtained as kr = 30 GPa,
lr = 10 GPa, mr = 1 GPa, nr = 450 GPa, pr = 1 GPa.

The critical axial buckling loads for different boundary conditions, which
are determined by minimizing the total potential energy of the cylinder, are
shown in Fig. 2. Buckling loads are presented in non-dimensional forms.
Non-dimensional buckling loads are calculated by dividing the value of buck-
ling loads by the smallest buckling load in the first mode of buckling (n=1).
The effect of CNTs volume fraction on the critical buckling load is shown in
Fig. 2 for four different CNTs orientation angle in the first buckling mode.
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It is seen that, by increasing the volume of CNTs in the composite, the
buckling load increases and this increasing is more noticeable for greater
angles. Also, the increase in orientation angle φ (when CNTs are in 90◦

they are parallel to the axial direction of cylinder and when they have 0◦

orientation they are perpendicular to the axial direction) from 0◦ up to 90◦

leads to a more stable composite cylinder.

Fig. 2. Effect of the CNTs volume fraction and orientation angle on the critical buckling load.
(h=2 mm, R/h=10, L/R=4)

Figure 3 shows the effect of the orientation angle and CNTs aspect ratio
on the critical buckling load of the cylinder. Both sides of the cylindrical
shell have simply-supported or clamped boundary conditions. It is seen that
by increasing the thickness to length ratio of the cylinder, the cylindrical
shell becomes more stable. Also, it is obvious that the highest critical load
occurs when the CNTs are arranged in 90◦ direction. With the same CNTs,
orientation angle and thickness to length ratio, the cylindrical shells with C-C
boundary conditions have greater buckling load than S-S supported ones.

The value of critical buckling load that identifies the effect of boundary
condition is presented in Table 1 for different thickness to length ratios and
orientation angles with Cr =0.1. As mentioned before, the critical buckling
loads are maximal when the CNTs are arranged in 90◦ direction. Also it is
shown that thicker cylinders have greater buckling load than other ones in
the same condition.

The effect of CNTs volume fraction on the buckling of the composite
cylinder reinforced by CNTs is demonstrated in Fig. 4(a) and (b) for differ-
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Fig. 3. Effect of CNTs orientation angle and thickness to length ratio on the critical buckling load
for S-S & C-C boundary conditions. (L/R=5, L=0.2 m)

Table 1.
Critical buckling loads (KN) for different thickness to length ratios and orientation angles within

the S-S and C-C boundary conditions. (L=0.2 m)

B.Cs Thickness to
length ratio φ = 0◦ φ = 30◦ φ = 45◦ φ = 60◦ φ = 90◦

S-S

h/L=0.01 234.8 378.2 549.8 749.6 977.5

h/L=0.02 486.1 773.1 1114 1508.5 1956.8

h/L=0.03 754.6 1185.3 1692.7 2277 2938

h/L=0.04 1041.1 1615 2286.3 3054.9 3920.9

C-C

h/L=0.01 327.8 558.4 996.3 1641.7 2494.5

h/L=0.02 672.2 1133.5 2007 3292.9 4991

h/L=0.03 1033.8 1725.8 3032.5 4953.7 7489.4

h/L=0.04 1413.4 2335.9 4072.8 6624.2 9990

ent longitudinal and circumferential modes, respectively, with S-S supported
boundary conditions. It is obvious that the composite cylinder is more stable
if the CNTs volume fraction increases, though it cannot be more than 0.1
because of agglomeration of CNTs in the matrix. Also the buckling load
increases for the higher mode numbers as expected. It should be mentioned
that the longitudinal mode numbers have greater influence on buckling load
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than circumferential modes. Figure 5(a) and (b) are drawn for four longitudi-
nal modes when the CNTs are arranged in 60◦ direction and both ends of the
cylinder are simply supported. The buckling load decline in the low cylinder
aspect ratios; however, the critical load rises since the aspect ratio increases.

Fig. 4. Effect of CNTs volume fraction on the buckling load for different (a) Longitudinal (b)
circumferential mode numbers. (h=2 mm, R/h=10, L/R=5, φ = 45◦)

Fig. 5. Effect of length to radius ratio of cylinder on the buckling load for (a) first (b) higher
longitudinal mode numbers. (h=2 mm, R/h=10)

The increase in the buckling load versus the increase in thickness to
radius ratio of the cylinder for five circumferential mode numbers is shown
in Fig. 6. Figure 7 is related to calculating the non dimensional buckling load
for three different CNTs volume fractions when the thickness of the cylinder
increased. The results are plotted for both S-S and C-C boundary conditions
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in the first buckling mode. As Fig. 7 shows, increasing of thickness leads to
the more stable structure.

Fig. 6. Variation of buckling load with respect to the ratio of thickness to radius in the different
circumferential buckling modes. (m=1, h=2 mm, L/R=2, φ = 45◦)

Fig. 7. Effect of thickness to radius ratio and CNTs volume fraction on the buckling load.
(L/R=5, φ = 30◦)
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Figure 8 illustrates variation of buckling load versus length to radius
ratio of cylinder in the first five circumferential modes. As shown in this
figure, the buckling load decreases in the low ratios and has a minimum
value in the specific aspect ratio, and then increases by increasing the length
to radius ratio. The effect of longitudinal and circumferential mode numbers
is investigated in Fig. 9. The critical buckling load goes up exponentially and
the slope of the curves increases sharply in higher longitudinal modes. This
figure is also drawn for five circumferential modes and it follows a same
pattern for all.

Fig. 8. Minimization of buckling load with respect to the length to radius ratio. (h=2 mm,
φ = 30◦)

Figures 10 and 11 show the effect of CNTs agglomeration on the buckling
load of the cylinder. The CNTs are supposed to arrange randomly. In Fig.
10, increasing ξ results in a uniform distribution of inclusions. Hence, the
nanotubes disperse more uniformly and the critical buckling load increases.
The results in this figure are presented for three different volume fractions
of CNTs, two boundary conditions and ζ = 1 supposed. Increasing ζ in Fig.
11 leads to a non-uniform dispersion of the CNTs, so the critical buckling
load decreases as the ζ increases. Also it is visible that the critical buckling
load is higher for the composites with higher volume fraction of CNTs.

The related values of Fig. 11 are brought into Table 2. According to
the values of Table 2, the plate is in the most stable state in the result of
minimum agglomeration of CNTs in the matrix. The first column of Table 2



430 JAFAR ESKANDARI JAM, ESMAIL ASADI

Fig. 9. Buckling loads in the different longitudinal and circumferential mode numbers. (h=2 mm,
R/h=10, L/R=5, φ = 30◦)

Fig. 10. Effect of the CNTs dispersion in inclusions and CNTs volume fraction on the critical
buckling load. (h=2 mm, R/h=20, L/R=5)

shows the type of boundary condition. The CNTs volume fraction for each
case of study is presented in the next column. Agglomeration parameters of
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Fig. 11. Effect of the CNTs agglomeration on the critical buckling load for three different volume
fractions of CNTs.(ξ = 0.5, h=2 mm, R/h=20, L/R=5)

0.5, 0.7, 0.9 and 1 are used in this study. It is clearly stems from the results
that the critical axial buckling load decreases with increasing the volume
of CNTs in the inclusions. Therefore, the highest buckling load occurs at
ζ = 0.5 for each boundary condition and volume fraction of CNTs.

Table 2.
The effect of agglomeration parameter on the buckling load (KN) for different CNTs volume

fraction with simply-simply and clamped-clamped boundary conditions.
(ξ = 0.5, h=2 mm, L=0.2 m)

B.Cs CNTs volume fraction ζ = 0.5 ζ = 0.7 ζ = 0.9 ζ = 1

S-S

Cr = 1% 87.3 86.8 85 83.6

Cr = 4% 156.6 151.5 133.2 117

Cr = 7% 225.7 214.6 172.9 134.1

Cr = 10% 295.2 277.5 209.4 144.5

C-C

Cr = 1% 183.5 182.4 178.6 175.6

Cr = 4% 330.8 320 281.1 246.4

Cr = 7% 477.5 454.1 365.4 282.6

Cr = 10% 624.4 587.2 442.9 304.6
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5. Conclusions

In this paper, we have presented the buckling of composite cylindrical
shells under axial compressive loads reinforced by carbon nanotubes. It is
determined that for all the boundary conditions considered, the orientation
angle of 90◦ yields the highest critical buckling load. The highest critical
buckling load occurs for the case in which both inner ends of the cylinder have
clamped supports (C-C), while the aspect ratio and CNTs volume fraction
are constant. It is observed that the longitudinal mode numbers have a greater
influence on buckling load than circumferential modes, and that buckling load
increases for the higher mode numbers, as expected. In each longitudinal or
circumferential mode number there is a specific value for aspect ratio of the
cylinder that minimizes buckling load. Also increasing of cylinder thickness
leads to a more stable structure.

The analysis for the effect of CNTs agglomeration shows that critical
buckling load decreases as a result of non uniform dispersion of CNTs (de-
creasing ξ) in the polymer matrix. However, for very low CNTs volume
fractions, uniform dispersion has no important effect on the critical buckling
load. Also when the volume fraction of inclusions increases, the critical
buckling load decreases exponentially, and buckling load is higher as the
volume fraction of CNTs is higher.

Manuscript received by Editorial Board, April 24, 2012;
final version, November 02, 2012.
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Analiza wyboczenia cylindrycznych powłok kompozytowych wzmocnionych nanorurkami
węglowymi

S t r e s z c z e n i e

W artykule przedstawiono badania powłoki cylindrycznej wzmocnionej nanorurkami wę-
glowymi (Carbon Nanotubes – CNT). Krytyczne obciążenie wyboczenia obliczono analitycznie dla
przypadku osiowego obciążenia ściskającego. Metodę Mori-Tanaki wykorzystano przede wszystkim
w celu estymacji efektywnego modułu sprężystości kompozytów wzmocnionych prostymi rurkami
CNT o orientacji równoległej. Wartości własne problemu wyznaczono stosując podejście anality-
czne oparte na zoptymalizowanej metodzie Rayleigha-Ritza. Zaprezentowano studium dotyczące
wpływu udziału objętościowego nanorurek CNT, grubości i współczynnika kształtu powłoki, kąta
orientacji nanorurek CNT i typu podparcia powłoki cylindrycznej przy obciążeniu krytycznym
przy wyboczeniu. Ponadto, zbadano efekt aglomeracji nanorurek CNT dla przypadku, gdy rurki są
nierównomiernie rozproszone w osnowie polimerowej. Pokazano, że gdy nanorurki są ustawione
pod kątem 90? obciążenie krytyczne wyboczenia jest największe. Ponadto, przedstawiono wykresy
wyników dla różnych liczb modów osiowych i obwodowych. Istnieje określona wartość współczyn-
nika kształtu, przy której obciążenie wyboczenia jest minimalne. Uzyskane wyniki pokazują, że
przy bardzo niskim udziale objętościowym nanorurek CNT procentowa zawartość wtrąceń nie ma
istotnego wpływu na obciążenie krytyczne przy wyboczeniu.


