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MODELLING AND CONTROL OF AN ELECTRO-HYDRAULIC
ACTIVE SUSPENSION SYSTEM

Active suspension systems ease the conflict between comfort and handling. This
requires the use of suitable actuators that in turn need to be efficiently controlled.
This paper proposes a model-based control approach for a nonlinear suspension
actuator. Firstly the concept is derived in the linear framework in order to simplify
the synthesis and analysis phase. There a linear model of the actuator is proposed
and discussed. Further, this design phase includes a comparison between model-free
PID controllers and a newly proposed two-degree-of-freedom controller which allows
one to shape reference and disturbance responses separately. Subsequently, the two-
degree-of-freedom controller, which proves to be superior, is adapted to the nonlinear
framework by considering a linear parameter varying representation of the nonlinear
plant. Finally, the nonlinear controller is implemented in a test car confirming the
concept applicability to real hardware.

1. Introduction

Ride and handling characteristics of passenger cars are mainly influ-
enced by the suspension system. The design of suspension systems using
passive components always involves a trade-off between the conflicting cri-
teria characterizing road handling and passenger comfort. Active suspensions
implemented with sensors, controllers, actuators and a data processing unit,
however, make it possible to apply additional suspension forces on demand
and in this way reduce the conflict between comfort, handling and safety.
The control system of such suspensions usually involves two levels. On the
upper level, the car body controller determines additive forces needed for
the actual driving condition, where different control approaches have been
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investigated ranging from the simple skyhook controller to more complicated
optimal controller design methods [1], [2]. On the lower level, the actuator
controller has to guarantee that the actuator achieves the desired reference
force provided by the car body controller. Most of the research conducted
on active suspension systems (e.g. [3]-[6]) considers the actuator as an ideal
force source and neglects its internal dynamics that interacts in many ways
with the rest of the vehicle dynamics. In fact, most of the actuators exhibit
nonlinear behaviour [7], have a limited bandwidth [8], and are exposed to ex-
ternal disturbances which makes the controller design more complicated and
sets additional requirements on the controller design process. Moreover, the
realisation of active suspensions has been often the focus of just theoretical
investigations with little connection to practical implementation.

Therefore, this paper focuses on the development of an actuator con-
troller for an existing active suspension system and is organized as follows.
In section 2, the nonlinear actuator model is presented and the derivation
of a simplified linear model is explained. Two different control strategies
comprising a pure feedback control and a two-degree-of-freedom (2-DOF)
scheme, which combines feedback and feed-forward strategies, are introduced
in section 3. The approach is based on a linear control design methodology
in order to permit frequency-domain analysis. Here the linear framework is
used as an intermediate model description in the process of synthesizing a
controller for the nonlinear model. The final nonlinear controller and results
from the experimental setup are then presented in section 4. The proposed
control approach is implemented in a real test car to confirm its performance
and the aptitude to be used in practice. The real car measurements are dis-
cussed in section 5.

2. System description and modeling

The actuator in Fig. 1a comprises a conventional shock absorber cylinder,
two controllable valves to generate unidirectional damping resistance, and two
accumulators that compensate the volume change in the cylinder chambers. In
this configuration, the actuator operates exactly like a passive spring-damper
element. In order to be able to exert active forces, i.e. independently of the
amplitude and sign of deflection velocities że, a power-pack comprising a
hydraulic pump and an electric motor is added.

2.1. Nonlinear mathematical model

Accumulators store hydraulic energy and then provide this energy back
to the system when required. Assuming a polytropic change of gas state, the
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Fig. 1. Nonlinear actuator model (a) according to [9], linearised actuator model (b), and
application to a quarter-car model (c)

following state equation for the pressure in the lower accumulator in Fig. 1a
can be obtained:

pksV κ
ks = p0V κ

k0 or pks = p0

(
Vk0

Vks

)κ
(1)

where p0 is the static charge pressure, Vk0 is the initial gas volume, Vks =

Vk0−
∫

qksdt is the actual gas volume due to fluid flow qks, and κ is the poly-
tropic gas constant. Differentiating (1) with respect to time and substituting
V̇ks = −qks yields the state equation of the pressure rate of change

ṗks = p0κ

(
Vk0

Vks

)κ−1 −Vk0

V 2
ks

V̇ks

 = κp0

(
Vk0

Vks

)κ (−V̇ks

Vks

)
= κ qks

pks

Vks
. (2)

Analogously, the state equation for the upper gas accumulator in Fig. 1a is

ṗrs = κqrs
prs

Vrs
. (3)

The equation of motion of the pump reads as

Jmω̇m = Tm − Vc

2π
(pk − pr) (4)

where ωm is the angular velocity of the pump, Jm is the total mass moment
of inertia of motor and pump, Vc is the pump capacity coefficient, pk and pr
are the cylinder pressures, and Tm is the motor torque. If the internal leakage
flow is neglected, the pump flow is

qm =
Vc

2π
ωm. (5)
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The actuator force is calculated from both pressures acting on the piston:

Fa = pkAk − prAr = (pks + ∆pks) Ak − (prs + ∆prs) Ar (6)

where Ak and Ar are the surfaces of the piston in the two respective cylinder
chambers. The pressure drops ∆pks and ∆prs result from the damping valves
as

∆pks = pk − pks = qksck , ∆prs = pr − prs = qrscr (7)

where
ck = ck (qks) , cr = cr (qrs) (8)

are the nonlinear characteristics of the valves depending on the flows through
the valves. The characteristics correspond to those of valves used in conven-
tional shock absorbers. With the suspension deflection ze, the internal fluid
flows in the actuator are balanced to

qks = qm + żeAk , qrs = −qm − żeAr . (9)

Substituting qks from (9) and qm from (5) in (2) yields

ṗks = κ (qm + żeAk)
pks

Vks
= κ

(
Vc

2π
ωm + żeAk

)
pks

Vks
. (10)

Similarly, substitution qrs from (9) and (5) in (3) results in

ṗrs = κ (−qm − żeAr)
prs

Vrs
= −κ

(
Vc

2π
ωm + żeAr

)
prs

Vrs
. (11)

From equations (4) and (7) we obtain

ω̇m =
1
Jm

(
Tm − Vc

2π
(pks − prs) − Vc

2π
(qks ck − qrs cr)

)
, (12)

or after use of (9) and (5) we obtain

ω̇m =
1
Jm

Tm − Vc

2π
(pks − prs) −

(
Vc

2π

)2
(ck + cr) ωm − Vc

2π
(ckAk + crAr) że

 .
(13)

The output force of the actuator results from (6) and (7) as

Fa = (Ak pks − Ar prs) + Ak ck qks − Ar cr qrs (14)

or after substitution of (9) and (5) as

Fa = (Ak pks − Ar prs) + Ak ck (qm + żeAk) + Ar cr (qm + żeAr)

= (Ak pks − Ar prs) + (ckAk + crAr)
Vc

2π
ωm +

(
ckA2

k + crA2
r

)
że. (15)
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After introducing the state vector x =
[
pks prs ωm

]T
, input vector u =

[
że Tm

]T
,

and output vector y =
[
Fa

]
, the state equations of the nonlinear actuator

model read as

ẋ = f (x, u) , y = g (x, u) (16a)

where

f =



κ

(
Vc

2π
ωm + żeAk

)
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Vks

−κ
(
Vc

2π
ωm + żeAr

)
prs

Vrs

1
Jm

−
Vc

2π
(pks − prs) −

(
Vc

2π

)2
(ck + cr)ωm − Vc

2π
(ckAk + crAr) że

 +
Tm

Jm



,

g = Ak pks − Ar prs +
Vc

2π
(ckAk + crAr)ωm +

(
ckA2

k + crA2
r

)
że

(16b)
summarize equations (10), (11), (13) and (15).

2.2. Model linearization and order reduction

The equilibrium state x0 = const. of system (16) results from ẋ0 = f (x0, u0)
!
= 0

with reference input u0 =
[
że0 Tm0

]T
=

[
0 0

]T
and ωm = 0. The static pres-

sures pks = prs may be set to p0, i.e. x0 =
[
pks0 prs0 ωm0

]T
=

[
p0 p0 0

]T
.

From (15) the static actuator force then results in Fa0 = (Ak − Ar) p0.
Considering equations (8) and (9) about the equilibrium point

qm0 = (Vc/2π)ωm0 = 0 and że0 = 0, the damping coefficients are set to
ck0 = ck (0) and cr0 = cr (0). Using the Taylor series expansion of the nonlin-
ear equations and truncating after the linear terms with respect to state and
input deviations from stationary values, we obtain the linear model

˙̂x = Âx̂ + B̂u,
ŷ = Ĉ x̂ + D̂u

(17a)
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where

x̂ = x − x0 =
[
pks − p0 prs − p0 ωm

]T
, ŷ = Fa − Fa0,

Â =



0 0 κ
Vc

2π
p0

Vk0

0 0 −κVc

2π
p0

Vr0

− Vc

2πJm

Vc

2πJm
−


Vc

2π


2 ck0 + cr0

Jm
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, B̂ =



κAk
p0

Vk0
0

−κAr
p0

Vr0
0

−Vc

2π
(ck0Ak + cr0Ar)

Jm

1
Jm



,

Ĉ =

[
Ak −Ar

Vc

2π
(ck0Ak + cr0Ar)

]
, D̂ =

[(
ck0A2

k + cr0A2
r

)
0
]
.

(17b)
Analyzing system matrix Â and input matrix B̂, we notice that the equations
for the pressures (pks − p0) and (prs − p0) are linearly dependent. Therefore,
we introduce the simple state variable ∆p = pks − prs. Further, we assume
that the areas Ak and Ar are equal and substitute them by A0. System (17)
can be then reduced to a system of dimension two:

ẋr = Arxr + Bru,
yr = Crxr + Dru

(18a)

where

xr =
[
∆p ωm

]T
, yr = Fa − Fa0,

Ar =



0 κ
Vc

2π

(
p0

Vk0
+

p0

Vr0

)

− Vc

2πJm
−

(
Vc

2π

)2 ck0 + cr0

Jm


, Br =



κA0

(
p0

Vk0
+

p0

Vr0

)
0

−Vc

2π
A0 (ck0 + cr0)

Jm

1
Jm


,

Cr =

[
A0

Vc

2π
A0 (ck0 + cr0)

]
, Dr =

[
A2

0 (ck0 + cr0) 0
]
.

(18b)

2.3. Equivalent mechanical system and quarter-car model

Application of the Laplace transformation to the system equations (18)
yields

L {∆ ṗ(t)} = s∆p(s) = κ
Vc

2π

(
p0

Vk0
+

p0

Vr0

)
ωm + κA0

(
p0

Vk0
+

p0

Vr0

)
sze, (19)
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L {ω̇m(t)} = sωm(s) = − Vc

2πJm
∆p−

(
Vc

2π

)2 ck0 + cr0

Jm
ωm−Vc

2π
A0 (ck0 + cr0)

Jm
sze+

Tm

Jm
,

(20)

L {Fa(t)} = Fa(s) = A0∆p +
Vc

2π
A0 (ck0 + cr0)ωm + A2

0 (ck0 + cr0) sze (21)

where L {że(t)} = sze(s) and L {Tm(t)} = Tm(s) are the Laplace transforms of
the inputs. If we substitute ∆p from equation (19) in (21) we obtain

Fa(s) =

[
A2

0 (ck0 + cr0) s + κA2
0

(
p0

Vk0
+

p0

Vr0

)]
ze

+

[
A2

0 (ck0 + cr0) s + κA2
0

(
p0

Vk0
+

p0

Vr0

)]
Vc

2πA0

ωm

s
. (22)

Substitution of ∆p from equation (20) in (21) results in

Fa(s) = −2πA0Jm

Vc
sωm +

2πA0

Vc
Tm. (23)

Both equations can be simplified by introducing

zm(s) = − Vc

2πA0

ωm

s
, i.e. zm(t) = − Vc

2πA0

∫
ωm, Fm =

2πA0

Vc
Tm (24)

and the abbreviations

m =

(
2π
Vc

)2
A2

0Jm, k = κA2
0

(
p0

Vk0
+

p0

Vr0

)
, c = A2

0 (ck0 + cr0) . (25)

Then, equations (22) and (23) read as

Fa(s) = (cs + k) (ze − zm) , (26a)

Fa(s) = ms2zm + Fm. (26b)

According to these two equations, the linear actuator model can be substituted
by an equivalent mechanical system shown in Fig. 1b where (26b) represents
the overall dynamics whereas (26a) corresponds to the spring-damper ele-
ment. Obviously, the linearised actuator behaves like a single-mass system
with natural frequency ω0 =

√
k/m and damping ratio ζ = c/ (2mω0), where

zm is the internal position of the artificial actuator mass m, ze = zr − za is the
suspension deflection, and Fm represents the input force to the actuator.

In the following, the controller design approach will be applied to a
quarter-car model as shown in Fig. 1c, where za is the position of the sprung
mass ma, zr is the position of the un-sprung mass mr , ka is the stiffness of the
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suspension spring, kr is the vertical tire stiffness, ys is the road disturbance,
and Fa represents the actuator force resulting from the actuator model in
Fig. 1b. The dynamic behaviour for the quarter-car model can be obtained
by applying the Newton’s Second Law for the sprung and un-sprung mass.
The resulting equations of motion read as

maz̈a = Fa − ka (za − zr) , (27a)
mr z̈r = −Fa + ka (za − zr) − kr (zr − ys) . (27b)

3. Control strategies

High damping forces are required to control the resonance peak of the
sprung mass representing the car body, but high frequency performance may
be degraded in this case. In order to solve this contradiction, often the ideal
skyhook control is suggested as body controller. In such a suspension con-
figuration the damper is virtually placed between sprung mass and inertial
reference frame, i.e. the sky. In a practical implementation of such an ap-
proach, the active suspension has to apply forces which are proportional to
the sprung mass velocity, resulting in the car body control law

Fa,re f = −żaCSH (28)

where CSH is the skyhook damping parameter. The quantity Fa,re f will be
then the input reference force for the actuator controller. The objective of the
skyhook control scheme is the cancellation of the sprung mass resonance
peak, whereas for high frequencies it should be ineffective and perform sim-
ilarly to a passive damper. The realisation of this goal, however, depends on
the performance of the actuator controller and its ability to deal with high
frequent disturbances. In the following, two classes of actuator controllers
are designed and analysed in connection with the augmented quarter-car
model: firstly two PID controllers and then a 2-DOF controller consisting of
feed-forward and feedback path.

3.1. PID force controllers

Fig. 2a shows the principal structure of PID feedback control. The ref-
erence force Fa,re f is compared to the measured output signal Fa to create
an error signal acting as input of the PID controller. The output of the PID
controller, which is equal to the input force Fm of the actuator in Fig. 1b, is
a combination of three signals which are proportional to the error signal, its
derivative and its integral.
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Fig. 2. Flowchart of the PID control approach (a) and (b) frequency responses of the high
bandwidth (solid) and low bandwidth (dashed) controller

For the present application two different PID controllers were designed
by loop-shaping, i.e. shaping the frequency response of the closed-loop sys-
tem [10]. The first controller (PID-H) guarantees good tracking performance
resulting from high closed-loop bandwidth. The second controller (PID-L)
is designed as a compromise between achieving good tracking and having a
bandwidth lower than the un-sprung mass mode. The frequency responses of
both closed-loop systems are shown in Fig. 2b, where the transfer function
is defined as

Gcl =
Fa

Fa,re f
. (29)

We notice that the system with lower bandwidth exhibits a small reso-
nance peak, suggesting a worse tracking performance than the system with
the higher bandwidth even for low frequencies. The peak is inherently caused
by the actuator’s internal dynamics.

3.2. Two-degree-of-freedom controller

The second control approach is based on the internal model of the plant
(26a) resulting in

zm = ze − Fa

cs + k
. (30)

Since the speed of the electric pump motor can be better controlled than
its position, the velocity vm = szm is introduced resulting in the ideal feed-
forward control law

vm = − s
cs + k

Fa + sze. (31)

For the real application, the exact actuator force Fa is substituted by the
reference force Fa,re f demanded by the body controller. In order to control
the disturbance rejection, a disturbance controller

Kdd = sGt p (32)
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composed of a derivator according to (31) and a low pass filter with transfer
function Gt p is applied to the measured deflection signal ze(t). This results
in the feed-forward control law for the reference velocity of the actuator

vm,re f = − s
cs + k

Fa,re f + Kddze. (33)

This reference actuator velocity is enforced by an internal PID feedback
control loop, and additionally the reference force is weakly tracked by a PI-
controller with transfer function Kss, see Fig. 3. The two-degree-of-freedom
control architecture allows us to shape reference and disturbance responses
separately. The fast dynamics required for the reference tracking (solid black
path) is decoupled from the low-gain feedback control law Kss (dotted path)
used to minimize the steady state error in the force. Further the disturbance
rejection is regulated separately using the low-pass filter Gt p as part of Kdd
(gray path). Here the right choice of the disturbance filter properties, in-
cluding the order and the cut-off frequency, is very important for the active
suspension performance. The velocity control loop may now be designed
with high bandwidth, since by feedback of vm contrarily to the force feed-
back control in Fig. 2a the high frequent content of the suspension force Fa
will not disturb the controller. On the other hand the velocity control loop
can be robust enough to eliminate actuator inertia effects of m and deal with
eventual presence of friction in the motor-pump.

Fig. 3. Flowchart of the proposed linear 2-DOF control approach

The use of low-pass filter Gt p in (32) is motivated by the requirement to
let the actuator behave like the passive system for high frequency deflections.
Thus, the disturbance filter has to be designed such that measured low fre-
quency disturbances are rejected while high frequent contents are ignored. In
order to find a proper filter Gt p the closed-loop actuator dynamics in Fig. 3
is written as

Fa(s) = T (s)Fa,re f (s) + S (s) ze(s) (34)
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where T (s) determines the tracking behaviour and S (s) represents the input-
disturbance sensitivity. The bandwidth of the velocity control is high enough
to assume vm ≈ vm,re f for low frequencies. Based on equation (26a) and
zm = vm/s we then assume that the output force of the controlled system is

Fa(s) = (cs + k)
(
ze −

vm,re f

s

)
. (35)

From the control architecture in Fig. 3 the reference velocity input reads as

vm,re f =

(
− s

cs + k
+ Kss

)
Fa,re f − KssFa + Kddze. (36)

Substituting (34) in (33), and the result in (32) yields the input-disturbance
sensitivity

S (s) =
Kdd − s

Kss − s/ (cs + k)
(37)

which describes the controlled actuator response on the deflection ze. Let us
now reconsider the passive system dynamics from equation (26a) for zm = 0,
i.e. Fm ≡ Fa, which then reads as

Fa(s) = (cs + k) ze =: Gd,p (s) ze (38)

where Gd,p (s) = (cs + k) is the passive disturbance response. The requirement
to let the actuator (34) behave like the passive system (38) for high frequency
deflections can be achieved by introducing a high-pass filter Ghp:

S !
= GhpGd,p. (39)

This condition guarantees that high frequency disturbances have identical
influence on the controlled actuator as on the passive system. Substituting
(37), (38), and (32) in (39) yields

sGt p − s
Kss − s/ (cs + k)

= Ghp (cs + k) . (40)

Since Kss is designed to be a low-gain controller, we may assume |Kss| ≈ 0
for high frequencies. This simplifies equation (40) to

Gt p = 1 −Ghp. (41)

The high-pass filter Ghp with unity passband gain for high frequencies may
be described by the transfer function

Ghp =

(
s

2π fc + s

)n
(42)
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where the cut-off frequency fc in Hz and the order n have to be chosen
properly.

3.3. Evaluation of the control systems

The linear quarter-car model (27) is considered for the evaluation of the
proposed control systems. The road signal ys represents the disturbance input,
whereas the outputs involve the sprung mass acceleration z̈a and the dynamic
tire load kr (zr − ys). The acceleration of the sprung mass is a suitable quantity
for evaluating the motion and vibration of the car body, and thus can be used
for assessing the driving comfort. Therefore, the transfer function between
road disturbance and the sprung mass bounce acceleration is used to evaluate
the effectiveness of the suspension system:

Ga(s) =
s2za

ys
. (43)

Furthermore, we use the dynamic tire load as an indicator for the road contact
to evaluate the ride safety. It can be expressed in the frequency domain as:

Gtl(s) = kr
zr − ys

ys
. (44)

Fig. 4 shows a comparison between the passive suspension (gray), i.e. zm =

0, and three different active suspension configurations. Two of the active
suspensions are controlled by the PID controllers from section 3.1, i.e. the
high gain variant PID-H (dotted) and the low gain variant PID-L (dashed).
For the third active suspension, the force control is generated by the 2-DOF
controller (solid black) from the previous section.

Fig. 4. Comparison of the sprung mass acceleration (a) and dynamic tire load (b) magnitudes for
passive (gray), 2-DOF control (solid black), PID-H control (dotted), and PID-L control (dashed)

The linear frequency responses show that all three controllers produce
similar results in reducing the bounce acceleration around the sprung mass
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mode (0.5 − 2Hz), see Fig. 4a. However, the un-sprung mass mode for the
PID-H controller shows an unacceptable resonance peak. This effect is the
direct consequence of the high controller bandwidth, which ideally realizes
the skyhook damping concept. Although the damping coefficient is larger
than the built-in damper of the passive system, it is only applied to the small
vibrations of the sprung mass, whereas the passive damper is related to the
much bigger suspension deflections. As anticipated in the design phase, we
notice that the PID-L controller with a bandwidth lower than the un-sprung
mass mode has better high frequency properties. However, the resonance
peak observed in Fig. 2b causes obvious deteriorations for middle frequen-
cies at about 3Hz. Similar observations apply for the dynamic tire load plot
in Fig. 4b, where we notice the presence of resonance peaks at 14Hz and
3Hz for the PID-H and PID-L conrollers, respectively. The proposed 2-DOF
methodology results in globally better performance with a more uniform
frequency response for the sprung mass acceleration as well as the dynam-
ic tire load. It obviously guarantees the control objectives of damping low
frequencies and having a response similar to that of the passive system for
higher frequencies.

4. Nonlinear controller

The linearised model is valid only near the operating point and therefore
not able to describe the behaviour of the nonlinear actuator in the whole
operating range. By using the linear parameter-varying (LPV) system theory
[11], however, the presented 2-DOF control approach can also be applied to
the nonlinear actuator model. In contrast to linearization methods, the LPV
model allows us to consider nonlinear effects in the state space description.

A continuous time linear parameter varying system can be written as

ẋ = A (ρ (t)) x + B (ρ (t)) u,
y = C (ρ (t)) x + D (ρ (t)) u

(45)

where ρ (t) is a bounded time-varying parameter vector which can be mea-
sured online. In our case, the nonlinear state equations (16) can be re-
interpreted as such a LPV system with time-varying parameters

ρ (t) =

[ pks

Vks

prs

Vrs
ck cr

]T
=


p1+1/κ

ks

Vk0p
1/κ
0

p1+1/κ
rs

Vr0p
1/κ
0

ck (qm, że) cr (qm, że)


(46)

where we assume that the states pks(t), prs(t), the input że(t) and the pump
flow qm(t) are measurable. The second notation in equation (44) is ob-
tained from equations (1), and (9) by substituting Vks = Vk0 (p0/pks)1/κ ,
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Vrs = Vr0 (p0/prs)1/κ and ck(qks) = ck(qm + żeAk) =: ck(qm, że), cr(qrs) =

cr(−qm − żeAr) =: cr(qm, że). It is now possible to adapt the control part
of Fig. 3 to the LPV system (43), where ωm,re f in Fig. 5 corresponds to
vm,re f in Fig. 3. Similarly to the linear concept, the inverted plant model
leads to a control scheme combining feed-forward control (solid black path)
with a disturbance rejection part (gray path). Further, a low-gain feedback
control (dotted path) is added. We also notice that the control law takes into
account the unsymmetrical system structure by distinguishing between the
piston areas Ak and Ar .

Fig. 5. Flowchart of the proposed nonlinear 2-DOF control approach

The presented control scheme for the nonlinear actuator was tested exper-
imentally on a test rig. For this purpose, the actuator from Fig. 1a was excited
by a second servo-hydraulic actuator, where a typical suspension deflection
signal was used as displacement command signal. Moreover, a reference
force signal served as input to the controller. Two experiments were realised.
In the first experiment the passive system, i.e. ωm = 0, was excited, whereas
the second experiment involved the controlled actuator. The measurements
in Fig. 6b show that a good reference tracking performance is achieved for
low frequent force components when the control system is activated. The
high frequent differences, which are responsible for the damping of the un-
sprung mass mode, are almost identical to those of a passive damper as
shown in Fig. 6a and predicted by the frequency response in Fig. 4. The
experimental results confirm that the control objectives set in the design
phase are accomplished for the real nonlinear system as well.

5. Full-car control

The 2-DOF control approach from the previous section was implemented
in a test car. Therefore, it was required to adapt the car body control law



MODELLING AND CONTROL OF AN ELECTRO-HYDRAULIC ACTIVE SUSPENSION SYSTEM 51

Fig. 6. Comparison between reference force test signal (black) and measured force signal (gray)
for the passive (a) and controlled (b) actuator

(27) to the full-car framework. Fig. 7 shows a linear vertical full-car model
used for the full-car body controller design. The model consists of a spatial
sprung mass connected to four un-sprung masses at each corner. A modal
control strategy is used to control the car body. In such a configuration,
the modal motions heave zH , roll ϕR and pitch ϕP are to be assessed and
controlled. Especially, the first derivatives of the modal states are used to
calculate virtual skyhook forces and moments as

FV =



FH

MR

MP

 =



−żHCSH,H

−ϕ̇RCSH,R

−ϕ̇PCSH,P

 (47)

where CSH,H , CSH,R, and CSH,P are the skyhook damping parameters for
heave, roll and pitch, respectively. The virtual modal quantities are then
distributed to reference forces for the four active actuators

Fa,re f =
[
Fa,re f , f l Fa,re f , f r Fa,re f ,rl Fa,re f ,rr

]
= MFV (48)
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where

M =
1(

l f + lr
) (

w f + wr

)



lrwr lr −wr

lrwl −lr −wl

l f wr l f wr

l f wl −l f −wl


(49)

is a static distribution matrix. The reference force signals (48) serve as an
input to the actuator controllers which are duplications of the nonlinear con-
troller from Fig. 5. The pressures in the accumulators, as well as the suspen-
sion deflection for each corner, are measured and fed back to the controllers
to calculate the reference angular velocity signals for the electric motors.

Fig. 7. Linear full-car model

A test car was equipped with this soft- and hardware, and then driven
over the test track at a speed of 70 km/h. In subsequent trials, different
configurations were tested. The first configuration consists of the passive
suspension with a soft valves setting, whereas in the second configuration
the damping valves are set to the hard mode. Of more interest is actually
the third configuration, in which the active mode with the nonlinear actuator
controller is used.

For the evaluation of the nonlinear model, a normalized power spectral
density (PSD) analysis is applied to the modal acceleration signals z̈H , ϕ̈R
and ϕ̈P. The results in Fig. 8 show that the passive system with the hard
setting (dashed) achieves a considerable reduction of the bounce acceler-
ations around the sprung mass mode. However, for higher frequencies we
simultaneously notice performance deterioration, especially for the sensitive
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middle frequencies (2−8Hz). As already anticipated, the active system (solid
black) performs best and achieves the design requirements of reducing low
frequency accelerations while performing similarly to the soft passive system
(gray) at high frequencies. We notice similarities with the frequency response
of the linear systems in Fig. 4, and that frequency regions with significant
vibration reduction are also confirmed by the nonlinear PSD analysis.

Fig. 8. PSD analysis of the test car body modal accelerations heave (a), roll (b), and pitch (c) for
the following suspension configurations: passive with soft damping (gray), passive with hard

damping (dashed), and active with the nonlinear 2-DOF controller (solid black)

6. Conclusions and outlook

The control approach presented in this paper is derived based on a lin-
earised and reduced model of the control plant. This allows us to evaluate
two different controller concepts in the frequency domain, where the 2-DOF
controller achieves a superior performance compared to two different types
of PID controllers. Considering this result and a LPV representation of the
nonlinear model, a nonlinear 2-DOF controller is developed and tested on
an experimental test rig. The measurements show a promising force track-
ing performance associated with a good disturbance response. These results
have then been confirmed by measurements on a real test car, which shows
a considerable ride performance improvement using the active suspension
system. The two-degree-of-freedom control achieves a remarkable reduction
of low frequency vibrations while keeping the same level as the soft passive
damper for higher frequencies. The current work of the authors involves
extending the presented control concept with a preview approach to achieve
more efficiency [12], and to also implement it in the test car.

Manuscript received by Editorial Board, September 27, 2012;
final version, December 22, 2012.
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Modelowanie i sterowanie aktywnego, hydro-elektrycznego systemu zawieszenia

S t r e s z c z e n i e

Aktywne systemy zawieszenia łagodzą konflikt między komfortem a właściwościami jezdnymi
samochodu. Wymagają one użycia odpowiednich siłowników, a te z kolei powinny być efektyw-
nie sterowane. W artykule zaproponowano opartą na modelowaniu koncepcję sterowania nielinio-
wego siłownika w zawieszeniu samochodu. Koncepcja tego rozwiązania jest początkowo przed-
stawiona w ramach opisu liniowego, co ma uprościć fazę syntezy i analizy. Na tym etapie jest
proponowany i dyskutowany model liniowy. Ta faza projektowania obejmuje ponadto porównanie
między niezwiązanymi z modelem sterownikami PID i proponowanym, nowym sterownikiem o dwu
stopniach swobody, który pozwala niezależnie kształtować odpowiedź referencyjną i odpowiedź na
zakłócenia. W dalszym etapie, dla sterownika o dwu stopniach swobody, który okazał się lepszy
od pozostałych, wprowadza się opis nieliniowy, traktując parametr liniowy jak zmienną reprezen-
tację nieliniowego obiektu regulacji. Ostatecznie, nieliniowy sterownik zawieszenia jest instalowany
w samochodzie testowym, a badania potwierdzają celowość zastosowania tej koncepcji w rzeczy-
wistym sprzęcie.


