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The consideration of uncertainties in numerical simulation is generally reason-
able and is often indicated in order to provide reliable results, and thus is gaining
attraction in various fields of simulation technology. However, in multibody system
analysis uncertainties have only been accounted for quite sporadically compared to
other areas.

The term uncertainties is frequently associated with those of random nature,
i.e. aleatory uncertainties, which are successfully handled by the use of probability
theory. Actually, a considerable proportion of uncertainties incorporated into dy-
namical systems, in general, or multibody systems, in particular, is attributed to
so-called epistemic uncertainties, which include, amongst others, uncertainties due
to a lack of knowledge, due to subjectivity in numerical implementation, and due to
simplification or idealization. Hence, for the modeling of epistemic uncertainties in
multibody systems an appropriate theory is required, which still remains a challeng-
ing topic. Against this background, a methodology will be presented which allows
for the inclusion of epistemic uncertainties in modeling and analysis of multibody
systems. This approach is based on fuzzy arithmetic, a special field of fuzzy set
theory, where the uncertain values of the model parameters are represented by so-
called fuzzy numbers, reflecting in a rather intuitive and plausible way the blurred
range of possible parameter values. As a result of this advanced modeling technique,
more comprehensive system models can be derived which outperform the conven-
tional, crisp-parameterized models by providing simulation results that reflect both
the system dynamics and the effect of the uncertainties.

The methodology is illustrated by an exemplary application of multibody dy-
namics which reveals that advanced modeling and simulation techniques using some
well-thought-out inclusion of the presumably limiting uncertainties can provide sig-
nificant additional benefit.
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1. Introduction

In the modeling and simulation process of multibody systems (MBS),
a preferably good knowledge of the model parameters is essential to obtain
results that reflect the actual behavior of the real system. However, while
models are becoming more detailed and more complex, the identification
of the corresponding model parameters becomes more challenging in equal
measure. The identified parameters can exhibit a high level of uncertainty,
and exact values for their quantification can hardly be provided.

Moreover, despite the above-mentioned increasing attention to detailing
in modeling, assumptions of idealization and simplification are required in
order to achieve a mathematical description with an acceptable number of
degrees of freedom. Hence, even apparently well-modeled MBS may exhib-
it inherent uncertainties due to deficiencies in modeling or imprecise data
and imperfect knowledge. Uncertainties of this type are commonly classi-
fied as epistemic uncertainties [1], which additionally include absence of
information, vagueness in parameter definition and subjectivity in numerical
implementation. In this classification scheme the corresponding counterpart
is denoted aleatory uncertainties, which are associated with natural variability
or scatter.

The treatment of aleatory uncertainties is successfully accomplished by
the use of probability theory and, in practice, mostly, by Monte Carlo methods
or polynomial chaos methods. In contrast, the extended modeling involving
epistemic uncertainties is still demanding from a methodological and compu-
tational view. In recent years, the concept of fuzzy set theory [2] is gaining
attraction as a tool to model epistemic uncertainties. A special interdisci-
plinary methodology to comprehensive modeling and analysis of systems is
presented which allows for the inclusion of uncertainties — in particular of
those of epistemic type — from the very beginning of the modeling procedure.
This approach is based on fuzzy arithmetic, a special field of the fuzzy set
theory, which has gained practical relevance after the introduction of the
Transformation Method [3].

In general, epistemic uncertainties are specified as parametric uncertain-
ties by fuzzy numbers, which also includes model-structure uncertainties that
are representable by parametric variations, i.e. the uncertainties manifest as
uncertain model parameters and uncertain initial or boundary conditions. As
a consequence, the use of a single configuration, with an estimated set of
probable parameter values for the simulation of a model which is subjected
to such uncertainties, cannot be considered representative of the whole spec-
trum of possible model configurations. A reliable assessment of the model is
not possible with this restricted computational effort. Furthermore, the com-
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parison of the numerical simulations with data and results obtained from
experimental testing may be difficult or even be rated unsatisfactory, due
to unconsidered model uncertainties. Taking into account these uncertainties
provides an advanced simulation output, wich ideally covers the measurement
results.

The goal of this contribution is to show a general way of including
epistemic uncertainties in MBS analysis. As a practical and illustrative ex-
ample for showing some of the properties and possible post-processing steps
of the fuzzy-based approach to comprehensive modeling and analysis of
uncertain systems, a simple manipulator model will be investigated. In par-
ticular, epistemic uncertainties that arise from a lack of knowledge and from
simplification during modeling are considered.

2. Classification of Uncertainties

Even though the forms in which uncertainty appears and manifests it-
self are numerous, the aforementioned categorization into two major class-
es, namely aleatory uncertainties and epistemic uncertainties, is widely ac-
knowledged and proves to be well-suited [1]. Though other classifications
are applicable in almost the same manner (e.g. [4]), this categorization is
used throughout here. The following explanations shall elucidate the different
concepts and their ranges of applicability.

2.1. Aleatory Uncertainties

Aleatory uncertainties result from natural variability or scatter in the
physical properties of a system over time or space. They are random in
nature and generally related to the uncertainty of the outcome of an event
or experiment. Against this background, an efficient representation of aleato-
ry uncertainties can be realized by the use of random numbers with their
probability density functions derived from measurements and experimental
data. As widely acknowledged in literature (e.g. [5], [6]), the most effective,
versatile and predominantly used methods for the quantification of the propa-
gation of the aleatory uncertainties through systems are based on probability
theory as well as on Monte Carlo simulations and polynomial chaos methods
for practical applications.

2.2. Epistemic Uncertainties

Epistemic uncertainties generally arise from insufficiency or even com-
plete absence of knowledge, and they result, for example, in vagueness in
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parameter definition, subjectivity in numerical implementation, or simplifi-
cation and idealization in the procedure of system modeling. Due to this sig-
nificant and indisputably different character of epistemic uncertainties com-
pared to aleatory uncertainties, probability theory may not be appropriate to
effectively represent epistemic uncertainties [7]. Furthermore, practical data
for a randomness-based quantification of the uncertainties are usually not
available.

For these reasons, the alternative strategy of quantifying epistemic uncer-
tainties by fuzzy numbers [2, 8] is pursued in this paper, and the propagation
of the uncertainty through the system, i.e. the evaluation of the model with
fuzzy-valued parameters, is performed by the use of fuzzy arithmetic [8, 9].
In the first instance, the representation of epistemic uncertainties by ordinary
intervals seems to be the most practical and straightforward approach if only
worst-case bounds and no further information about a possible distribution
within the interval is available. Apart from the fact that the evaluation of
models with interval-valued parameters by the use of classical interval arith-
metic proves to be rather problematic because of the dependency problem
(also referred to as overestimation effect [9, 3]), the sharp boundedness of
the intervals acts quite contrary to the predominant human perception of
quantifying imprecision. The somehow blurred bounds of fuzzy numbers,
instead, comply much better with this view. Moreover, uncertainty propa-
gation on the basis of only one particular set of intervals for the uncertain
parameters will automatically raise the question about how the results of
the propagation will change (in a qualitative and quantitative way) with the
amount of initial uncertainty, i.e. with the lengths of the intervals assumed.
Fuzzy numbers, which can be seen as a set of nested intervals ranging from
a worst-case scenario in case of maximum uncertainty to a crisp nominal
value in case of complete certainty (see Section 3), are perfectly suited to
solve this limitation.

3. Fuzzy Theoretical Concept

As stated in the previous section, fuzzy set theory is well-suited for
the description of epistemic uncertainties. An introduction to the theoretical
foundations and the application to numerical analysis of dynamical models
using fuzzy arithmetic is presented subsequently.

3.1. Fuzzy Numbers

A special application of the theory of fuzzy sets, which is rather different
from the well-established use of fuzzy set theory in fuzzy control, is the
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numerical implementation of uncertain model parameters as fuzzy numbers
[8]. Fuzzy numbers are defined as convex fuzzy sets over the universal set
R with their membership functions u(x) € [0, 1], where u(x) = 1 is true only
for one single value x = x € R, the so-called center value or nominal value.
For example, a fuzzy number p of triangular (linear) shape, expressed by the
abbreviated notation [9]

ﬁ: tfl’l(}, aj, a’r) s (1)
is defined by the membership function
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However, any other shape of membership function may be selected if ap-
propriate to quantify the uncertainty of a specific model parameter. The
calculation with fuzzy numbers is referred to as fuzzy arithmetic and proves
to be a non-trivial problem, especially with regard to the evaluation of large
mathematical models with fuzzy-valued operands. For a profound description
of the overall mathematical background of fuzzy variables in the framework
of credibility theory, the reader is referred to the work of Liu [10, 11].

3.2. Fuzzy Arithmetic — the Transformation Method

The problem of incorporating uncertainties into complex numerical mod-
els has already been addressed in a number of publications, of which the
vast majority is based on stochastic descriptions of the uncertainties. In that
context, the early papers of Contreras [12] and Handa and Anderson [13],
and the paper of Schuéller [5] are worthy of note. The problem of stochastic
excitation is adressed in [14] using generalized polynomial chaos. A MBS
containing uncertain rigid bodies is evaluated in [15] by random number and
random matrix theory, applying the Monte Carlo method.

The alternative concept of using fuzzy descriptions of the uncertainties
emerged more recently, and Rao and Sawyer [16] presented an approach
for its incorporation into the finite element method. However, since that ap-
proach uses the conventional concept of standard fuzzy arithmetic, based on
interval computation, it suffers considerably from the overestimation effect
[3, 9], also referred to as the dependency problem or conservatism. With the
objective of reducing this effect while maintaining the computational effort
to an acceptable level, Moens and Vandepitte [17] presented a fuzzy finite
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element approach which is based on the application of special optimization
strategies of an approximative character.

In [18] a flexible MBS using finite elements in a co-rotational frame is
analyzed and computed using the vertex method, which has been introduced
by Dong and Shah [19]. This method, however, is only applicable under
certain monotonicity assumptions.

All of these approaches do not provide an easy way of generalization towards
arbitrary systems including nonlinear systems such as MBSs and the solution
in the time domain, if possible at all.

A related topic to computations with epistemic uncertainties in multibody
dynamics is the notion of verified integration. However, it purely relies on
interval arithmetic and is mainly concerned with bounding solutions due
to rounding errors (e.g. [20. 21]). Because of overestimation effects from
interval arithmetic, the solution bounds can become unstable, especially for
longer integration timespans.

As a successful practical implementation of fuzzy arithmetic, which al-
lows the evaluation of arbitrary systems with uncertain, fuzzy-valued model
parameters, the Transformation Method [3] can be used. An example in-
volving uncertainties of epistemic type in a mechanism is analyzed in [22].
Assuming the uncertain system to be characterized by n fuzzy-valued model
parameters p;, i = 1,2,...,n, the major steps of the method can briefly be
described as follows:

In the first step, each fuzzy number p; is discretized into a number of nest-
ed intervals Xl.(/) = [a(/),bgj)], assigned to the membership levels u; = j/m,

i

J=0,1,...,m, that result from subdividing the possible range of membership
equally spaced by Au = 1/m (Figure 1). In a second step, the input intervals
ij), i=12,...,n, j=0,1,...,m, are transformed to arrays )’(:.(]) that are

obtained from the upper and lower interval bounds after the application of
a well-defined combinatorial scheme [3, 9]. Each of these arrays represents
a specific sample of possible parameter combinations and serves as an input
parameter set to the problem to be evaluated. As a result of the evaluation
of the model for the input arrays )/(:.(’ ), output arrays ZY) are obtained which
are then retransformed to the output intervals ZU = [aV, bY] for each mem-
bership level y; and finally recomposed to the fuzzy-valued output g of the
system.

In addition to the simulation part of the Transformation Method described
above, the analysis part of the method can be used to quantify the influence
of each fuzzy-valued input parameter p; on the overall fuzziness of the model
output g. For these purposes, the standardized mean gain factors «; and the
normalized degrees of influence p; have been introduced [3, 9], quantifying
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in an absolute and in a relative character, respectively, the effect of the
uncertainty of the ith model parameter p; on the overall uncertainty of the
model output g.

Hj+1
Hj
0 -, R J :L.
agj) nga) b,,(;” i
Fig. 1. Decomposition of a fuzzy number p; into intervals Xi("'), j=0,1,....,m

Among other advantages of the Transformation Method, its characteristic
property of reducing fuzzy arithmetic to multiple crisp-number operations,
i.e. deterministic computations, entails that the Transformation Method can
be practically implemented into an existing simulation environment [9].

For this purpose, the program FAMOUS (Fuzzy Arithmetical Modeling
Of Uncertain Systems) has been developed using the Matlab programming
language and its object-oriented features. This facilitates a problem- and
platform-independent implementation and enables a systematic and modu-
larized way of interfacing with arbitrary simulation tools. With regard to the
software structure, it is possible to distinguish between a preprocessing, a
model evaluation and a postprocessing part of FAMOUS.

The preprocessing part is represented by the first two steps of the Trans-
formation Method, namely the decomposition and the transformation step.
Based on the information provided by the user, the fuzzy numbers or intervals
corresponding to the input parameters are created, decomposed into the input
intervals, and finally, transformed into the arrays necessary for the evaluation
of the model.

To perform the evaluation of the model, FAMOUS can be coupled with any
existing software. According to the input arrays resulting from the transfor-
mation step, FAMOUS passes the data to the evaluating process. In the last
years, a previous version of FAMOUS was successfully used in combination
with some of the most popular commercial FE software packages, such as
ABAQUS and MSC.Nastran.

The postprocessing part of FAMOUS concludes the simulation of the uncer-
tain system by the retransformation and the recomposition step. The results
of the uncertainty propagation are the fuzzy-valued outputs of interest. In
MBS analysis, difficulties may arise, e.g. when dependent output quantities
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shall be analyzed in different aspects, such as eliminating the independent
variable or performing coordinate transformations. If these difficulties and
the limitations caused thereby are not taken into account, overestimation of
the uncertainty may be the consequence or — even worse — wrong results
may follow. Also, underestimation may occur for systems with bifurcations
in the given parameter range.

Finally, through the analysis module, it is possible to determine the propor-
tions to which the n fuzzy-valued parameters p; contribute to the overall
uncertainty of the outputs. In this case, the major results are the absolute and
the relative measures of influence, «; and p;.

3.3. Inverse Fuzzy Arithmetic — Uncertainty Identification and Model
Validation

Recently a further function module for the implementation of the inverse
fuzzy arithmetic has been developed [23, 24]. The forward fuzzy arithmetical
concept presented so far has been used to propagate known or assumed
uncertainties of the model parameters through the system. Performing this
analysis, it is implicitly assumed that the model is sufficiently appropriate to
estimating the system behavior and that the specified fuzzy-valued parameters
account for the residual model failure and uncertainty.

Inverse fuzzy arithmetic provides a way to perform an advanced para-
meter identification that explicitly takes into account epistemic uncertainties.
In contrast to classical parameter identification procedures, the parameters
are estimated as fuzzy numbers so that the resimulated output covers in a
conservative sense the measured data available. Additionally, based on the
results of the inverse fuzzy arithmetical approach, the quality or validity of
the model can be quantified and rated, making use of the idea that the struc-
turally most appropriate model needs a minimum uncertainty to include the
measured outputs of the real system to be modeled. Using this methodology,
one can also compare the quality of different models as demonstrated in [25].

4. Multibody System Dynamics

For the simulation of interconnected rigid bodies which perform large
working motions, the multibody approach is frequently used. Applications
using MBS formulations arise in a wide range of engineering problems, and
therefore is a field of active research [26].

The derivation of the equations of motion by applying the Newton-Euler
equations yields second order differential-algebraic equations (DAE). Those,
in general, nonlinear equations can be transformed to a minimal form rep-
resentation, i.e. to a set of ordinary differential equations, using generalized
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coordinates y, thus eliminating the reaction forces which couple the ODE to
the algebraic equations.

In the most general case, the parameter dependency might occur in the
equations of motion as well as in the initial conditions on position and
velocity level, yg and y, respectively. In minimal form, the parametric system
can then be written as follows

M(y;p)y + k(y,y:p) = 4(y.¥: P) (3)
y(t=0:p) = yo(p), y(t=0;p) = yo(p).

Here, M denotes the minmal mass matrix, k is the vector of generalized
centrifugal, Coriolis and gyroscopic forces, and ¢q is the vector of the gen-
eralized applied forces. The fuzzy parameters are collected in the parameter
vector p.

The process of forming the equations of motion can be accomplished by
different schemes, using absolute or relative kinematics and using numerical
or symbolic formulations. The solution procedure for obtaining the fuzzy-
valued output requires the evaluation of the system Equation 3 at several
perturbed states, i.e. at different points in the parameter space. Hence, for
the purpose of analyzing parametric uncertainties, a symbolic formulation
proves advantageous since the equations of motion only have to be set up
once. Neweul-M? represents a MBS simulation tool providing symbolic for-
mulations [27].

4.1. Elastic MBS and Model Order Reduction of Elastic Bodies

In case elastic deformations of the bodies are not negligible, the large
working motion has to be computed taking into account the influence of the
elastic deflection. This can be achieved by the use of nonlinear finite element
approaches where the ansatz functions approximating the deformation field
are supplemented by parameters that account for slope or rotation. This ap-
proach is used, for instance, in the absolute nodal coordinate formulation or
in the large rotation vector formulation [28, 29].

If the deflections are in the range of linear elasticity, the floating frame of
reference approach provides an alternative and, in general, more efficient for-
mulation. Here, the so-called reference frames are used to describe the large
working motion. The elastic bodies are then attached to the reference frame,
accounting for the deformation in the local coordinate system of the reference
frame. Thus the position of a point on an elastic body is decomposed into the
reference position, the position of the point relative to the reference frame,
and the deflection. The system equations can still be written in the general
form Equation 3, but y now contains additional elastic coordinates.
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The elastic bodies are usually modeled using the finite element technique
for which a variety of software products are available, providing tools for
a wide range of applications. The system dimension arising from this dis-
cretization is, in general, too big to be feasible for computation in the elastic
MBS framework, but it is possible to represent the dynamic behavior of the
system in the frequency range of interest by a rather small system which
is obtainable using model reduction techniques. Besides the classical modal
reduction techniques including component modes synthesis, modern reduc-
tion schemes based on balanced truncation or moment matching have gained
significant attraction in recent years [30].

As long as the uncertainties to be considered are restricted to quantities
attached to rigid bodies or joints, the propagation of those can be handled in
the same manner as described before. So in this case, the inclusion of elas-
tic bodies does not pose additional complexity in terms of the uncertainty
quantification.

If uncertain parameters are, however, associated to structural parts, the situa-
tion becomes more complex. A possible solution is to compute a new elastic
body for each sample point in the parameter space, i.e. to set up the system
matrices of the FE model, perform a model reduction, and finally, derive the
equations of motion of the newly build-up elastic MBS. This is an obviously
time-consuming procedure that does not prove practical for complex systems.

A more effective, but also more demanding approach from a methodical
point of view, is to perform the model reduction by taking into account
the parametric dependency and retaining it in the resulting reduced model.
This is known as parametric model order reduction (pMOR) and is a field
of active research that has gained attraction just recently. The basic idea of
most pMOR approaches is to obtain a representation of the full-order model
by interpolating between several reduced-order models [31, 32]. Thus the
reduced model still exhibits the parameter dependency, and the recalculation
step of the elastic MBS equations is avoided in a symbolic framework again.

4.2. Uncertainties in MBS

Besides the well-studied aleatory uncertainties, such as variability of
material properties and geometrical parameters due to irregularities in man-
ufacturing or assembly, the epistemic uncertainties play an important role in
MBS simulation. Those epistemic uncertainties can be classified on the basis
of their origin and their nature in the following categories:

e Lack of knowledge or vagueness, e.g. a broad spectrum of possible op-
erating conditions which are not known or only vaguely defined, such as
initial conditions, applied loads, parameters of friction models etc.
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e Subjectivity in implementation, e.g. the selection of different methods of
numerical evaluation by using different integration schemes, time steps,
model order reduction methods and number of reduced basis vectors, etc.

e Deficiencies in modeling, e.g. idealization or simplification of models to
ensure or facilitate the numerical evaluation, or idealized or simplified
constitutive laws for material models, as done for composite materials,
friction behavior, etc.

Usually, epistemic uncertainties of either of the three categories may
occur in the modeling procedure of MBS. However, in the framework of
comprehensive modeling, i.e. modeling both the system and potential uncer-
tainties, these uncertainties can successfully be represented and quantified by
fuzzy numbers, and the propagation of the uncertainties through the model
can be evaluated by the use of the Transformation Method of fuzzy arith-
metic.

5. Example

The following example shall illustrate the comprehensive modeling and
analysis of a MBS by including uncertainties in terms of fuzzy-valued pa-
rameters. The system consists of a planar two-link manipulator with motors
located at each of the two joints. A sketch of the model is shown in Figure 2.
As illustrated, each arm has one degree of freedom, namely the angles 6; and
6, respectively, where motors apply torques 7'} and T at the joints. Addition-
ally, viscous and friction damping is present in the links and implemented
using the Stribeck friction model. The damping moment ¢; at joint 7 is given
by

8:(6) = d 6, + Bz 1) + (8,6 0) - dc@uo) ) L @)

yL
TQ\_Y\\ 92

Fig. 2. Model of the two-link manipulator
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with the viscous damping coefficient d, the damping moment from Coulomb
friction ¢¢c, which depends on the friction coefficent yc, and the damping
moment from static friction ¢ depending on the stiction coefficient yg. vg is
called Stribeck velocity and is a scaling factor that influences the exponential
decay from the static friction value to Coulomb friction with increasing
angular velocity. At the tip of the second arm, a mass is attached, i.e. the
end effector, which is intended to be driven along a certain trajectory. For
this purpose, a feedforward control has been calculated based on the nominal
model such that the actuated joints drive the end effector to the desired
position.

The reference trajectory is given as the time-dependent position vector Xef =

[X([)ref, y(t)ref]T of the end effector. Assuming that the model parameters are
exactly known, the driven trajectory will only deviate from the intended
trajectory to a small amount — mainly due to numerical imprecision.

Now, uncertainties in the model parameters shall be considered. In par-
ticular the mass of the end effector m is not precisely known, which, for
instance, might be due to the fact that different tool tips are mountable
(lack of knowledge). Also, the friction damping, as described in Equation 4,
is an enhanced, but still simplified model of friction. This can be seen as
an uncertainty due to deficiencies in modelling, possibly including a lack
of knowledge concerning the parameters. The uncertain parameters are all
described by triangular fuzzy numbers, i.e. p; = tfn(x;, a1, a;;) as defined
in Equation 2 in Section 3.1. The nominal values X; and the worst-case
deviations a1; and a;; are listed in Table 1.

Table 1.
Fuzzy parameter definitions

pri=d | pyi=f | p3i=fic | ps:=Vs | psi=m

3 d
% | 005 ?g 0.4 03 |01 % 1.0 ke
o, /% | 25% | 25% | 25% | 25% | 1.0%

i X 2.5% 2.5% 2.5% 5.0% 1.0%

Eventually, when these uncertainties are included into the analysis, the
manipulator will no longer be able to exactly retrace the trajectory for all pos-
sible configurations, and significant deviations will occur instead. To quantify
this effect, the system is simulated using the Transformation Method, as de-
scribed above. The resulting fuzzy-valued trajectory is shown in Figure 3,
where the end-effector motion is shown in x and y direction, and the mem-
bership value of solutions is indicated by their coloring. The black curve
contained in the solution set is the solution of the nominal system which
properly resembles the given trajectory.
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Fig. 3. Fuzzy solution of the end-effector motion of the feedforward system. The solution of the
nominal system is displayed all black, the contour plot indicates the membership values of the
possible solutions. The corresponding membership values y are shown in the colorbar on the

right-hand side
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Fig. 4. Errors (top) and influence measures «; (bottom) of the end-effector motion in y direction
of the open-loop (left) and closed-loop system (right). (Note the different scales.)

In order to account for the deviations caused by the imprecisely defined
model parameters, one can apply some control, e.g. a PD-control

Ti = —kpi (Oret.i — 0:) = kai (frers = 6:) i€ 11,2}, (5)

where the reference angles 6..r; and the angular velocities éref,,- result from



www.czasopisma.pan.pl P N www.journals.pan.pl

122 NICO-PHILIPP WALZ, MICHAEL HANSS
the definition of the reference trajectory, hence Orer; = Oref i(X()refs Y(E)ref)

and Ore; = Oref,i(X(Drefs Y(Drefs X(Dref, Y(Drer). For the sake of simplicity, the
motor dynamics are not taken into account and the torques are used as control
outputs directly.

Figure 4 shows errors (top) as well as the influence measures «; (bottom)
for the y-motion of the end effector of the open-loop (left) and closed-loop
system (right). As illustrated, the overall uncertainty is reduced significant-
ly by the controlller, which can be seen in both the error and the absolute
influence. The influence of d and vg are negligible in both cases, and the sig-
nificance of both damping and friction together is reduced in the closed-loop
case because the friction moments take direct effect on the driving torques
and are therefore well compensated by the PD-control. As a consequence, the
remaining fuzziness of the output is primarily induced by the mass variation,
where the major part stems from inertial effects which is obvious from the
oscillatory behavior. The error bounds of the closed-loop system increase
steadily for the lower membership levels, which indicates unstable behavior,

while for u 2~ =, at least, the error stays bounded. Hence, the controller has

only a rather small region of robustness with respect to model uncertainties.
(Note that disturbances have not yet been taken into account.)

If desired, explicit margins of robustness, i.e. the maximum tolerable
deviation of each model parameter from its nominal value, can easily be ob-
tained by identifying the corresponding threshold value of the membership
level u for which stability is assured. In addition, using the supplementary
information provided by the influence measures, it is possible to determine
the parameters that are crucial in terms of robustness of the system and that
should therefore be identified as accurate as possible. Since the influence
measures can be calculated with respect to time, frequency or any other
independent variable, the timespans or frequency ranges at which an identi-
fication of a model parameter can be accomplished more reliable are clearly
assignable. This allows to neglect measurement data were no viable infor-
mation for the identification is given. For example, the given output of the
two-arm manipulator is not appropriate to estimate the value of the viscous
damping factor d, the stiction coefficient ys, instead, shows a major influence
over the whole timespan and thus is capable of being properly identified.

6. Conclusion and Outlook

Fuzzy arithmetic based on the Transformation Method has proven to be
well suited to model, solve and analyze problems in multibody dynamics
in the presence of uncertainties. Hereby, different designs can be rated with
respect to their robustness against uncertainties, including the robustness as-
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sessments of controllers applied. Furthermore, the influence of each uncertain
parameter individually can be quantified.

The Transformation Method is a generic procedure that is applicable to
a wide range of problems, requiring only minor adjustments. Nevertheless,
solving fuzzy-parameterized multibody systems goes along with some spe-
cial requirements, where several open issues still have to be worked out —
some of which have been mentioned above. One of the limiting parts of
computations involving uncertainties in complex systems is the increased
computational effort. This effort is particularly connected to the number of
uncertain parameters, since the computational complexity in general grows
exponentially with the dimension of the parameter space for most of the
available computational methods. For instance, in order to sample the edges
of a hypercube, the number of sample points doubles with every dimension.
This is also known as the curse of dimensionality. Therefore, methods for
speeding up the calculations themselves, for instance by reducing the number
of necessary model evaluations, are of vital interest. For the efficient compu-
tation of systems that contain uncertainties located in elastic bodies, pMOR
methods have to be further investigated as well.

Manuscript received by Editorial Board, August 29, 2012;
final version, October 23, 2012.
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Analiza systeméw wieloczlonowych z niepewnosciami wykorzystujaca arytmetyke rozmyta
Streszczenie

Uwzglednienie niepewno$ci w symulacji numerycznej jest generalnie rzecza rozsadna. Podej-
Scie to czesto prowadzi do wiarygodnych rezultatéw, totez zyskuje na atrakcyjnosci w wielu
dziedzinach technik symulacyjnych. Niemniej, w analizie systeméw wielocztonowych — inaczej
niz w innych dziedzinach — niepewnos$ci byly dotad brane pod uwage jedynie sporadycznie.

Termin “niepewnos¢” jest czesto kojarzony z czynnikami o charakterze przypadkowym, tzn.
niepewnos$ciami aleatorycznymi, z ktérymi mozna z powodzeniem radzi¢ sobie metodami teorii
prawdopodobienistwa. W rzeczywistosci, znaczna cz¢$¢ niepewnosci wystepujacych w systemach
dynamicznych, a w szczegdlnosci w systemach wieloczlonowych, jest powigzana z tzw. niepewnos-
ciami epistemologicznymi, ktére obejmuja m.in. niepewnosci spowodowane brakiem wiedzy, subiek-
tywnos$ciag w implementacji modelu numerycznego, a takze niepewnos$ci wynikajace z uproszczen
i idealizacji. Tak wigc, by modelowaé niepewnosci epistemologiczne w systemach wieloczionowych
wymagana jest odpowiednia teoria, ktéra wciaz stanowi powazne wyzwanie. Na tym tle, autorzy
przedstawiaja metodologi¢, ktéra pozwala na wiaczenie niepewnosci epistemologicznych w pro-
ces modelowania i analizy systeméw wieloczlonowych. Prezentowane podejscie jest oparte na
arytmetyce rozmytej, specjalnej dziedzinie teorii zbiordw rozmytych, gdzie niepewne wartosci
parametréw modelu sg reprezentowane przez tzw. liczby rozmyte, ktére odzwierciedlaja, w sposéb
raczej intuicyjny lecz przekonywujacy, nieostry zakres mozliwych warto$ci parametréw. W rezulta-
cie uzycia tej zaawansowanej techniki modelowania uzyskuje si¢ bardziej wszechstronny model
systemu, ktory daje lepsze wyniki niz modele tradycyjne, o sztywnej parametryzacji. Wyniki symu-
lacji, uzyskane przy zastosowaniu takiego modelu, odzwierciedlajg zaréwno dynamike systemu, jak
i efekty zwigzane z niepewnosciami.

Prezentowana metodologia jest zilustrowana przyktadowym zastosowaniem do dynamiki syste-
mu wielocztonowego. Przyktad pokazuje, ze uzycie zaawansowanych technik modelowania i symu-
lacji, w ktérych w sposéb dobrze przemyslany uwzgledniono prawdopodobne niepewnosci graniczne,
moze dostarczyé znacznych korzysci dodatkowych.



