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STOKES FLOW AROUND SLOWLY ROTATING CONCENTRIC
PERVIOUS SPHERES

In this paper, the problem of concentric pervious spheres carrying a fluid sink at
their centre and rotating slowly with different uniform angular velocities Q;, €, about
a diameter has been studied. The analysis reveals that only azimuthal component of
velocity exists and the torque, rate of dissipated energy is found analytically in the
present situation. The expression of torque on inner sphere rotating slowly with
uniform angular velocity €;, while outer sphere also rotates slowly with uniform
angular velocity Q,, is evaluated. The special cases like, (i) inner sphere is fixed
(i.e. Q; = 0), while outer sphere rotates with uniform angular velocity €, (ii) outer
sphere is fixed (i.e. {, = 0), while inner sphere rotates with uniform angular velocity
Q,, (iii.) inner sphere rotates with uniform angular velocity €;, while outer rotates
at infinity with angular velocity , have been deduced. The corresponding variation
of torque with respect to sink parameter has been shown via figures.

AMS subject classification — 76 D07

1. Introduction

Stokes flow is becoming increasingly important due to the miniaturization
of fluid mechanical parts e.g., in micromechanics as well as in nanomechan-
ics. Slow rotation of spheroids (including the disc) in an infinite fluid was
first solved by Jeffrey [1915] using curvilinear coordinates. His approach was
later extended to the spherical lens, torus, and other axisymmetric shapes.
Proudman [1956] and Stewartson [1966] analyzed the dynamical proper-
ties of a fluid occupying the space between two concentric rotating spheres
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when the angular velocities of the spheres are slightly different, in other
words, when the motion relative to a reference frame rotating with one of
the spheres is due to an imposed azimuthal velocity which is symmetric about
the equator. Kanwal [1960] has discussed the problem of slow steady rotation
of axially symmetric bodies in a viscous fluid. Rubinow and Keller [1961]
have considered the force on a spinning sphere which is moving through an
incompressible viscous fluid by employing the method of matched asymptotic
expansions to describe the asymmetric flow. Brenner [1961] also obtained
some general results for the drag and couple on an obstacle which is moving
through the fluid. Childress [1964] has investigated the motion of a sphere
moving through a rotating fluid and calculated a correction to the drag coef-
ficient. Wakiya [1967] numerically evaluated the drag and angular velocity
experienced by freely rotating spheres and compared with those calculated
from corresponding approximate formulae known before. Barett [1967] has
tackled the problem of impulsively started sphere rotating with angular veloc-
ity Q about a diameter. He modified the standard time-dependent boundary
layer equation to give series solutions satisfying all the boundary conditions
and gave solutions that are applicable at small times for non-zero Reynolds
numbers. He found that the velocity components decay algebraically rather
than exponentially at large distances. Pearson [1967] has presented the nu-
merical solution for the time-dependent viscous flow between two concentric
rotating spheres. He governed the motion of a pair of coupled non-linear
partial differential equations in three independent variables, with singular
end conditions. He also described the computational process for cases in
which one (or both) of the spheres is given an impulsive change in angular
velocity-starting from a state of either rest or uniform rotation. Majumdar
[1969], has solved, by using bispherical coordinates, the non-axisymmetrical
Stokes flow of an incompressible homogeneous viscous liquid in space be-
tween two eccentric spheres. It was proved that the resultant force acting
upon the spheres is at right angles to the axis of rotation and the line of
centres. The effect of the stationary sphere on the force and couple exerted
by the liquid on the rotating sphere has been discussed and the results are
compared with those of the axisymmetrical case of Jeffrey [1915]. Kanwal
[1970] has considered a disk performing simple harmonic rotary oscillations
about its axis of symmetry in a non-conducting viscous fluid which is at rest
at infinity. O’Neill and Majumdar [1970] have discussed the problem of
asymmetrical slow viscous fluid motions caused by the translation or rotation
of two spheres. The exact solutions for any values of the ratio of radii and
separation parameters are found by them.

Ranger [1971] tackled the problem of axially-symmetric flow past a ro-
tating sphere due to a uniform stream of infinity. He has shown that leading
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terms for the flow consists of a linear superposition of a primary Stokes
flow past a non-rotating sphere together with an anti symmetric secondary
flow in the azimuthal plane induced by the spinning sphere. Philander [1971]
presented a note on the flow properties of a fluid between concentric spheres.
This note concerns the flow properties of a spherical shell of fluid when mo-
tion is forced across the equator. The fluid under consideration is contained
between two concentric spheres which rotate about a diameter with angular
velocity Q. The consequences of the forcing motion across the equator are
explored in his work. Cooley [1971] has investigated the problem of fluid
motion generated by a sphere rotating close to a fixed sphere about a di-
ameter perpendicular to the line of centres in the case when the motion is
sufficiently slow to permit the linearization of the Navier-Stokes equations
by neglecting the inertia terms. He used a method of matched asymptotic
expansions to find asymptotic expressions for the forces and couples acting
on the spheres as the minimum clearance between them tends to zero. In his
paper, the forces and couples are shown to have the form agln £+ a;+ o(e
In &) , where ¢ is the ratio of the minimum clearance between the spheres
and the radius of the rotating sphere and where agand a; are found explicitly.
Munson and Joseph [1971, part 1 and part 2] have obtained the high order
analytic perturbation solution for the viscous incompressible flow between
concentric rotating spheres. In second part of their analysis, they have applied
the energy theory of hydrodynamic stability to the viscous incompressible
flow of a fluid contained between two concentric spheres which rotate about a
common axis with prescribed angular velocities. Riley [1972] has discussed
the thermal effects on slow viscous flow between rotating concentric spheres.
Takagi [1974a] has considered the flow around a spinning sphere moving
in a viscous fluid. He solved the Navier-Stokes equations, using the method
of matched asymptotic expansions for small values of the Reynolds number.
With the solution, the force and torque on the sphere are computed, and he
found that the sphere experiences a force orthogonal to its direction of motion
and that the drag is increased in proportion to the square of the spin velocity.
Takagi [1974b] has studied the Stokes flow for the case in which two solid
spheres in contact are steadily rotating with different angular velocities about
their line of centres. For the case of two equal spheres, one of which is kept
rotating with angular velocity w while the other is left free, he found that the
latter will rotate with angular velocity w/7. Munson and Menguturk [1975,
part 3] have studied the stability of flow of a viscous incompressible fluid
between a stationary outer sphere and rotating inner sphere theoretically and
experimentally. Wimmer [1976] has provided some experimental results on
incompressible viscous fluid flow in the gap between two concentric rotating
spheres. Takagi [1977] further studied the problem of steady flow which
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is induced by the slow rotation of a solid sphere immersed in an infinite
incompressible viscous fluid, on the basis of Navier-Stokes equations. He
obtained the solution in the form of power series with respect to Reynolds
number. Drew [1978] has found the force on a small sphere translating rel-
ative to a slow viscous flow to order of the '/, power of Re for two different
fluid flows far from the sphere, namely pure rotation and pure shear. For
pure rotation, the correction of this order to the Stokes drag consists of an
increase in the drag. Kim [1980] has calculated the torque and frictional
force exerted by a viscous fluid on a sphere rotating on the axis of a circu-
lar cone of arbitrary vertex angle about an axis perpendicular to the cone
axis in the Stokes approximation. Dennis et al. [1981] have investigated
the problem of viscous incompressible, rotationally symmetric flow due to
the rotation of a sphere with a constant angular velocity about a diameter.
The solutions of the finite-difference equations are presented for Reynolds
number ranging from 1.0 to 5000. Davis and Brenner [1986] have used
the matched asymptotic expansion methods to solve the problem of steady
rotation of a tethered sphere at small, non-zero Reynolds numbers. They
obtained first order Taylor number correction to both the Stokes-law drag
and Kirchhoff’s law couple on the sphere for Rossby numbers of order unity.
Gagliardi [1987] has developed the boundary conditions for the equations
of motion for a viscous incompressible fluid in a rotating spherical annulus.
The solution of the stream and circumferential functions were obtained in
the form of a series of powers of the Reynolds number. Transient profiles
were obtained for the dimensional torque, dimensionless angular velocity of
the rotating sphere, and the dimensionless angular momentum of the fluid.
Marcus and Tuckerman [1987, part 1 and 2] have computed numerically the
steady and translation simulation of flow between concentric rotating spheres.
O’Neill and Yano [1988] derived the boundary condition at the surfactant
and substrate fluids caused by the slow rotation of a solid sphere which is
partially submerged in the substrate fluid. Yang et al [1989] have provided
the numerical schemes for the problem of the axially symmetric motion of an
incompressible viscous fluid in an annulus between two concentric rotating
spheres. Gagliardi et al. [1990] reported the study of the steady state and
transient motion of a system consisting of an incompressible, Newtonian
fluid in an annulus between two concentric, rotating, rigid spheres. They
solved the governing equations for the variable coefficients by separation of
variables and Laplace Transform methods. They presented the results for
the stream function, circumferential function, angular velocity of the spheres
and torque coefficient as a function of time for various values of the dimen-
sionless system parameters. Ranger [1996] has found an exact solution of
the Navier-Stokes equations for the axi-symmetric motion (with swirl) rep-
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resenting exponentially time-dependent decay of a solid sphere translating
and rotating in a viscous fluid relative to a uniform stream whose speed
also decays exponentially with time. He also described a similar solution
for the two-dimensional analogue where the sphere is replaced by a circular
cylinder of infinite length. Tekasakul et al. [1998] have studied the problem
of the rotatory oscillation of an axi-symmetric body in an axi-symmetric
viscous flow at low Reynolds numbers. They evaluated numerically the local
stresses and torques on a selection of free, oscillating, axi-symmetric bodies
in the continuum regime in an axi-symmetric viscous incompressible flow.
Datta and Srivastava [2000] have tackled the problem of slow rotation of a
sphere with fluid source at its centre in a viscous fluid. In their investigation,
it was found that the effect of fluid source at the centre is to reduce the
couple on slowly rotating sphere about its diameter. Kim and Choi [2002]
conducted the numerical simulations for laminar flow past a sphere rotating
in the streamwise direction, in order to investigate the effect of the rotation
on the characteristics of flow over the sphere.

Tekasakul and Loyalka [2003] have investigated the rotary oscillations
of several axi-symmetric bodies in axi-symmetric viscous flows with slip.
A numerical method based on the Green’s function technique is used and
analytic solutions for local stress and torque on spheres and spheroids as
function of the frequency parameter and the slip coefficients are obtained.
They have analysed that in all cases, slip reduces stress and torque, and in-
creasingly so with the increasing frequency parameter. Liu et al. [2004] have
developed a very efficient numerical method based on the finite difference
technique for solving time-dependent non-linear flow problems. They have
applied this method to study the unsteady axisymmetric isotherm flow of
an incompressible viscous fluid in a spherical shell with a stationary inner
sphere and a rotating outer sphere. Ifidon [2004] numerically investigated the
problem of determining the induced steady axially symmetric motion of an
incompressible viscous fluid confined between two concentric spheres, with
the outer sphere rotating with constant angular velocity and the inner sphere
fixed for large Reynolds numbers. Davis [2006] obtained the expression for
force and torque on a rotating sphere close to and within a fluid-filled rotating
sphere. Marcello [2008] has introduced new exact analytic solutions for the
rotational motion of an axially symmetric rigid body having two equal princi-
pal moments of inertia and subjected to an external torque which is constant
in magnitude. Recently, Srivastava et al. [2011] have studied the effect of
viscous fluid around slowly rotating sphere with sink at its centre in which
they concluded that the effect of sink at the centre is to reduce the couple.

In the present paper, the problem of slow rotation of concentric spheres,
both assumed to be pervious, with a sink at their centre has been tackled. If
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the strength ‘-Q’ of the sink were of the same order as the angular velocity
Q of rotating spheres, the inertia terms could still be neglected, and the total
flow then consists of only the source solution superimposed on the Stokes
solution. Therefore, in this case the Stokes drag and torque are not affected by
the sink. Also, if Q is large enough so that QQ is not negligible, the inertia
terms, being non-linear, cannot be altogether omitted. The Navier-Stokes
equation, can still be linearized by assuming that the velocity perturbation
in the source flow on account of the Stokes flow is small, so that the terms
containing square of angular velocity (i.e. of order Q) can be neglected.
This assumption is justifiable at least in the vicinity of the spheres where
the Stokes approximation is valid. The present problem corresponds to the
problem of Stokes flow past a sphere with source at its centre investigated
by Datta [1974] and slow rotation of sphere with source at its centre in a
viscous fluid investigated by Datta & Srivastava [2000], Srivastava et al.
[2011], the results of which have found engineering application mainly in
investigation of the diffusiophoresis target efficiency for an evaporating or
condensing drop [Placek and Peters, 1980].

2. Formulation of the problem

Let us consider two pervious spheres of radius ‘a’ and ‘b’ (where b >a)
with sink of strength ‘-Q’ at its centre generating radial inward flow around
it in an infinite expense of incompressible fluid of density p and kinematic
viscosity v. The spheres are also made to rotate with small steady angular
velocities ; and Q, so that terms of an o(Q?) may be neglected but terms
of 0(QQ) retained. The motivation of this formulation has been taken from
the author’s previous works [Datta and Srivastava, 2000, Srivastava et al.,
2011] due to the fact that body geometry has not been changed, although the
two concentric spheres are rotating slowly with different angular velocities
instead of only one. The governed equations of motion will remain the same
and provide the new solutions under the defined boundary conditions. The
main aim of the present formulation is to study the effect of sink at the centre
of slowly rotating spheres over torque to maintain the motion.

The motion is governed by steady Navier-Stokes equations

1
u.gradu = —(—) grad p +vV*u (1D
0

and continuity equation
diva =0, 2)
together with no-slip boundary condition

u = aQeé, X €&, onthe inner sphere r = q, (3a)
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u = bQe, x &, onthe outer sphere r = b, (3b)

and the condition of vanishing of velocity at far-off points
u =0 as r— co. 4)

The velocity considered in (2.3) is not posed for complete flow, but only for
the difference between full velocity and the velocity induced by the sink at
centre. In the above equations, symbols u , p , p , v stands for velocity ,
pressure, density and kinematic viscosity and unit vectors €&, and &, are along
x-axis and radial direction. It will be convenient to work in spherical polar
coordinates (1, 6, ¢) with x-axis as the polar axis. We non-dimensionalize the
space variables by a , velocity by a Q , and pressure by p v Q. Moreover, the
symmetry of the problem and the boundary conditions ensure that velocity
components v, = vg = 0, and then we may express the non-dimensional
velocity vector u as

0 .
u= —Wer+v¢(r, 9)€¢ (5)
and pressure as
p = pvQ[po(r) + p1(r,0)]. (6)

By introducing the expressions (5) and (6) in equation (1), the azimuthal
component vy is seen to satisfy the equation

2 Vo 50
Vive - r2sing _ﬁﬁ(w“’)’ @)

where s = g is the sink parameter.

va
The above equation is to be solved under the boundary conditions

Ve=sin0 at r =1 (non — dimensional equation of spheres)
and (8)

Vo —> 0 as 1 — oo
3. Solution
We take the trial solution as

vg = rw(r)sind, 9)

substituting this value of vy into equation (7), we get, after some calculation
and adjustment

d| ,dw 2 |
E[r E+sr w]—O, (10)
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and the boundary conditions (8) in non-dimensional form become
w=1 at r = I1(.e.on the surface) (11)
and
w—0 as r — oo (12)

The above boundary conditions may also be express in dimensional form as
w=Q; at r = a(i.e.on theinner sphere) (13)

and
w — Oasr — oo, (14)

On integration of equation (10), we get the solution in non-dimensional form
as

Als?
w(r):—3[s—2+25+2]+3e: (15)
S r r

and in dimensional form as

sa
r

w(r) = 5 |—5 +2= +2|+Be", (16)

A | s2d> sa
3| r r

where A and B are constants of integration which can be obtained by applying
boundary conditions (13) and (14) as

A _

S =afdvase2-20]"

s
and

2 517!
B = —2Q|"+2s+2-2¢'| .

Substituting the values of constants A and B in (16), we get the expression
of angular velocity w(r) in dimensional form as

A [ 5242 sa
w(r):j[%+2g+2 +Ber
s r r
or 5 5
sa _1
w(r) =Q [%+2E+2—e7 [s2+25+2—26‘v] (17)
T r

and consequently, with the help of (9), the expression for azimuthal compo-
nent of velocity v4 comes out to be in dimensional form as

2.2 sa

v, = rw(r)sin 6 = Qr siné[— +2 42— [s2+2s+2—265]_l.

(18)

r2 r
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4. Torque on inner sphere rotating with uniform angular velocity Q,
(when outer sphere is also rotating with different uniform angular
velocity Q)

If there exists an external concentric pervious sphere of radius b (b>a),
rotating with small angular velocity Q; i.e., the boundary conditions for this
situation will be

w=Q, at r = b (atouter surface) (19)

and
w =0 at r = a(atinner surface). (20)

by using the above boundary conditions, in equation (16), the constant of
integration A and B comes out to be

A Q - Q1) 1)
S (R 42+ 2) 0D 4 (o2 - 25-2)|
and 2.2
Lo s {2 -25-2)
B= | P . (22)
es(1-8) {% +2% 4 2} +{—s? - 25 -2}

The expression of angular velocity w(r) can be written with the help of

equation (16)

A 2 2 sa
R
N r r

where A and B are given in (21) and (22). On differentiating the function
w(r), we have

dr 3 3 r2

dw A[ 252a> 2sa] w ([ Sa
osa +B ( ) ,

r

dw .
the value of T at r = a can be written as

.
(fl_c:) = i [—i—? (s2 - s) — Bs es} ) (23)

d
The moment of force py is pg. r sin 6, where ps = u. 1 sin 6. d—w, is the only
r

non-vanishing component of force p . If N is the torque on the sphere of
radius a, then by using (23), we have

N = fo " (pgr sin 6) _ ds
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d d
:f (,ur sin 6 —wr sin@) .2mrasinf.adb)
0 dr r=a

- §Ra3ﬂ [—i—? (5% +9)+ Bes]
(s +s){Q1 h)}
_8 4
o S L gaea)|
2

2 -1
X {—es(l‘ )(sba 2; + 2) (sz + 25 + 2)}] .

If inner and outer spheres are rotating with same angular velocities, i.e.
Q; =Q, =Q and b = 2a, then from (24), torque coefficient (normalizing
with 87ua®Q, torque on sphere having radius ‘a’) is given by

N 1 2\ _ 2,3 2 2 !
m = §[S(S+s )—s e’ (4+5s)][4(2+2s+s )—(s +4s+8)e ] (24a)
If inner and outer spheres are rotating with different angular velocities, i.e.
Q, =2Q; and b = 2a, then from (24), torque coefficient (normalizing with
8mua’Q;, torque on sphere having radius ‘a’) is given by

N
8rua’Q)

-1

= %[85(1 +s+el) =5t (4+95)|[4(2+ 25+ 57) = (8 +4s + 57) e

(24b)

The rate of dissipated energy is given by NQ; , where the value of N is
given in equation (24), (24a, b).

5. Torque on outer sphere rotating with uniform angular velocity
), (when inner sphere is fixed, i.e. Q; =0)

The expression for angular velocity w(r) is given by (16)

A 2.2
w(r):—3[sa +222 12|+ Bt
s r
Now we use the following boundary conditions
w(r)=Q, onsurface r=b>b (25)

and
wir)—>0 as r — oo. (26)
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Under these boundary conditions, the values of constant A and B can be
obtained as follows

-1

A s?a®>  2sa sa
S—SZQQ[?'FT—Zeb'FZ 227)
and 1
s2a®>  2sa sa N
B = —ZQZ[?+T—2N+2] . (28)

Now, the expression for derivative of angular velocity at r = b comes out to

be ),
d Al 2s°a 2sa SA\ sa
[W"“L [5—3(— ‘7)*3(‘72)”L

1[24 (s%a*> sa SA s
=2l alm s +B—e? |,

b|s3 b b
which reduces in final form by (27) and (28)

20, [s2a®>  sa  as «|[s?a® 2sa sa B
=——|—+——-—e? || ———2e" +2 29
b[bzzabeZbe (29)
Hence, torque N on the outer sphere in the presence of inner sphere
" d
N = f (u.r sing. &2 ; sinQ) (27b sin 0. b d0)
0 dr r=b
8 d
= —nbu|— ,
(el
by using (29), it reduces to
16 s’a®>  sa  sa u|[s*d® _sa w B
= —abuQy |+ = — et || =5 +2— —2¢% +2 30
3””2[192 b beHbz b ° 0

If b = 2a, then from (30), torque coeflicient (normalizing with 87T,ua3£22,
torque on sphere having radius ‘a’) is given by

w% - %[2s+s2—2se%][s2+4s+8—8e%]'1 31)
2

The expression for rate of dissipated energy will be NQ,, where N is given
in equation (30) and (31).
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6. Particular Cases

Case 1. We consider the outer spherical surface to be fixed i.e., Q; = 0,
then in this case, by (24), we have, torque on the inner sphere rotating with
angular velocity Q; as

8 2.2 .
N = Srauo [z (24 5) (b_ 2% 2) eso-;)]
(32a)

2.2 -1
[(—s2 ~25-2)+ (% + 2% + 2) es(l—%)] .

If b = 2a, then from (32a), torque coefficient (normalizing with 87r,ua3§21,
torque on sphere having radius ‘a’) is given by

N 1 s
—87T,ua3£21 =3 [8 (s + s2) -5 (s2 +4s + 8) ez] 2b)

[—4 (2 + 25 + sz) + (8 +4s + sz) e%]_l

Now, on shifting the solid outer spherical body having radius b (b>a) to
infinity i.e., b— oo , then U5 5 ¢ and by (32a), we can have the
expression for torque on slowly rotating inner sphere of radius ‘a’ alone and
given by (32b) as

16 [s2 +5— ses]

N=— Q ,
3 e T2+ 25 +2 - 2¢']

(33)

which match with the expression of torque obtained by Srivastava et al.
[2011] for slowly rotating pervious sphere of radius ‘a’ rotating with slow
uniform angular velocity ; with sink at the centre and further reduces to
classical one 87r,ua3Ql for s = 0 ( i.e. in the absence of sink at the center).

Case 2. If the inner sphere rotates with uniform angular velocity Q,
while outer rotates with uniform angular velocity €2, at infinity, i.e. b — oo,
then by expression (24), we have the torque on inner sphere as

N - §7r,ua3 [291 (s2 +s5— ses) + Qy5€° (2 - SZ)]

34
3 [s2 + 25 +2 — 2¢] (342)

If Q, =2Q, then from (34a), torque coeflicient (normalizing with 87r,ua3 Qq,
torque on sphere having radius ‘a’) is given by
N 2

S Qs =3 [s + 5% + s€° (1 - sz)] [2 + 25+ 5% — 2e‘y]_1 (34b)
1
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If inner and outer spheres are rotating with same angular velocities, i.e.
Q; = Q) = Q and then from (34a), torque coeflicient (normalizing with
8mua’Q, torque on sphere having radius ‘a’) is given by

N 1 2 3.s 2 517!
m—§[2s+2s —se][2+2s+s —26] (34¢)
Case 3. If we consider the limiting situation as a — b and Q; — €, then
we have the expression for torque on slowly rotating sphere having radius
‘a’ by (30)
16 5 2 s1[.2 5171
N:?na ,uQQ[S +s—se‘][s +25+2—2€‘] , (35)
which agrees with that given in the paper of Srivastava et al. [2011] and
further reduces to the classical one My = 87r,ua391 for s = 0 (i.e. in the
absence of sink at the center).

7. Numerical Discussion

Variation of angular velocity w(r) [equation (17)] with respect to ‘r’ for
various values of sink parameter ‘s’ are shown in Figure 1. For increasing
values of ‘r’ , the value of angular velocity w(r) gets dampened steadily
and reduces ultimately to zero for specific values of sink parameter ‘s’. It is
interesting to note here that for values of ‘t’ (0 <r < 1), w(r) sharply comes
down to 1, and then slowly dies down to zero for values of r >1. Torque
coefficient [equation (24a) and (24b)] for inner rotating sphere decreases with
respect to increasing values of sink parameter ‘s’ in the presence of outer
sphere having radius 2a and rotating with same angular velocity in first case
and 2Q; in the second case. Both these variations are depicted in Figures 2 (i)
and 2 (ii). Torque coefficient [equation (31)] on outer rotating sphere (in the
presence of fixed inner wall) having radius 2a increases from 1 (for s=0) to
oo with respect to increasing values of sink parameter ‘s’. Torque coeflicient
[equation (32b)] on inner wall (in the presence of fixed outer wall having
radius 2a) increases from 1.2 (for s=0) to co with respect to increasing values
of sink parameter ‘s’. Further, torque coefficient [equation (34b)] for inner
sphere (when outer wall is present at far distance and rotating with angular
velocity 2€);) increases with respect to increasing values of sink parameter
‘s’. These variations are depicted in Figures 3, 4 and 5. In all calculations of
torque coeflicient in different situations, normalization is done via classical
value of torque, 87ua’Q, on rotating sphere having radius ‘a’.
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8. Conclusion

The problem of slow rotation of two concentric pervious spheres having
fluid sink at the centre in viscous fluid is solved. The expressions for torque in
general case (3.16, 3.22) and in cases (4.1 to 4.3) are calculated and expected
to be new and never seen in the literature. It has been observed that rotation
of either wall create interference for the rotation of other wall resulting in a
decrease of torque with respect to increasing sink parameter. While, on the
other hand, torque on either wall increases with respect to increasing values
of sink parameter when the other wall is kept fixed. The results found here
may be very useful in the study of evaporating or condensing spherical drop
1n nature.
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Przeplyw stokesowski wokél powolnie wirujacych koncentrycznych kul przepuszczalnych
Streszczenie

W artykule rozwaza si¢ problem koncentrycznych kul przepuszczalnych, ze zlewem plynu
w centrum, ktére wiruja powoli wokoét Srednicy z jednostajnymi predkoSciami katowymi € i Q,.
Analiza wykazala, ze istnieje tylko azymutalny skiadnik predkosci, a moment obrotowy i szyb-
kos¢ rozpraszania energii sa w istniejacych warunkach wyznaczane analitycznie. Wyprowadzono
wyrazenie na moment obrotowy na powierzchni wewnetrznej kuli powolnie wirujacej z jednostajna
predkoscig katowa Q,, podczas gdy kula zewnetrzna takze powolnie wiruje z jednostajng predkoscia
katowag €. Zbadano takze przypadki szczegélne, takie jak: (i) kula wewnetrzna jest nieruchoma
(tzn. Q; = 0), podczas gdy kula zewng¢trzna wiruje z jednostajng predkoscia katowa €, (i) kula
zewnetrzna jest nieruchoma (tzn. Q, = 0), podczas gdy kula wewnetrzna wiruje z jednostajng
predkoscig katowa Q,, (iii) kula wewngtrzna wiruje z jednostajng predkoscia katowa Q;, podczas
gdy kula zewnetrzna wiruje w nieskoriczonej odleglosci z predkoscia katowa ,. Na wykresach
przedstawiono zalezno$ci migdzy zmianami momentu obrotowego a parametrami zlewu.



