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A HIGH PERFORMANCE COMPUTING APPROACH TO THE
SIMULATION OF FLUID-SOLID INTERACTION PROBLEMS WITH

RIGID AND FLEXIBLE COMPONENTS

This work outlines a unified multi-threaded, multi-scale High Performance
Computing (HPC) approach for the direct numerical simulation of Fluid-Solid Inter-
action (FSI) problems. The simulation algorithm relies on the extended Smoothed
Particle Hydrodynamics (XSPH) method, which approaches the fluid flow in a La-
grangian framework consistent with the Lagrangian tracking of the solid phase.
A general 3D rigid body dynamics and an Absolute Nodal Coordinate Formulation
(ANCF) are implemented to model rigid and flexible multibody dynamics. The two-
way coupling of the fluid and solid phases is supported through use of Boundary
Condition Enforcing (BCE) markers that capture the fluid-solid coupling forces by
enforcing a no-slip boundary condition. The solid-solid short range interaction, which
has a crucial impact on the small-scale behavior of fluid-solid mixtures, is resolved
via a lubrication force model. The collective system states are integrated in time using
an explicit, multi-rate scheme. To alleviate the heavy computational load, the overall
algorithm leverages parallel computing on Graphics Processing Unit (GPU) cards.
Performance and scaling analysis are provided for simulations scenarios involving
one or multiple phases with up to tens of thousands of solid objects. The software
implementation of the approach, called Chrono::Fluid, is part of the Chrono project
and available as an open-source software.

1. Introduction

The last decade witnessed a paradigm shift in the microprocessor industry
towards chip designs that provide strong support for parallel computing. Ter-
aflop computing, i.e. computing at the rate of 1012 FLoating-point Operation
Per Second, until recently the privilege of a select group of large research
centers, is becoming a commodity due to inexpensive GPU cards and multi-
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to many-core x86 processors. The steady improvements in processor speed
and architecture, memory layout and capacity, and power efficiency have
motivated a trend of re-evaluating simulation algorithms with an eye towards
identifying solutions that map well onto these new hardware platforms. In this
context, a scrutinizing of the existing Fluid-Solid Interaction (FSI) solutions
reveals that they are mostly inadequate since they either rely on algorithms
that do not map well on emerging computer architectures, or they are unable
to capture phenomena of interest which may require the simulation of tens
of thousands of rigid and deformable bodies that interact directly or through
the fluid media.

FSI problems are usually simulated in either an Eulerian-Lagrangian
framework, where the Lagrangian solid phase moves with/over the Eulerian
grid used for fluid discretization, or an Eulerian-Eulerian framework, where
the solid phase is considered as an average of ensembles instead of a specific
state. While the former approach delivers the flexibility required by general
multibody dynamics problems, it does not provide a level of performance
suitable for the simulation of dense fluid-solid problems such as suspensions.
This can be traced back to the costly processes that overlaps the two different
representations of the fluid and solid phases.

The Lagrangian representation of the fluid flow dovetails well with the
Lagrangian approach used for the motion of the solid phase. This approach
has recently been employed in the context of multibody dynamics and particle
suspension in [12, 25, 29-31, 33]. Specifically, the FSI methodology relying
on Smoothed Particle Hydrodynamics (SPH) [16, 19, 22] and rigid body
Newton-Euler equation of motion [10] was discussed in detail in [29, 30].
This or a similar framework was used for the investigation and validation
of rigid body suspensions [30], as well as flexible beams interacting with
fluid [12, 31, 33]. Additionally, support for the short-range solid-solid inter-
action was introduced in [30, 31], which was leveraged in the simulation of
dense suspensions.

This contribution concentrates on the high performance computing ap-
proach required for the efficient simulation of FSI problems. Although the
approach and algorithms explained herein can leverage any multi-threaded
architecture, the CUDA library [26] was employed for the execution of all
solution components on the GPU, with negligible data transfer between the
host (CPU) and the device (GPU). The paper is organized as follows. The
numerical methods adopted for the simulation of fluid and solid phases,
fluid-solid coupling, and solid-solid short range interaction are explained in
Sect. 2. The computational scheme, including the time integration algorithm,
HPC-based implementation, and parallel neighbor search required for SPH
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are described in Sect. 3. Section 4 contains a performance analysis of the
algorithm using Kepler-type GPU cards.

2. Numerical approach

The proposed FSI simulation framework combines SPH for the simula-
tion of the fluid flow, the Newton-Euler formalism for rigid body dynamics,
and ANCF for modeling flexible body dynamics. These algorithmic compo-
nents are described in more detail in the following subsections, including a
discussion on the approach adopted for resolving fluid-solid and solid-solid
interactions.

2.1. Smoothed Particle Hydrodynamics

The term smoothed in SPH refers to the approximation of point proper-
ties via a smoothing kernel function W , defined over a support domain S.
This approximation reproduces functions with up to 2nd order of accuracy,
provided the kernel function: (1) approaches the Dirac delta function as the
size of the support domain tends to zero, that is lim

h→0
W (r, h) = δ(r), where r

is the spatial distance and h is a characteristic length that defines the kernel
smoothness; (2) is symmetric, i.e., W (r, h) = W (−r, h); and (3) is normal,
i.e.,

∫
S W (r, h)dV = 1, where dV denote the differential volume. A typical

spatial function f (x) is then approximated by 〈 f (x)〉 as

f (x) =

∫

S

f (x′)δ(x − x′)dV

=

∫

S

f (x′)W (x − x′, h)dV + O(h2)

= 〈 f (x)〉 + O(h2) .

(1)

To simplify notation, in the remainder of this document we use f (x) to repre-
sent 〈 f (x)〉. Using Eq. (1) and the divergence theorem, the spatial derivatives
of a function can be mapped to the derivatives of the kernel function. For
instance, the gradient of a function can be written as

∇ f (x) =

∫

∂S

f (x′)W (x − x′, h)·ndA

−
∫

S

f (x′)∇W (x − x′, h)dV ,

(2)
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where ∂S is the boundary of the integration volume V and dA is the dif-
ferential area. By imposing an additional property for the kernel function,
namely that (4) it approaches zero as r increases, i.e., lim

r→∞
W (r, h) = 0,

the first term on the right hand side of Eq. (2) vanishes. Note that some
additional considerations, which will be addressed later, are required for the
SPH approximation near boundaries.

The term particle in SPH terminology indicates the discretization of the
domain by a set of Lagrangian particles. To remove the ambiguity caused by
the use of the term rigid particles in the context of FSI problems, we use the
term marker to refer to the SPH discretization unit. Each marker has mass
m associated to the representative volume dV and carries all of the essential
field properties. As a result, any field property at a certain location is shared
and represented by the markers in the vicinity of that location. The value of
a certain unknown at a given location is calculated according to the distance
between that location and the collection of markers in its vicinity using the
field values at these markers and the expression of the kernel function W .
This leads for the second approximation embedded in SPH, which can be
expressed as

f (x) =

∫

S

f (x′)
ρ(x′)

W (x − x′, h)ρ(x′)dV

'
∑

b

mb

ρb
f (xb)W (x − xb, h) ,

(3)

where b is the marker index and ρb is the fluid density, smoothed at the
marker location xb. The summation in Eq. (3) is over all markers whose
support domain overlaps the location x. Several other properties of the kernel
functions are provided in [16]. For instance, the kernel function should be a
positive and monotonically decreasing function of r, which implies that the
influence of distant markers on field properties at a given location is less than
that of nearby markers. Moreover, for acceptable computational performance
and to avoid a quadratic computational complexity, kernel functions have a
compact domain of influence with a radius Rs defined as some finite multiple
κ of the characteristic length h, as shown in Figure 1. The methodology
adopted herein relies on a cubic spline,

W (q, h) =
1

4πh3 ×


(2 − q)3 − 4(1 − q)3, 0 ≤ q < 1

(2 − q)3, 1 ≤ q < 2
0, q ≥ 2

, (4)

where q ≡ |r| /h, has a support domain with radius 2h.
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Fig. 1. Illustration of the kernel W and its support domain S. SPH markers are shown as black
dots. For 2D problems the support domain is a circle, while for 3D problems it is a sphere

2.1.1. SPH for fluid dynamics

For fluid dynamics, the continuity and momentum equations are given
in Lagrangian form as

dρ
dt

= −ρ∇·v (5)

and
dv
dt

= −1
ρ
∇p +

µ

ρ
∇2v + f , (6)

where µ is the fluid viscosity, while v and p are the flow velocity and pressure,
respectively. Within the SPH framework described earlier, Eqs. (5) and (6)
are discretized at an arbitrary location x = xa within the fluid domain as [24]

ρ̇a =
dρa

dt
= ρa

∑

b

mb

ρb
(va − vb) ·∇aWab , (7)

and

v̇a =
dva

dt
= −

∑

b

mb

[(
pa

ρa
2 +

pb

ρb
2

)
∇aWab + Πab

]
+ fa . (8)

In the above equations, quantities with subscripts a and b are associated
with markers a and b (see Figure 1), respectively. It is important to note that
these quantities are different from the corresponding physical quantities at
locations xa and xb. The viscosity term Πab is defined as

Πab = − (µa + µb)xab·∇aWab

ρ̄2
ab(x

2
ab + εh̄2

ab)
vab , (9)

where xab = xa − xb, Wab = W (xab, h), ∇a is the gradient with respect to xa,
i.e., ∂/∂xa, and ε is a regularization coefficient. Quantities with an over-bar
are averages of the corresponding quantities for markers a and b.
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Alternative viscosity discretizations include:
1. the model suggested in [5]:

Π∗ab = −µaµbxab·vab/[ρaρb(µa + µb)(x2
ab + εh̄2

ab)]∇aWab ;
2. direct discretization of ∇2 operator [22, 24]; and
3. the class of artificial viscosity models introduced in [17, 19, 23]

However, using Eq. 9 is preferred since it has the following properties:
(1) it ensures that the viscous force is along the shear direction vab, instead
of the particles center line xab; (2) it is less sensitive to local velocities;
(3) it allows for better computational efficiency by removing the nested loop
required for the computation of the ∇2 operator; and (4) it is stated in terms
of physical properties, rather than model parameters like those in artificial
viscosity, which are introduced primarily for numerical stabilization through
damping. In the simulation of transient Poiseuille flow, although we man-
aged to virtually obtain exact results using Eq. 9 [30], the error caused by
implementing either Π∗ab or artificial viscosity were non-negligible.

In the weakly compressible SPH model, the pressure p is evaluated using
an equation of state [22]

p =
cs

2ρ0

γ

{(
ρ

ρ0

)γ
− 1

}
, (10)

where ρ0 is the reference density of the fluid, γ tunes the stiffness of the
pressure-density relationship, and cs is the speed of sound. The value cs is
adjusted depending on the maximum speed of the flow, Vmax, to keep the flow
compressibility below some arbitrary value. We use γ = 7 and cs = 10Vmax,
which allows 1% flow compressibility [22].

The fluid flow equations (7) and (8) are solved together with

ẋa =
dxa

dt
= va (11)

to update the position of the SPH markers.
The original SPH summation formula calculates the density according

to
ρa =

∑

b

mbWab. (12)

Equation (7), which evaluates the time derivative of the density, was preferred
to the above since it produces a smooth density field, works well for markers
close to the boundaries (the free surface, solid, and wall), and does not exhibit
the large variations in the density field introduced when using Eq. (12) close
to the boundaries. However, Eq. (7) does not guarantee consistency between
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a marker’s density and the associated mass and volume [3, 21, 24]. The
so-called density re-initialization technique [6] attempts to address this issue
by using Eq. (7) at each time step and periodically; i.e., every n time steps,
use Eq. (12) to correct the mass-density inconsistency. The results reported
herein were obtained with n = 10. The Moving Least Squares method or
a normalized version of Eq. (12) could alternatively be used to address the
aforementioned issues, see [6, 7].

Finally, the methodology proposed employs the extended SPH approach
(XSPH), which prevents extensive overlap of markers’ support domain and
enhances flow incompressibility [20]. This correction takes into account the
velocity of neighboring markers through a mean velocity evaluated within
the support of a nominal marker a as

v̂a = va + ∆va, (13)

where
∆va = ζ

∑

b

mb

ρ̄ab
(vb − va)Wab, (14)

and 0 ≤ ζ ≤ 1 adjusts the contribution of the neighbors’ velocities. All the
results reported herein were obtained with ζ = 0.5. The modified velocity
calculated from Eq. (13) replaces the original velocity in the density and
position update equations, but not in the momentum equation [6].

2.2. Rigid body dynamics

Once the fluid-solid interactions between individual markers; i.e., the
right hand side of Eqs. (7) and (8), are accounted for, the total rigid body
force and torque due to the interaction with the fluid can be obtained by
respectively summing the individual forces and their induced torques over the
entire rigid body. They are then added to any other forces, including external
and contact forces. The dynamics of the rigid bodies is fully characterized
by the Newton-Euler equations of motion (EOM), see for instance [10]:

dVi

dt
=

Fi

Mi
, (15)

dXi

dt
= Vi , (16)

dω′i
dt

= J′i
−1 (

T′i − ω̃′iJ′iω′i
)
, (17)

dqi

dt
=

1
2
GT

i ω
′
i , (18)
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and

qT
i qi − 1 = 0, (19)

where Fi, T′i , Xi, Vi, ω′i ∈ R3 denote the force, torque, position, velocity,
and angular velocity associated to body i, i = 1, 2, . . . , nb, respectively. The
quantity qi denotes the rotation quaternion, while Mi and J′i are the mass
and moment of inertia, respectively. Quantities with a prime symbol are
represented in the rigid body local reference frame. Given a =

[
ax, ay, az

]T ∈
∈ R3 and q =

[
qx, qy, qz, qw

]T ∈ R4, the auxiliary matrices ã and G are
defined as [10]

ã =



0 −az ay

az 0 −ax

−ay ax 0

 and G =



−qy qx qw −qz

−qz −qw qx qy

−qw qz −qy qx

 . (20)

2.3. Flexible body dynamics

The ANCF formulation [36], which allows for large deformations and
large rigid body rotations, is adopted herein for the simulation of flexible
bodies suspended in the fluid. While extension to other elastic elements
is straightforward, the current Chrono::Fluid implementation only supports
gradient deficient ANCF beam elements, which are used to model slender
flexible bodies composed of ne adjacent ANCF beam elements. The flexible
bodies are modeled using a number nn = ne +1 of equally-spaced node beam
elements, each represented by 6 coordinates, e j = [rT

j , rT
j,x]

T , j = 0, 1, . . . , ne;
i.e., the three components of the global position vector of the node, and the
three components of its slope. This is therefore equivalent to a model using
ne ANCF beam elements with 6 × nn continuity constraints, but is more
efficient in that it uses a minimal set of coordinates. We note that formula-
tions using gradient deficient ANCF beam elements display no shear locking
problems [9, 34, 35] and, due to the reduced number of nodal coordinates,
are more efficient than fully parametrized ANCF elements. However, gradient
deficient ANCF beam elements cannot describe a rotation about its axis and
therefore cannot model torsional effects.

Consider first a single ANCF beam element of length �. The global
position vector of an arbitrary point on the beam center line, specified through
its element spatial coordinate 0 ≤ x ≤ �, is then obtained as

r(x, e) = S(x)e , (21)
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where e = [eT
l , eT

r ]T ∈ R12 is the vector of element nodal coordinates.
With I being the 3 × 3 identity matrix, the shape function matrix S =

= [S1I S2I S3I S4I] ∈ R3×12 is defined using the shape functions [36]

S1 = 1 − 3ξ2 + 2ξ3

S2 = �
(
ξ − 2ξ2 + ξ3

)

S3 = 3ξ2 − 2ξ3

S4 = �
(
−ξ2 + ξ3

)
,

(22)

where ξ = x/� ∈ [0, 1].
The element EOM are then written as

Më + Qe = Qa , (23)

where Qe and Qa are the generalized element elastic and applied forces,
respectively, and M ∈ R12×12 is the symmetric consistent element mass matrix
defined as

M =

∫

�
ρsASTSdx . (24)

The generalized element elastic forces are obtained from the strain energy
expression [36] as

Qe =

∫

�
EAε11

(
∂ε11

∂e

)T
dx +

∫

�
EIκ

(
∂κ

∂e

)T
dx , (25)

where ε11 =
(
rT

x rx − 1
)
/2 is the axial strain and κ = ‖rx × rxx‖/‖rx‖3 is the

magnitude of the curvature vector. The required derivatives of the position
vector r can be easily obtained from Eq. (21) in terms of the derivatives of
the shape functions as rx(x, e) = Sx(x)e and rxx(x, e) = Sxx(x)e.

External applied forces, in particular the forces due to the interaction with
the fluid, see Sect. 2.4, are included as concentrated forces at a BCE marker.
The corresponding generalized forces are obtained from the expression of
the virtual work as

Qa = ST (xa)F , (26)

where F is the external point force and the shape function matrix is evaluated
at the projection onto the element’s center line of the force application point.
The generalized gravitational force can be computed as

Qg =

∫

�
ρsASTgdx . (27)
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In the above expressions, ρs represents the element mass density, A is the
cross section area, E is the modulus of elasticity, and I is the second moment
of area.

The EOM for a slender flexible body composed of ne ANCF beam ele-
ments are obtained by assembling the elemental EOMs of Eq. (23) and taking
into consideration that adjacent beam elements share 6 nodal coordinates.

Let ê = [eT
0 , eT

1 , . . . eT
ne
]T be the set of independent nodal coordinates;

then the nodal coordinates for the j-th element can be written using the
mapping 

el

er


j

= B jê , with B j =


0 0 . . . I3 0 . . . 0
0 0 . . . 0 I3 . . . 0

 (28)

and the assembled EOMs are obtained, from the principle of virtual work,
as follows. Denoting by M j be the element mass matrix of Eq. (24) for the
j-th ANCF beam element, it can be written in block form as

M j =


M j,ll M j,lr

M j,rl M j,rr

 , (29)

where M j,lr = MT
j,rl and all sub-blocks have dimension 6× 6. Here, l denotes

the left end of the beam element, i.e., the node characterized by the nodal
coordinates e j−1, while r corresponds to the node with coordinates e j. With
a similar decomposition of a generalized element force into

Q j =


Q j,l

Q j,r

 (30)

one obtains
M̂ ¨̂e = Q̂a − Q̂e (31)

where

M̂ =



M1,ll M1,lr

M1,rl M1,rr + M2,ll

M2,rl
. . .

Mne,rr


(32)

Q̂a − Q̂e =



∑
Qa

1,l∑
Qa

1,r +
∑

Qa
2,l∑

Qa
2,r +

∑
Qa

3,l
...∑

Qa
ne,r



−



Qe
1,l

Qe
1,r + Qe

2,l

Qe
2,r + Qe

3,l
...

Qe
ne,r



. (33)
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Inclusion of additional kinematic constraints, e.g., anchoring the beam at one
end to obtain a flexible cantilever or fixing its position to obtain a flexible pen-
dulum, can be done either by formulating the EOM as differential-algebraic
equations or by deriving an underlying ODE after explicitly eliminating the
corresponding constrained nodal coordinates. The latter approach was used
in all simulations involving flexible cantilevers discussed in Sect. 4.

2.4. Fluid-solid interaction

The two-way fluid-solid coupling was implemented based on a method-
ology described in [29]. The state update of any SPH marker relies on the
properties of its neighbors and resolves shear as well as normal inter-marker
forces. For the SPH markers close to solid surfaces, the SPH summations
presented in Eqs. (7), (8), (12), and (14) capture the contribution of fluid
markers. The contribution of solid objects is calculated via Boundary Con-
dition Enforcing (BCE) markers placed on and close to the solid surface
as shown in Figure 2. The velocity of a BCE marker is obtained from the
rigid/deformable body motion of the solid thus ensuring the no-slip condition
on the solid surface. Including BCE markers in the SPH summation equations
(7) and (8) results in fluid-solid interaction forces that are added to both fluid
and solid markers.

Fig. 2. Fluid-solid interaction using BCE markers attached to a rigid body. BCE and fluid
markers are represented by black and white circles, respectively. The BCE markers positioned in
the interior of the body (markers g and f in the figure) should be placed to a depth less than or
equal to the size of the compact support associated with the kernel function W . A similar concept

yet with different kinematics is used for flexible bodies

2.5. Solid-solid short range interaction

Dry friction models typically used to characterize the dynamics of gran-
ular materials [1, 13 14] do not capture accurately the impact of solid sur-
faces in hydrodynamics media. In practice, it is infeasible to resolve the
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short-range, high-intensity impact forces arising in wet media due to com-
putational limits on space and time resolution. Ladd [15] proposed a normal
lubrication force between two spheres that increases rapidly as the distance
between particles approaches zero and therefore prevents the actual touching
of the spheres:

Flub
i j = min

−6πµ
(

aia j

ai + a j

)2 (
1
s
− 1

∆c

)
, 0

 · vni j , (34)

where, ai and a j are the sphere radii, vni j is the normal component of the
relative velocity, and s is the distance between surfaces. For s > ∆c, Flub

i j = 0,
and the spheres are subject only to hydrodynamic forces.

Equation (34) provides a basic model for the estimation of the lubrication
force in normal direction. The generalization of this model to non-spherical
objects requires the calculation of the minimum distance and the curvature
of the two contact surfaces. The calculation of the partial lubrication force
between non-spherical surfaces follows the approach proposed in [8] for a
lattice Boltzmann method but is amended to fit the Lagrangian formulation
adopted herein. Accordingly, the force model provided in Eq. (34) is modified
as

Flub
i j =

∑

k

fk
i j,

with fk
i j = min

{
−3

2
πµh2

(
1
s∗
− 1

∆c

)
, 0

}
· v∗ni j

,

(35)

where s∗ and v∗ni j
denote the markers’ relative distance and velocity, respec-

tively, and the summation is over all interacting markers of the two solid
objects.

3. HPC implementation

Chrono::Fluid [4], an open-source simulation framework for fluid-solid
interaction, provides an implementation that executes all phases of the so-
lution method on the GPU. A brief overview of the GPU hardware and
programming model adopted is followed below by a detailed discussion of
the critical kernels that implement the proposed modeling and solution ap-
proach.

3.1. GPU hardware and programming model

To a very large extent, the performance of today’s simulation engines is
dictated by the memory bandwidth of the hardware solution adopted. Recent
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numerical experiments conducted by the authors revealed that only about 5
to 10% of the peak flop rate is reached by the large number of cores present
on today’s architectures since these cores most of the time idle waiting for
data from global memory or RAM. It is this observation that motivated the
selection of the GPU as the target hardware for implementing Chrono::Fluid.
At roughly 300 GB/s, the GPU memory bandwidth stands four to five times
higher than what one could expect on a fast CPU.

To describe the hardware organization of the GPU, we consider here the
NVIDIA GeForce GTX 680 [18, 27]. This GPU is based on the first genera-
tion of Kepler architecture, code name GK104, which is also implemented in
Tesla K10. The Kepler architecture relies on a Graphics Processing Cluster
(GPC) as the defining high-level hardware block. There are a total of 4 GPCs
on the GK104. Each GPC includes two Stream Multiprocessors (SM), each
of which has 192 Scalar Processors (SP), for a total of 1536 SPs, and 3.1
TFlops processing rate.

In addition to the processing cores, the second important aspect of GPU
hardware is that of the memory hierarchy. The memory on the GPU is di-
vided into several types, each with different access patterns, latencies, and
bandwidths:

Registers (read/write per thread): 65536, 32-bit memory units. Very low
latency, high bandwidth (' 10 TB/s cumulative) memory used to hold
thread-local data.

Shared memory/L1 cache (read/write per block): 64 KB. Low latency, high
bandwidth (' 1.5-2 TB/s cumulative) memory divided between shared
memory and L1 cache.

Global memory (read/write per grid): 2 GB. Used to hold input and output
data. Accessible by all threads, with a bandwidth of 192 GB/s and a
higher latency (' 400-800 cycles) than shared memory and registers. All
accesses to global memory pass through the L2 cache. The latter is 512
KB large and has a bandwidth of 512 B/clock cycle.

Constant memory (read only per grid): 48 KB per Kepler SM. Used to
hold constants, serviced at the latency and bandwidth of the L1 cache
upon a cache hit, or those of the global memory upon a cache miss.

The parallel execution paradigm best supported on GPUs is “single in-
struction multiple data” (SIMD). In this model, if for instance two arrays of
length one million are to be added, one million threads are launched with
each executing the same instruction; i.e., adding two numbers, but on dif-
ferent data – each thread adding two different numbers. Fortunately, SIMD
computing is very prevalent in the solution methodology proposed, where
each SPH marker is handled by a thread in the same way in which hundreds
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of thousands of other threads handle their markers using different data. While
strongly leveraging the SIMD model owing to the fine grain parallelism that it
exposes, the methodology adopted is prone to lead to memory access patterns
that do not display high spatial and/or temporal locality. This is because the
SPH markers move in time leading to less structured memory accesses that
adversely impact the effective bandwidth reached by the code.

3.2. Time integration

Chrono::Fluid uses a second order explicit mid-point Runge-Kutta (RK2)
scheme [2] for the time integration of the fluid and solid phases, the latter
in its rigid or flexible representation.

Algorithm 1 summarizes the steps required for the calculation of the force
on the SPH markers, rigid bodies, and deformable beams at time step k.

Algorithm 1 Force Calculation
. Calculate modified XSPH velocities

1: for a := 0 to (Nm − 1) do
2: v̂k

a ≡ v̂a

(
ρk , xk , vk

)
3: end for
. SPH forces

4: for a := 0 to (Nm − 1) do
5: ρ̇k

a ≡ ρ̇a

(
ρk , xk , v̂k

)

6: ẋk
a = v̂k

a

7: v̇k
a ≡ v̇a

(
ρk , xk , vk

)
8: end for
. Rigid body forces

9: for i := 0 to (Nr − 1) do
10: V̇k

i ≡ V̇i

(
v̇k

)

11: Ẋk
i = V̇k

i

12: ω̇k
i ≡ ω̇i

(
v̇k ,ωk

i

)

13: q̇k
i ≡ q̇i

(
ωk

i ,q
k
i

)
14: end for

. ANCF forces
15: for j := 0 to

(
N f − 1

)
do

16: Q̂k
j = Q̂a

j

(
v̇k

)
− Q̂e

j

(
êk

)
+ Q̂g

j

(
êk

)

17: ˙̂ek
1 = êk

2
18: ˙̂ek

2 = M̂−1Q̂k
j

19: end for
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The variables Nm, Nr , and N f denote the number of markers, rigid bodies,
and flexible beams, respectively. The arrays ρ, x, v, and v̂ store the density,
position, velocity, and modified velocity for all markers, respectively; for
example, ρ = {ρa|a = 0, 1, 2, ...,Nm − 1}.

The external forces on the rigid and flexible bodies include the FSI forces
captured via BCE markers at distributed locations on the solid surfaces. The
distributed forces need to be accumulated into a single force and torque
at the center of each rigid body, or point forces at node locations of each
flexible body. The reduction (summation of the forces and torques) is handled
by parallel scan operations available through the Thrust library [11], which
exposes a scan algorithm that scales linearly.

The RK2 integration scheme requires the calculation of the force at the
beginning as well as middle of the time step. Algorithm 2 lists the steps
required for the time integration of a typical FSI problem.

To improve the code vectorization and use of fast memory; i.e., L1/L2
cache, shared memory, and registers, each computation task was implement-
ed as a sequence of light GPU kernels. For instance, different computation
kernels are implemented to update the attributes of the solid bodies, in-
cluding force, moment, rotation, translation, linear and angular velocity, and
locations of the associated BCE markers. A similar coding philosophy was
maintained for the density re-initialization, boundary condition implementa-
tion, and mapping of the marker data on an Eulerian grid for post processing.

3.2.1. Multi-rate integration

Stable integration of the SPH fluid equations requires step-sizes which
are also appropriate for propagating the dynamics of any rigid solids in the
FSI system. However, integration of the dynamics of deformable bodies,
especially as their stiffness increases, calls for very small time steps. To
alleviate the associated computational cost, we use a dual-rate integration
scheme using intermediate steps for the integration of the flexible dynamics
EOMs, typically with ∆tSPH /∆tANCF = 10, although stiffer problems may
require ratios of up to 50.

This aspect is noteworthy given that typical FSI models involve a number
of SPH markers orders of magnitude larger than the number of ANCF nodal
coordinates required for the flexible bodies. Without a multi-rate implemen-
tation, the numerical solution would visit the fluid phase at each integration
step, an approach that led to very large solution times. This aspect is further
discussed in Sect. 4.
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Algorithm 2 RK2 Time Integration
. Force calculation at beginning of step (Algorithm 1)

1: Calculate {v̂k , ρ̇k , ẋk , v̇k , V̇k , Ẋk , ω̇k , q̇k , Q̂k}
. Half-step updates for fluid, rigid body, and flexible body states

2: for a ∈ {a|a is a fluid marker} do
3: ψk+1/2

a = ψk
a + ψ̇k

a × ∆t/2, where ψa ∈ {ρa, xa, va}
4: end for
5: for i := 0 to (Nr − 1) do
6: Ψ

k+1/2
i = Ψk

i + Ψ̇k
i × ∆t/2, where Ψi ∈ {Vi,Xi,ωi,qi}

7: end for
8: for j := 0 to

(
N f − 1

)
do

9: êk+1/2
1 = êk

1 + ˙̂ek
1 × ∆t/2

10: êk+1/2
2 = êk

2 + ˙̂ek
2 × ∆t/2

11: end for
. Half-step update for BCE marker positions and velocities

12: for a ∈ {a|a is a BCE marker} do
13: Obtain xk+1/2

a and vk+1/2
a according to associated rigid, flexible, or im-

mersed boundary motion.
14: end for

. Force calculation at half-step (Algorithm 1)
15: Calculate {v̂k+1/2, ρ̇k+1/2, ẋk+1/2, v̇k+1/2, V̇k+1/2, Ẋk+1/2, ω̇k+1/2, q̇k+1/2,

Q̂k+1/2}
. Full-step updates for fluid, rigid body, and flexible body states

16: for a ∈ {a|a is a fluid marker} do
17: ψk+1

a = ψk
a + ψ̇k+1/2

a × ∆t
18: end for
19: for i := 0 to (Nr − 1) do
20: Ψk+1

i = Ψk
i + Ψ̇

k+1/2
i × ∆t

21: end for
22: for j := 0 to

(
N f − 1

)
do

23: êk+1
1 = êk

1 + ˙̂ek+1/2
1 × ∆t

24: êk+1
2 = êk

2 + ˙̂ek+1/2
2 × ∆t

25: end for
. Full-step update for BCE marker positions and velocities

26: for a ∈ {a|a is a BCE marker} do
27: Obtain xk+1

a and vk+1
a .

28: end for



A HIGH PERFORMANCE COMPUTING APPROACH TO THE SIMULATION OF FLUID-SOLID. . . 243

3.3. Proximity calculation and neighbor search

In the current implementation, each marker has a list of neighbor mark-
ers; i.e., markers that fall within its support domain. Given this set of lists, the
calculation of v̂k

a ≡ v̂a

(
ρk , xk , vk

)
, ρ̇k

a ≡ ρ̇a

(
ρk , rk , v̂k

)
, and v̇k

a ≡ v̇a

(
ρk , rk , vk

)
is straightforward. The loop iterations in Algorithms 1 and 2 have no overlap
and can be executed in parallel. The computational bottleneck thus becomes
the determination of the neighbor lists through proximity calculation, a step
that requires about 70% of the entire computational budget and thus critically
impacts the overall performance of the simulation. Herein, we adopt a spatial
binning algorithm which is sub-optimal in terms of amount of net work but
superior in terms of memory usage. In this approach, the computation domain
is divided into a collection of bins. The bins have side lengths equal to the
maximum influence distance of a marker, i.e. κh. This localizes the search
for the possible interacting markers to the bin and all of its 26 immediate
3D neighbors. Figure 3 shows the binning approach in 2D.

Fig. 3. Illustration of the spatial subdivision method used for proximity computation in 2D. The
circles represent the domain of influence of each marker; i.e., the support domain. For clarity, a
coarse distribution of markers is shown. In reality, the concentration of markers per bin is much

larger

In the neighbor search approach adopted herein, neighbor lists are not
saved in memory; instead, neighbors are evaluated whenever required. Al-
ternatively [28], the principle of action and reaction could be leveraged to
calculate and store the acceleration terms for each inter-penetration. Although
the second algorithm reduces the amount of work by re-using the accelera-
tion terms calculated for each inter-penetration, it can not be applied to the
SPH method due to the massive amount of memory required to store the
data associated with all inter-penetration events. Another advantage of the
adopted neighbor search approach is the coalesced memory access achieved
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by sorting and accessing the data based on the markers location. The steps
required for accessing the neighbors are summarized in Algorithm 3.

Algorithm 3 Inner loop: accessing neighbor markers

1: Divide the solution space into nb bins of
(
∆x,∆y,∆z

)
dimensions, where

nb = nx×ny×nz, and (nx, ny, nz) is the number of grid cells along (x, y, z)
axis.

2: Construct the hash array: = {sa|a = 0, 1, 2, ...,Nm − 1} according to sa =

= i×ny×nz + j×nz +k, where (i, j, k) is the location of the bin containing
the marker a.

3: Sort into sorted and obtain corresponding ρsorted , xsorted , vsorted , and
v̂sorted .

4: Construct c1 = {c1
p|p = 0, 1, 2, ..., nb−1} and c2 = {c2

p|p = 0, 1, 2, ..., nb−1},
where c1

p and c2
p denote the two indices in sorted that bound the sequence

of hash values sa = p.
5: Access markers data in bin (i, j, k) by loading

[
c1

p, c
2
p

]
portions of the

sorted arrays ρsorted , xsorted , vsorted , and v̂sorted , as needed.

The data sorting in step 3 of Algorithm 3 is performed using the linear-
complexity radix sort available in the Thrust library. As a result, this solution
component does not affect the overall linear scaling of Algorithms 1 and 2.
Working with the sorted arrays for the bulk of the computation has the
additional advantage of increasing the memory spatial locality: SPH markers
that share a neighborhood in the physical space, do so in their memory
location as well.

4. Results

The simulation approach described in Sect. 3 was implemented to execute
in parallel on GPU cards using the CUDA programming environment [26].
All simulations reported in this section were run on an NVIDIA GeForce
GTX 680 GPU card described in sub-section 3.1. In all simulations, if
present, the flexible beams were modeled using ne = 4 ANCF beam ele-
ments, while the integrals appearing in the elastic forces Qe in Eq. (25) were
evaluated using 5 and 3 Gauss quadrature points for the axial and bending
elastic forces, respectively.

A snapshot from a typical FSI problem involving flexible bodies is shown
in Figure 4. Additional Chrono::Fluid simulation examples can be found
at [32]. Comprehensive validation studies of the Chrono::Fluid simulation
package are provided in [31]. The focus here is on numerical experiments
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that illustrate the performance and scalability of the proposed algorithm and
its parallel implementation.

Fig. 4. Example of Chrono::Fluid simulation: channel flow over an array of flexible cantilevers.
(See [32] for further details)

We begin by analyzing the efficiency and scaling attributes of the solution
for systems composed exclusively of rigid bodies, flexible bodies, or a fluid
phase. In each of these three scenarios, we provide the simulation times per
time step for problems of increasing size. Data provided in Tables 1, 2, and
3 and illustrated in Figure 5 indicate that updates of the dynamics of each
phase scale linearly with problem size; i.e., with the number of rigid bodies,
flexible bodies, and SPH markers, respectively.

Table 1.
Time required for advancing the rigid body dynamics simulation by one time step

as function of problem size (number of rigid bodies, Nr)

Nm = 0, N f = 0

Nr (×103) 0.49 2.87 16.59 56.77 118.23

t (ms) 5 8 16 44 78

While the previous results show linear scaling for rigid and flexible body
dynamics, in actual FSI problems in which rigid and/or flexible bodies inter-
act with the fluid, the simulation time is virtually independent of the number
of solid objects. The results presented in Tables 4 and 5 were obtained on
a system consisting of approximately 3 million SPH markers by varying
the number of rigid bodies and flexible bodies. The small sensitivity of the
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Table 2.
Time required for advancing the flexible body dynamics simulation by one time step

as function of problem size (number of flexible bodies, N f )

Nm = 0, Nr = 0

N f (×103) 0.78 3.51 17.55 56.94 115.05

t (ms) 8 14 48 122 238

simulation time with respect to the number of solid objects is due to the fact
that the number of BCE markers associated with solid bodies represents only
a very small fraction of the number of SPH discretization markers, the latter
overwhelmingly dictating the required computation time. Nevertheless, as the
concentration of solid objects increases, smaller time steps are required since
the probability of short-range, high-frequency interactions increases.

Table 3.
Time required for advancing a fluid dynamics simulation by one time step

as function of problem size (number of SPH markers, Nm)

Nr = 0, N f = 0

Nm (×106) 0.06 0.32 0.93 1.79 4.13

t (ms) 27 121 331 538 1150

Table 4.
Simulation time per time step for an FSI problem with fixed number

of SPH markers and increasing number of rigid bodies

Nm ' 3.0 × 106, N f = 0

Nr 0 36 120 480 1800 8400 33600

t (ms) 906 919 923 925 926 926 921

The two sets of results provided in Table 5 for different values of τ =

= ∆tSPH /∆tANCF show a small increase in the simulation time when choosing
a very small integration step size for flexible body dynamics. This illustrates
the efficiency of the multi-rate integration scheme in improving the time
integration stability at a small increase in computational cost. The small
changes in the simulation times provided in Tables 4 and 5 are mainly due to
the deviations in the magnitude of Nm as the number of solid objects changes.
Linear scaling in Chrono::Fluid is also demonstrated in an experiment where
a combined FSI problem, i.e. involving rigid and flexible bodies and including
a lubrication force model and two-way coupling with fluid, is solved on
domains of increasing size (see Figure 6). As the simulation domain volume
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Fig. 5. Scaling analysis of Chrono::Fluid for rigid body dynamics, flexible body dynamics, and
fluid dynamics as function of problem size (Nr , N f , and Nm, respectively). The coefficients R2 are

specified to each linear regression

is increased by factors from 2 up to 32, the number of SPH markers varies
from about 76, 000 to more than 2.5 million. Simultaneously, the number
of rigid and flexible bodies grow from 168 to more than 24, 000 and from
160 to almost 10, 000, respectively (see Table 6). As shown in Figure 6,
Chrono::Fluid achieves linear scaling over the entire range of problem sizes.

Table 5.
Simulation time per time step for an FSI problem with fixed number of SPH markers and

increasing number of flexible bodies, for two different values of the multi-rate integration factor
τ = ∆tSPH /∆tANCF

Nm ' 3.0 × 106, Nr = 0

N f 0 45 140 440 1152 2100 4704

τ = 10 t (ms) 906 923 928 916 960 950 921

τ = 50 t (ms) 906 973 978 965 1066 1060 1060
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Table 6.
Simulation time per time-step for combined FSI problems of increasing size

Nm (×106) 0.08 0.16 0.29 0.63 0.95 1.54 2.50

Nr (×103) 0.17 0.52 1.12 4.48 7.84 14.56 24.64

N f (×103) 0.16 0.42 0.84 2.10 3.36 5.88 9.66

t (ms) 45 74 120 230 343 522 820

Fig. 6. Scaling analysis of Chrono::Fluid for FSI problems: simulation time as function of
combined problem size. In this experiment, the volume of the simulation domain is increased, up
to 32 times the volume of the initial domain, leading to proportional increases in the number of
SPH markers and of solid objects (both rigid and flexible bodies) as shown in the bottom plot

(see also Table 6). As illustrated by the top graph, the simulation time per time step varies
linearly with problem size. The coefficients R2 are specified for each linear regression

5. Conclusions

This contribution discusses details of an HPC approach to the simula-
tion of FSI problems. Relying on: (i) a Lagrangian/Lagrangian formalism
for the simulation of the fluid and solid phases, and (ii) GPU parallelism,
Chrono::Fluid, the software implementation of the proposed solution method-
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ology, is suitable for the study of multi-phase/multi-component problems
such as particle suspensions, polymer flow, and biomedical applications.

Chrono::Fluid has been shown to scale linearly in the dynamics of each
phase independently as well as in the overall FSI solution implementation.
The dynamics of the fluid phase; i.e. the time propagation of the SPH mark-
ers, controls the overall simulation time, and neither cross-phase communi-
cations nor solid phase simulation have a notable effect on the simulation
time. This represents one advantage of the adopted unified FSI methodology
over co-simulation and asynchronous approaches. Chrono::Fluid, whose pre-
liminary validation is discussed in [30], is open source and freely available
under a BSD3 license.

Several directions of future work are as identified as follows: (a) revis-
it the SPH marker numbering scheme in order to improve the spatial and
temporal memory access patterns, thus increasing the effective bandwidth of
Chrono::Fluid; (b) augment the current implementation for use on cluster su-
percomputers that adopt a non-uniform memory access model and rely on the
Message Passing Interface standard; (c) investigate problems at macroscale
such as vehicle fording operations, which call for large scale simulations at
low Reynolds numbers and possibly in the presence of very large viscosity;
and (d) gauge the potential of Chrono::Fluid in biomechanics applications
such as blood flow in deformable arteries or heart, channel occlusion in
stroke, etc.
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Zastosowanie wysokowydajnej techniki obliczeniowej (HPC) do symulacji problemów
interakcji między płynem i ciałem stałym z elementami sztywnymi i elastycznymi

S t r e s z c z e n i e

W pracy przedstawiono zarys jednolitego podejścia do bezpośredniej numerycznej symulacji
problemów interakcji płyn – ciało stałe (FSI) z wykorzystaniem wielowątkowej wysokowydaj-
nej techniki obliczeniowej (HPC) o wielkiej skali. Algorytm symulacji opiera się na rozsze-
rzonej metodzie hydrodynamiki cząstek gładkich (XSPH), która opisuje przepływ płynu w for-
malizmie Lagrange’a zgodnym z metodą Lagrange’a śledzenia fazy stałej. W celu modelowania
sztywnego i elastycznego układu wielu ciał implementowano ogólną, trójwymiarową dynamikę
ciała sztywnego i zastosowano sformułowanie bezwzględnych współrzędnych węzłowych (ANCF).
Dwukierunkowe sprzężenie między płynem i fazą stałą jest zamodelowane przez użycie znaczników
wymuszenia warunków brzegowych (BCE) które oddają działanie sił sprzężenia między płynem
a ciałem stałym wymuszając brak poślizgu w warunkach brzegowych. Problem interakcji bliskiego
zakresu między płynem i ciałem stałym, która ma decydujący wpływ na zachowanie w małej skali
mieszanin płynów i ciał stałych, rozwiązano przy pomocy modelu sił smarowania. Stany systemu
zbiorczego są integrowane w czasie przy użyciu jawnego, wieloszybkościowego schematu. By
zmniejszyć wielkie obciążenie obliczeniowe, w algorytmie ogólnym położono nacisk na obliczenia
równoległe w kartach procesorów graficznych (GPU). W pracy przedstawiono analizę wydajnoś-
ci i skalowania dla scenariuszy symulacji obejmujących jedną lub wiele faz przy liczbie obiek-
tów stałych sięgającej dziesiątek tysięcy. Implementacja oprogramowania przedstawionej metody,
o nazwie Chrono::Fluid, jest częścią projektu Chrono i jest udostępniona do użytku nieodpłatnego.


