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GEOMETRIC INTERPRETATION OF A NON-LINEAR BEAM FINITE
ELEMENT ON THE LIE GROUP SE(3)

Recently, the authors proposed a geometrically exact beam finite element for-
mulation on the Lie group SE(3). Some important numerical and theoretical aspects
leading to a computationally efficient strategy were obtained. For instance, the formu-
lation leads to invariant equilibrium equations under rigid body motions and a locking
free element. In this paper we discuss some important aspects of this formulation.
The invariance property of the equilibrium equations under rigid body motions is
discussed and brought out in simple analytical examples. The discretization method
based on the exponential map is recalled and a geometric interpretation is given.
Special attention is also dedicated to the consistent interpolation of the velocities.

1. Introduction

Rotational variables are widely used in structural mechanics as they are
particularly convenient to handle the kinematic assumptions involved in struc-
tural elements such as rigid bodies, beams or shells [1, 2, 3, 4]. Nevertheless,
rotations belong to a non-linear space, SO(3), so that they must be handled
carefully. Several methods have been explored to represent rotation variables
in multibody systems such as the parameterization of rotation[1], the director
vector method [5] or the Lie group methods [3, 6, 7, 8]. This paper is con-
cerned with a beam formulation recently proposed by the authors [9] which
is based on the Lie group formalism of the special Euclidean group SE(3)
and thus differs from the classical approach on R3 × SO(3).
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o.bruls}@ulg.ac.be

∗∗ Universidad Nacional Litoral - Conicet, CIMEC, Colectora Ruta Nac 168 / Paraje El
Pozo, 3000 Santa Fe, Argentina; E-mail: acardona@intec.unl.edu.ar



306 VALENTIN SONNEVILLE, ALBERTO CARDONA, OLIVIER BRÜLS

The invariance of a formulation with respect to rigid body motions,
namely the solution is equivalent whatever the rigid body motion of the
reference frame, is of fundamental importance and is satisfied by classical
geometrically exact beam formulations, e.g. [3, 5, 10, 11, 12, 13]. Using
the special Euclidean group formalism, the translation and rotation variables
are inherently coupled and the deformations and the velocities are naturally
expressed in a material frame. As a consequence, the formulation is naturally
invariant under rigid body motion but in addition the equilibrium equations
themselves, i.e. the numerical expression of the internal and inertia forces
and of the tangent stiffness and mass matrices, are invariant under rigid body
motions. The non-linearities in the equilibrium equations are thus reduced,
which is valuable from a computational point of view. In particular, it is
shown through simple examples that the solution to geometrically non-linear
problems can be obtained by solving the equilibrium equations in terms of
deformations and velocities only, without having to refer to the actual position
or orientation of the beam. In a second step, the position and orientation can
be obtained by solving kinematic compatibility equations. This is similar
to the well-known fact that Euler equations for a rigid body moving freely
in space can be solved for the velocities expressed in the material frome,
without having to consider the actual position and orientation of the body.

In order to solve general problems, a finite element method that preserves
the invariance property of the equilibrium equations with respect to rigid
body motions shall be considered. A finite element discretization relying on
the exponential map of the special Euclidean group was introduced in [9]
and a consistent velocity interpolation was derived. In this paper, the dis-
cretization method presented in [9] is recalled and a geometric interpretation
is given. The consistent interpolation of the velocities is also addressed. It
is shown that the Lie bracket relationship is automatically satisfied, which
reveals the consistency of the proposed framework. The resulting discrete
equilibrium equations are second-order ordinary differential equations on the
Lie group and can be solved without introducing any global parameteri-
zation of the motion thanks to the use of Lie group integrators, such as
the generalized-α scheme presented in [6, 8]. From a computational point
of view, solving equilibrium equations which are invariant under rigid body
motion reduces drastically the computation costs. In particular, geometrically
non-linear problems can be solved using implicit schemes without updating
the iteration matrix.

The paper is structured as follows. In Section 2, some fundamentals about
the special Euclidean group are given. In Section 3.1., the beam kinematics
is described and the continuous equations of motion in the SE(3) context are
given. The invariance not only of the results but of the equilibrium equations
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themselves under rigid body motions is discussed through simple examples.
The spatial and time discretization method based on the exponential map of
the special Euclidean group is discussed in Section 4. Some computational
aspects are then discussed in Section 4.4. and illustrated by an academic
numerical example. Finally, some conclusions and perspectives are presented
in Section 5.

2. Fundamentals about the special Euclidean group SE(3)

The special Euclidean group SE(3) is a matrix Lie group [14, 15, 16]
whose elements can be represented by 4 × 4 matrices

H = H(R, x) =


R x

01×3 1

 (1)

where x ∈ R3 and R is a rotation matrix (i.e. it belongs to the special Or-
thogonal group SO(3), which is defined as the set of 3×3 matrices such that
RTR = I3×3, det(R) = +1). Considering that x is a position or displacement
vector and that a rotation matrix defines an orientation, SE(3) elements rep-
resent frames. Being a group, there is a composition rule on SE(3), namely
the matrix product of two such 4 × 4 matrices, which reads

H3 = H(R3, x3) = H1H2 = H(R1R2,R1x2 + x1) (2)

where it is interesting to notice that x3 involves R1 as well as x1 and x2.
Geometrically speaking, H3 is thus interpreted as the result of the frame
transformation H2 from the frame defined by H1. The neutral element for this
matrix product is the 4×4 identity matrix I4×4 and the inverse of H ∈ SE(3),
H−1 ∈ SE(3), is given by

H−1 = H(RT ,−RTx) =


RT −RTx
01×3 1

 (3)

Derivatives on SE(3) with respect to any parameter α can be introduced
by a left invariant vector field as

dα(H) = Hh̃ (4)

where, denoting THSE(3) the tangent space at H, dα(H) : SE(3)→ THSE(3).
The 4 × 4 matrix h̃ belongs to se(3), the Lie algebra of SE(3), which is the
tangent space at the identity. se(3) is isomorphic to R6 which means that •̃
is an invertible linear map from R6 to se(3) such that

h =


hU

hΩ

 ∈ R6 and h̃ =


h̃Ω hU

01×3 0

 ∈ se(3) (5)
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where hU ∈ R3 and h̃Ω ∈ so(3), the Lie algebra of the special Orthogonal
group SO(3), which is the set of skew-symmetric matrices built upon the
three components of hΩ ∈ R3 as

h̃Ω =



0 −hΩ3 hΩ2

hΩ3 0 −hΩ1

−hΩ2 hΩ1 0

 ∈ so(3) (6)

It is clear from the argument whether the tilde operator denotes the mapping
to so(3) or se(3). From Eq. (4), we have

dα(R) = Rh̃Ω and dα(x) = RhU (7)

where dα(R) : SO(3) → TRSO(3) and dα(x) : R3 → R3. It is important to
notice that both derivatives involve the rotation matrix of the frame whence
the derivatives are interpreted as taking place in the frame described by
H. se(3) elements have a so-called adjoint representation. Observing that
h̃2 = H−1h̃1H ∈ se(3), the adjoint representation acting on vectors of R6 is
defined as

h2 = AdH(h1) =


R x̃R

03×3 R

 h1 (8)

where AdH(h) : se(3)→ se(3). Considering the commutativity of the deriv-
atives of the variable H when treated as a matrix in R4 × R4, dα(dβ(H)) =

dβ(dα(H)) together with the representation of the derivatives on SE(3) with
dα(H) = Hh̃α and dβ(H) = Hh̃β yields

dα (̃hβ) = dβ (̃hα) + [̃hβ, h̃α] (9)

where [̃hβ, h̃α] = h̃βh̃α − h̃αh̃β = −[̃hα, h̃β] defines the Lie bracket operator
[•, •] which does not vanish in general. Eq. (9) can be expressed in terms of
the vectors in R6 as

dα(hβ) = dβ(hα) + ĥβhα (10)

where the •̂ operator is defined as

ĥ =


h̃Ω h̃U

03×3 h̃Ω

 (11)

Notice that ĥβhα = −ĥαhβ.
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Starting from a given six-dimensional vector n = [nT
U nT

Ω]T , a SE(3) ele-
ment can be built using the so-called exponential map expSE(3)(ñ) : se(3)→
SE(3) or equivalently expSE(3)(n) : R6 → SE(3) which is defined as

expSE(3)(n) =

∞∑

i=0

ñi

i!
(12)

The exponential map may be seen as a local parameterization in the sense that
the argument of the exponential map belongs to a linear space while SE(3) is
a non-linear space. In practice, it means that standard vector calculus applies
to the argument of the exponential map, such as the multiplication by a
scalar or the addition of another six-dimensional vector and that its effect
can be projected onto the group. Exploiting the Lie algebra structure, the
exponential map can be expressed in a closed form as

expSE(3)(n) =


expSO(3)(nΩ) TT

SO(3)(nΩ)nU

01×3 1

 (13)

where, using a = sin(||nΩ||)/||nΩ|| and b = 2(1 − cos(||nΩ||))/||nΩ||2,

expSO(3)(nΩ) = I3×3 + añΩ +
b
2
ñ2

Ω (14)

TSO(3)(nΩ) = I3×3 − b
2
ñΩ +

1 − a
||nΩ||2 ñ2

Ω (15)

where expSO(3)(n) : R3 → SO(3) is the exponential map of the special
Orthogonal group and TSO(3)(n) is the tangent operator which defines an
map from R3 to R3. The inverse map of the exponential map is called the
logarithmic map, namely logSE(3)(H) : SE(3) → se(3). It is explicitly given
as

logSE(3)
(H(R, x)

)
=


ω̃ T−TSO(3)(ω)x

01×3 0

 (16)

where ω̃ = logSO(3)(R) with logSO(3)(R) : SO(3)→ so(3) is defined as

logSO(3)(R) =



θ

2 sin (θ)
(R − RT ) if θ , 0

0̃ otherwise
(17)

with θ = acos
(1
2
(
trace(R) − 1

))
, |θ| < π. The derivative of the exponen-

tial map introduces the so-called tangent operator TSE(3) which defines a
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map from R6 to R6. Consider the transformation from H0 to H as H =

= H0 expSE(3)(n). The derivative of H with respect to any parameter α leads
to dα(H) = H0Dexp(n)dα(ñ) = H exp−1SE(3)(n)Dexp(n)dα(ñ) where Dexp is
the derivative of the exponential map, and this can be written as

dα(H) = H
(
TSE(3)(n) dα(n)

)̃
(18)

and TSE(3) and its inverse are given by

T(x) =

∞∑

i=0

(−1)i
x̂i

(i + 1)!
; T−1(x) =

∞∑

i=0

(−1)iBi
x̂i

i!
(19)

in which Bi are the Bernoulli numbers of first kind. Exploiting the Lie algebra
structure, it can be expressed in a closed form as

TSE(3)(n) =


TSO(3)(nΩ) TUΩ+(nU , nΩ)

03×3 TSO(3)(nΩ)

 (20)

where TSO(3), the tangent operator of the exponential map on SO(3), was
given in Eq. (15) and where TUΩ+(nU ,nΩ) reads

TUΩ+(nU , nΩ) =
−b
2

ñU +
1 − a
||nΩ||2 (ñU ñΩ + ñΩñU)

+
nT

Ω
nU

||nΩ||2
((

b − a
)
ñΩ +

(b
2
− 3(1 − a)
||nΩ||2

)
ñ2

Ω

) (21)

with a and b as defined for Eq. (15). Notice that TUΩ+(nU , 0) = −ñU /2. Using
the notation dα(H) = Hh̃, one has

h = TSE(3)(n) dα(n) (22)

which relates the derivatives of H, namely h, and the derivative of n which
is used in the representation of H as H = H0 expSE(3)(n).

Based on the formalism of this section, the rest of the paper addresses the
formulation of a beam finite element on SE(3). As it can be observed in the
composition rule in Eq. (2) or in the expression of the derivatives in Eq. (7),
the special Euclidean group SE(3) exhibits a coupling of the position part
and the rotation part. This coupling appears as a sound foundation to build
a beam formulation since, for example in a cantilever beam, it is expected
that the cross-sections rotate under a tip shear load and that a tip bending
moment induces a displacement of the neutral axis.
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3. Beam formulation

3.1. Beam kinematics

Let us define s ∈ [0, L] as the longitudinal coordinate along the neutral
axis of a beam of length L and t and u as the cross-section coordinates.
In the SE(3) formalism, a material frame is attached to any material point
and any point of the neutral axis of the beam is described by a mapping
R→ SE(3) : s 7→ H(s) = H(R(s), x(s)), that is

H(s) =


R(s) x(s)
03×1 1

 (23)

where x(s) is the position vector of the neutral axis and R(s) characterizes the
orientation of the cross-section. Accordingly, the material frame Hp(s, t, u) =

= H(Rp(s), xp(s, t, u)) at any beam point p of coordinates (s, t, u) is related
to the material frame attached to the neutral axis by the frame transformation

Hp(s, t, u) = H(s)


I3×3 O0y(t, u)
01×3 1

 = H(s)Hy(t, u) (24)

in which y(t, u) =
[
0 t u

]T
and O0 =

[
is it iu

]
is a constant frame, built

along the neutral and transversal axes, that accounts for the orientation of the
beam in the reference configuration with respect to the inertial frame. The
assumption that the cross-sections remain straight is made and implies that
Rp(s) = R(s). From Eq. (24), the position at any point of the beam is thus
described as

xp(s, t, u) = x(s) + R(s)O0y(t, u) (25)

3.2. Beam equations

According to the formalism presented in Section 2, the spatial derivative,
i.e. with respect to parameter s, and time derivative, i.e. with respect to
parameter T , of the frames representing the neutral axis of the beam can be
introduced as

H′ = H(̃f0 + ε) and Ḣ = Hṽ (26)

where f0 is interpreted as a deformation gradient in the reference configura-
tion, ε as a deformation and v as a velocity. As observed in Eq. (7), these
quantities are evaluated in the frame described by H, which means that they
are naturally expressed in the local frame and that they are invariant under
rigid body motions.
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The decomposition of the deformation into the position part and the
rotation part is introduced as ε =

[
γT κT

]T
, where γ1 is interpreted as the

axial strain, γ2 and γ3 as the shear strains, κ1 as the torsion and κ2 and κ3
as the bending curvatures. For a straight beam, Eq. (26)1 yields

R′ = Rκ and x′ = R(f0
U + γ) (27)

Similarly, the decomposition of the velocity into the position part and the
rotation part is introduced as v =

[
vT

U vT
Ω

]T
and Eq. (26)2 yields

Ṙ = RṽΩ and ẋ = RvU (28)

From these deformation and velocity measures, the strain energy and the
kinetic energy for a linear elastic material can be defined as [9]

W =
1
2

∫ L

0
εTKε ds and K =

1
2

∫ L

0
vTMCv ds (29)

where K and MC are the stiffness and mass matrices of the cross-sections.
For simple cross-section geometries, the stiffness matrix has a classical
form K = diag(KU ,KΩ) where KU = diag(EA,GAt ,GAu) contains the ax-
ial and shear stiffnesses whereas KΩ = diag(GJ, EIt , EIu) contains the tor-
sional and bending stiffnesses, and the mass matrix has a classical form
MC = diag(ρAI3×3, J) where J is the second moment of inertia and is di-
agonal. These matrices are evaluated in the local frame and are therefore
invariant under rigid body motions. Furthermore, due to the assumption that
the cross-sections do not deform, they do not depend on the deformation
state.

Denoting δh ∈ R6 as an arbitrary variation such that δ(H) = Hδ̃h, and
assuming small deformations, Hamilton’s principle leads to

[
δhT (Kε − gextBC)

]L
0 +

∫ L

0
δhT (MC v̇ − v̂TMCv −Kε ′ + f̂TKε − gext

)
ds = 0 (30)

v′ − ḟ − v̂f = 0 (31)

where gext =
[
gT

U gT
Ω

] T
are the distributed external forces and gextBC =

=
[
gT

BC,U gT
BC,Ω

] T
are the end external forces, which are both expressed

in the local frame. Eq. (31) emanates from the Lie bracket (see Eq. (9))
which ensures that Eq. (27) and Eq. (28) are compatible. Accordingly, writing
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explicitly the position part and the rotation part, the strong form of the
dynamic equilibrium equations for an initially straight beam is given by

ρAv̇U + ρÃvΩvU −KUγ
′ − κ(KUγ) − gU = 0 (32)

Jv̇Ω + ṽΩJvΩ −KΩκ
′ − (̃f0

U + γ)(KUγ) − κ(KΩκ) − gΩ = 0 (33)

v′U − γ̇ − ṽΩ(f0
U + γ) − ṽUκ = 0 (34)
v′Ω − κ̇ − ṽΩκ = 0 (35)

and the boundary conditions must satisfy δhT (Kε − gextBC) at s = 0 and
s = L. Besides gU and gΩ, these equations only depend on the local de-
formations and the local velocities and are therefore invariant under rigid
body motion, in the sense that their expression is not modified by any rigid
body motion. Furthermore, when the external forces do not depend on the
position and the orientation of the beam, Eqs. (32-35) and Eq. (26) are
decoupled. Accordingly, Eqs. (32-35) can be solved for the velocities and
the deformations and then, in a second step, the position and orientation of
the beam can be obtained by integrating Eq. (26). Nevertheless, the external
forces and the boundary conditions may in general depend on the position
and the orientation of the beam.

In order to emphasize the relevance of this framework, three simple
examples are considered in the rest of this section. The analytical solution
for the deformations and the velocities is obtained without involving the
actual position and orientation of the beam, which are computed in a second
step using Eq. (27) and Eq. (28). In each example, as illustrated in Fig. 1, the

Fig. 1. Beam configuration

initially straight beam is aligned along is, and it and iu span the cross-section
which is constant along the beam. Accordingly, in the local frames, we can
set is =

[
1 0 0

]T
, it =

[
0 1 0

]T
and iu =

[
0 0 1

]T
. The inertial axes are
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denominated by e1, e2 and e3. Without loss of generality, it is assumed that,
in the reference configuration, the beam triad and the inertial frame coincide,
namely is = e1, it = e2 and iu = e3 in order to simplify the integration of the
compatibility equations which provides the position and orientation of the
beam.

3.3. Example 1: planar rotation of a beam

Let us consider a beam rotating at a constant velocity w0 about it , which
is aligned with e2 in the initial configuration. It is expected that the beam
remains straight, but is stretched due to centrifugal forces. Accordingly, we
have γ(s,T ) =

[
γ1(s,T ) 0 0

]T
, κ(s,T ) = 0, vU(s,T ) =

[
0 0 v3(s,T )

]T

and vΩ(s,T ) =
[
0 w(s,T ) 0

]T
. Furthermore, we set the boundary condi-

tions such that there is no deformation at the extremities of the beam and no
vertical velocity at the midspan. However, this does not determine the position
or orientation at this point. From Eqs. (32-35), the equilibrium equations are
thus given by

ρAv3w − EAγ′1 = 0 (36)
ρAv̇3 = 0 (37)
Jtẇ = 0 (38)
γ̇1 = 0 (39)

v′3 + w(1 + γ1) = 0 (40)
w′ = 0 (41)

since gext = 0. Eq. (38) and Eq. (41) lead directly to

w = w0 (42)

Furthermore, Eq. (37) and Eq. (39) indicate that γ1 = γ1(s) and v3 = v3(s).
Deriving Eq. (40) with respect to s and replacing γ′1 from Eq. (36) yields

v′′3 +
ρw2

0

E
v3 = 0 (43)

whose solution, posing α =

√
ρ

E
, reads

v3(s) = a sin
(
αw0(s − L

2
)
)

(44)
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where a is not yet determined and the boundary condition v3(L/2) = 0
has been taken into account. Notice that this expression is compatible with
Eq. (37). Substituting the solution for v3 into Eq. (40) leads to

γ1(s) = −aα cos
(
αw0(s − L

2
)
)
− 1 (45)

Notice that this expression is compatible with Eq. (39). Considering that
there is no deformation at the beam extremities allows the determination of
a as

a =
−1

α cos(αw0
L
2 )

(46)

and finally we have

v3(s) =

sin
(
αw0(L

2 − s)
)

α cos(αw0
L
2 )

and γ1(s) =

cos
(
αw0(s − L

2 )
)

cos(αw0
L
2 )

− 1 (47)

So far, the deformation state and the velocity state of the beam could be
determined without referring to the actual position and orientation of the
beam, which can now be recovered from Eq. (27) and Eq. (28). For the
rotation, Eq. (27)1 indicates that R does not depend on s since κ = 0 and
Eq. (28)1 yields

R(T ) = exp(vΩT ) =



cos(w0T ) 0 sin(w0T )
0 1 0

− sin(w0T ) 0 cos(w0T )

 (48)

where we imposed R(0) = I3×3. For the position part, either Eq. (27)2 or
Eq. (28)2 gives

x(s,T ) =

s +

cos(w0T ) sin
(
αw0(s − L

2 )
)

αw0 cos(αw0
L
2 )

0 −
sin(w0T ) sin

(
αw0(s − L

2 )
)

αw0 cos(αw0
L
2 )



T

(49)

where we imposed x(s, 0) = [s 0 0]T .
This example shows that the problem can be solved in two steps: first

the equilibrium equations for the deformations and the velocities, then the
kinematic relationships for the position and orientation. Without this clear
separation between local deformation and velocities on one hand and large
amplitude motion on the other hand, as in classical beam theories, the po-
sition field and the rotation field should have been solved together with the
equilibrium equations which would have brought significant non-linearities.
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3.4. Example 2: static cantilever beam under a tip load

Let us consider a cantilever beam aligned along is and submitted to a
follower tip load F along iu. Furthermore, let us assume that the displace-
ments and the deformations remain small, such that quadratic and higher
order terms of the deformation are neglected. From Eqs. (32-33) (Eqs. (34-
35) are not considered for a static problem), the static equilibrium equations
read

KUγ
′ = 0 (50)

KΩκ
′ + ĩsKUγ = 0 (51)

since f0
U = is and gext = 0. Considering a follower tip load F =

[
0 0 F

]T
,

we have gBC,Ω = 03×1 and gBC,U = F, and the boundary conditions at s = L
read

KUγ(L) = F (52)
KΩκ(L) = 0 (53)

The solution to Eqs. (50-51) takes the form

γ = a (54)
κ(s) = (K∗Ωa)s + b (55)

where K∗Ω = −K−1Ω ĩsKU and a and b are integration constants determined
from the end loading condition Eqs. (52-53)

KUa = F (56)
KΩ

(
(K∗Ωa)L + b

)
= 0 (57)

The solution is straightforwardly obtained as

a = K−1U F =

[
0 0

F
GAu

]T
and b = −LK∗Ωa =

[
0 −LF

EIt
0
]T

(58)

such that, using Eq. (54-55),

γ =

[
0 0

F
GAu

]T
and κ(s) =

[
0

LF
EIt

(
s
L
− 1) 0

]T
(59)

The solution to the static equilibrium equations yields the deformation state.
Notice that it can be obtained without having to consider the actual po-
sition or the rotation since the equilibrium equations only depend on the
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deformations. Now that the static equilibrium is solved and the deformation
state is known, the orientation and position of the beam can be deduced by
integrating Eq. (27). According to the small displacement assumption, the
rotation matrix and its derivative read

R(s) = I3×3 + θ̃(s) and R′(s) = θ̃
′
(s) (60)

where, the motion being planar, θ(s) =
[
0 θt(s) 0

]T
. Hence, using Eq. (27),

we have
θ′(s) = κ(s) and x′ = is + a − ĩsθ(s) (61)

whose solution is straightforwardly given by

θ(s) = (K∗Ωa)
s2

2
+ bs + c and x(s) = (is + a)s − ĩs((K∗Ωa)

s3

6
+ b

s2

2
) + d

(62)
where the clamped boundary conditions θ(0) = 0 and x(0) = 0 yield c = 0
and d = 0. Using Eq. (58), we have

θ(s) =

[
0 − FL2

EIt

( s
L
− s2

2L2

)
0
]T

and x(s) =

[
s 0 s

F
GAu

+
FL3

6EIt
(
3s2

L2 −
s3

L3 )
]T

(63)
We observe that the solution matches the exact solution expected from the
classical beam theory. The equilibrium equations are first solved for the
deformations and it appears that there is no need to know the position and
the orientation of the beam to obtain the deformation state. In a second step,
the rotation and the position are computed by integrating the deformations,
and boundary conditions on rotation and position can be applied.

3.5. Example 3: static cantilever beam under a tip bending moment

Let us consider a cantilever beam aligned along is and submitted to a tip
bending moment M about it , namely M =

[
0 M 0

]T
. It is expected that

there is no axial nor shear deformation, whence, considering Eq. (27)2, γ = 0.
From Eq. (32-33) (Eq. (34-35) are not considered for a static problem), the
static equilibrium equation reads

0 = 0 (64)
KΩκ

′ + κ̃(KΩκ) = 0 (65)

since gext = 0. Since the problem is planar, κ =
[
0 κt 0

]T
, which means

κ̃(KΩκ) = 0. The solution is thus given as

EItκ′t = 0⇔ κt = a (66)
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where a is an integration constant. Satisfying the boundary condition at s = L
yields

EItκt(L) = M ⇔ a =
M
EIt

(67)

The neutral axis of the beam is thus a planar curve whose constant curvature
is given by κt = M/EIt . From Eq. (27), the position and rotation field can be
recovered

R′ = Rκ̃ ⇔ R(s) = expSO(3)(sκ)
x′ = R(s)is ⇔ x(s) = sTSO(3)(−sκ)is

(68)

where the clamped boundary conditions R(0) = I3×3 and x(0) = 0 have been
taken into account. More explicitly, the solution reads

R(s) =



cos(sκt) 0 sin(sκt)
0 1 0

− sin(sκt) 0 cos(sκt)

 and x(s) =

[
1
κt

sin(sκt) 0
1
κt

(1 − cos(sκt))
]T

(69)
which is the exact solution expected from classical beam theory. This example
shows that the solution to a large displacement problem, which leads to
strongly non-linear position and rotation fields, can be solved exactly in a
simple way. The solution to the differential equation governing the static
equilibrium of the beam could be obtained without having to refer to the
actual position and orientation, which are recovered afterwards.

4. Discretization method

The equilibrium equations Eqs. (32-35) are not easy to solve in general
and the use of an approximation method is required, such as a finite element
method. Although they can be solved in some cases for the velocities and the
deformations only, it is convenient, from a practical point of view, to solve
simultaneously the position and orientation of the beam, namely include
Eqs. (27) and Eq. (28) in the solution process. Indeed, this information is
needed to connect elements of a finite element mesh, apply general boundary
conditions or express external forces that are not naturally expressed in the
local frame. Nevertheless, as pointed out in Section 3, the homogeneous
equilibrium equations are not affected by this information which leads to a
framework with reduced non-linearities compared to classical formulations.

It is thus of fundamental interest to preserve the invariance property of
the equilibrium equations through the discretization process. To that purpose,
a consistent discretization method is discussed in this section. It relies on
two steps. First, a spatial interpolation of nodal frames is introduced. Then,
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an interpolation formula for the nodal velocities consistent with the spatial
interpolation is derived.

4.1. Spatial discretization

4.1.1. Nodal frame interpolation formula

The spatial discretization along the neutral axis of the beam is introduced
by an interpolation with the variable s ∈ [0, L] between two end nodes A at
s = 0 and B at s = L, where the nodal frames HA and HB are located (Fig. 2).

Fig. 2. Beam model

The proposed interpolation formula reads

H(s) = HA expSE(3)(
s
L

d) (70)

where d =
[
dT

U dT
Ω

]T
is called the relative configuration vector and is defined

as
d = logSE(3)(H

−1
A HB) (71)

Eq. (70) can be interpreted as, starting from the nodal frame HA, the nodal
frame HB is reached by moving along the frame transformation implied by the
projection on the group of relative configuration vector d. As a consequence,
expSE(3)(sd/L) is a frame transformation which takes place in frame HA.
Notice that d is invariant under rigid body motions since, for any H∗ ∈ SE(3),
H∗HA and H∗HB correspond to a rigid motion of the beam and lead to the
same value of d. Therefore, the interpolation formula automatically satisfies
the frame invariance requirement and d is a suitable measure to preserve the
invariance of the equilibrium equations. In the reference configuration, HA =

= H(R0, x0
A) and HB = H(R0, x0

B) so that d0
U = x0

B−x0
A and d0

Ω = 03×1. Hence,
it can be observed that ||d0

U || = L. Due to the validity of the logarithmic map,
the parametrization holds as long as the relative rotation between the two
end nodes is in ] − π,+π[.
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Eq. (70) can be seen as a straightforward extension of classical interpo-
lation method for linear spaces to non-linear spaces. Indeed, considering two
elements in Rk , PA at s = 0 and PB at s = L, the classical linear interpolation
formula reads

P(s) = (1 − s
L

)PA +
s
L

PB = PA +
s
L

p (72)

where the free vector p is defined as

p = PB − PA (73)

Eq. (72) can be interpreted as, starting from PA, PB is reached by moving
along the free vector p. The expression is straightforward since free vectors
such as p and attached vectors such as PA and PB belong to the same space.
However, for non-linear spaces, additional care is required. Indeed, the tan-
gent spaces are not the same as the space itself and projections are involved
through the exponential and logarithmic maps. Hence, Eq. (71) and Eq. (70)
are the SE(3) equivalent to Eq. (73) and Eq. (72) for linear spaces.

The proposed interpolation method in Eq. (70) also complies with the
weighted average interpolation discussed in [17] which provides an implicit
definition of the interpolated field. In [17], the weighted average interpolation
formula is given for a relative configuration vector that is expressed in the
global frame rather than in the local frame. The formula used here is adapted
to the present local frame definition and, for a two node interpolation using
one spatial parameter, reads

(1 − s
L

) logSE(3)(H(s)−1HA) +
s
L

logSE(3)(H(s)−1HB) = 0 (74)

It is straightforward to verify that Eq. (70) satisfies this definition:

(1 − s
L

) logSE(3)(expSE(3)(−
s
L

d)H−1A HA)+
s
L

logSE(3)(expSE(3)(−
s
L

d)H−1A HB) = 0

(1 − s
L

)(− s
L

d)+
s
L

logSE(3)(expSE(3)(−
s
L

d) expSE(3)(d)) = 0

(1 − s
L

)(− s
L

d)+
s
L

(1 − s
L

)d = 0

4.1.2. Deformation measure

The derivative of Eq. (70) with respect to s also allows us to gain some
insight. Using Eq. (18) and Eq. (20), we have

H′(s) = H(s)
(
TSE(3)(

s
L

d)
d
L

)̃
= H(s)

d̃
L

(75)
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where we observe that the se(3) element associated with the derivatives along
s is constant. Comparing this expression with Eq. (26) gives the definition of
the discretized deformation. Denoting the value of the relative configuration
vector in the reference configuration by d0, we have the simple expression

ε =
d − d0

L
(76)

Hence, the deformation measure is constant over the element, which appears
as an important numerical advantage. Indeed, the strain energy per unit length
of the beam is also a constant over the element and the integration over the
beam length in Eq. (29)1 can be performed exactly and no numerical inte-
gration must be considered. As an important consequence of the framework,
the deformation measure depends on the relative configuration vector d only,
which means that it ensures that the invariance of the equations of motion
under rigid body motions is preserved.

4.1.3. Geometric interpretation

A meaningful geometric interpretation of the interpolation formula in
Eq. (70) can be obtained by constructing the local Frenet triad along the
beam axis. From Eq. (75), we have

dx(s)
ds

= R(s)
dU

L
and

dR(s)
ds

= R(s)
d̃Ω

L
(77)

The unit tangent to the neutral axis is thus given by

t(s) =
dx
ds
||dx
ds
||−1 = R(s)

dU

||dU || (78)

In order to compute the unit normal vector, let us derive the tangent unit
vector with respect to s. Using Eq. (77)2, we have

d
ds

(
t(s)

)
=

1
L||dU ||R(s)̃dΩdU (79)

Hence, the unit normal vector is given by

n(s) =
1
κ

d
ds

(
t(s)

)
= R(s)

d̃ΩdU

||̃dΩdU ||
(80)

where the curvature is defined as

κ = || d
ds

(
t(s)

)
|| = ||̃dΩdU ||

L||dU || (81)
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It appears that the geometric description of the neutral axis using the pro-
posed interpolation formula in Eq. (70) leads to a curve that has a constant
curvature since d, which results from the interpolated nodal frames, is con-
stant over the element.

The last vector of the Frenet triad is the unit binormal vector b(s) defined
as

b(s) = t̃n =
1

||dU ||||̃dΩdU ||
R̃dURd̃ΩdU = R(s)

d̃U d̃ΩdU

||dU ||||̃dΩdU ||
(82)

Deriving it with respect to s leads to the definition of the torsion τ as

db
ds

= −τn(s) (83)

Going through the computations, we have

db
ds

=
1

L||dU ||||̃dΩdU ||
(R̃d̃ΩdURd̃ΩdU︸             ︷︷             ︸

=0

+R̃dURd̃Ωd̃ΩdU)

=
1

L||dU ||||̃dΩdU ||
(R̃dUR(dT

ΩdU)dΩ − R̃dUR(dT
ΩdΩ)dU︸               ︷︷               ︸

=0

)

=
(dT

Ω
dU)

L||dU ||||̃dΩdU ||
Rd̃UdΩ

= − (dT
Ω
dU)

L||dU || R
d̃ΩdU

||̃dΩdU ||

(84)

which leads to

τ =
(dT

Ω
dU)

L||dU || (85)

It is observed that the torsion of the curve describing the neutral axis of the
beam using Eq. (70) is constant along the axis. Developing Eq. (81) and
Eq. (85), we have

κ =
||dΩ|| sin(dΩ, dU)

L
and τ =

||dΩ|| cos(dΩ,dU)
L

(86)

and the Gaussian curvature κg is obtained as

κg =
√
κ2 + τ2 =

||dΩ||
L

(87)

which gives a geometric interpretation to dΩ. κg is, as expected, also constant
over the beam length.
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As pointed out in [9], the ability to represent a curve that has a con-
stant curvature is important with respect to the shear-locking phenomenon.
In practice, shear-locking shows up when spurious shear deformations are
involved in pure bending. However, in this case, a constant curvature neu-
tral axis and a no shear deformation state are expected. Since the proposed
interpolation formula systematically represents a constant curvature neutral
axis, the element turns out to be naturally shear-locking free.

4.2. Consistent velocity interpolation

In Section 4.1., a formula to interpolate nodal frames in space has been
discussed. Due to the non-commutativity of the special Euclidean group,
characterized by the fact that the Lie bracket in Eq. (9) does not vanish in
general, the time derivative of the deformation is not equal to the spatial
derivative of the velocity. In order to cope with this situation, we proposed
to represent the velocity of the beam as an interpolation of nodal velocities
which is derived from the spatial discretization formula. The idea is illustrated
in Fig. 3.

Fig. 3. Consistent velocity interpolation

Let us define the nodal velocities of the beam element as ḢA = HAṽA and
ḢB = HBṽB. Deriving with respect to time the spatial interpolation formula
in Eq. (70), we have

Ḣ = HAṽA expSE(3)(
s
L

d) + H
(
TSE(3)(

s
L

d)
s
L

ḋ
)̃

= H
(
AdexpSE(3)(− s

L d)vA + TSE(3)(
s
L

d)
s
L

ḋ
)̃ (88)

Considering the definition of d in Eq. (71), we have

HB = HA exp(d) ⇔ vB = Adexp(−d)(vA) + TSE(3)(d) ḋ
HA = HB exp(−d) ⇔ vA = Adexp(d)(vB) − TSE(3)(−d) ḋ

(89)

which leads to
ḋ = P(d)vAB (90)
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where P(d) =
[
−T−1SE(3)(−d) T−1SE(3)(d)

]
and vAB =

[
vT

A vT
B

]T
. Comparing

Eq. (26) and Eq. (88), the velocity of the neutral axis of the beam is inter-
polated as

v(s, d) =

[
AdexpSE(3)(− s

L d) − s
L

TSE(3)(
s
L

d)T−1SE(3)(−d)
s
L

TSE(3)(
s
L

d)T−1SE(3)(d)
]
vAB

(91)
As announced previously, the interpolation formula for the velocities is re-
lated to the spatial interpolation. It only depends on s and on the relative
configuration vector d, which means that it is invariant under rigid body
motion and changes only when the beam deforms. Accordingly, this velocity
field preserve the invariance under rigid body motion of the equilibrium equa-
tions. Some further manipulations of the series expression of the different
operators involved yields the following identity

AdexpSE(3)(− s
L d) − s

L
TSE(3)(

s
L

d)T−1SE(3)(−d) = I6×6 − s
L

TSE(3)(
s
L

d)T−1SE(3)(d) (92)

which simplifies the interpolation formula as

v = Q(s, d)vAB (93)

where
Q(s, d) =

[
I6×6 − T∗(s, d) T∗(s,d)

]
(94)

with T∗ = (s/L) TSE(3)(sd/L) T−1SE(3)(d). In this form, it appears directly that
if vA = vB = v∗, the interpolated velocity is v(s,d) = v∗, namely the velocity
in each local frame along the beam is constant.

Let us now consider the Lie bracket relationship: v′ − ḟ − v̂f = 0. Using
f = d/L and Eq. (93), the Lie bracket relationship reads

(
T∗

′
+

1
L

T−1SE(3)(−d)+
d̂
L

(I6×6−T∗)
)
vA +

(
T∗

′ − 1
L

T−1SE(3)(d)+
d̂
L

T∗
)
vB = 0 (95)

This formula should be valid for any vA and any vB, which imposes that

T∗
′
+

1
L

T−1SE(3)(−d) +
d̂
L

(I6×6 − T∗) = 0 (96)

T∗
′ − 1

L
T−1SE(3)(d) +

d̂
L

T∗ = 0 (97)

Going through the series developments of the operators involved, it can be
shown that these equations are satisfied for any s and any d. Hence, the
discretization method discussed here automatically satisfies the Lie bracket
relationship.
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4.3. Discretized beam equations

Using the interpolation fields discussed in Section 4.1. and 4.2., it can
be shown that dynamic equilibrium equations for a beam element take the
form of ordinary differential equations on the Lie group [9]

ḢA = HAṽA (98)
ḢB = HBṽB (99)

M(d)v̇AB + C(d, vAB)vAB + P(d)TKε =

∫ L

0
Q(s, d)Tgext ds (100)

where P was defined in Eq. (90) and, denoting Q = Q(s, d) (Eq. (94)), the
12 × 12 mass matrix is defined as

M(d) =

∫ L

0
QTMCQ ds (101)

and C(d, vAB)vAB are the gyroscopic forces with the 12 × 12 matrix

C(d, vAB) =

∫ L

0
QT (MCQ̇ − Q̂vAB

T
MCQ) ds (102)

Eq. (100) are the discretized version of Eq. (32-33). It appears that the
discretization process preserves the local frame formulation of the equations
since the homogeneous Eq. (100) only depend on d and vAB, which are
evaluated in local frames. Eq. (100) are thus invariant under rigid body
motions. The external forces gext may however depend on the actual position
and orientation of the beam element. As discussed in Section 4.2., the Lie
bracket relationship in Eqs. (34-35) is automatically satisfied thanks to the
interpolation method and thus does not appear here in the discretized version.
According to the treatment of the velocities, Eqs. (98-99) are the discretized
version of the compatibility equations in time from Eq. (26)2.

This problem is still continuous in time. These equations can be dis-
cretized in time and solved according, e.g., to the generalized-α Lie group
time integrator presented in [6]. This algorithm is based on a solution process
which does not introduce any parameterization of the global motion and is
thus well suited for the present framework. Due to the non-linearity in d
and vAB, an iterative process is required and involves the tangent matrices
(see [9]), which inherits naturally the invariance property under rigid body
motions from the framework.
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4.4. Computational aspects

Based on the special Euclidean group framework, the discretization method
discussed in Section 4 exhibits important advantages from a computational
point of view.

Besides the importance of the fundamental coupling between the ro-
tation and position variables inherent to the framework, the proposed beam
formulation turns out to be particularly suitable for flexible multibody system
applications where large amplitude motions involving small deformations are
usually expected. Indeed, the equations of motion are naturally expressed in
the local frame and, accordingly, the whole formulation is invariant under
rigid body motions and only varies due to the deformations. Therefore, as-
suming small deformations, the non-linearity of the equations of motion is
reduced and problems could be solved without updating the iteration matrix
which let us expect a significant reduction in computation time. In order to
illustrate the potential of the method, a simple numerical example is consid-
ered. Following [18], a constant force of 4 N and a constant torque of 80 Nm
are applied during 2.5 s at node A of the beam depicted in Fig. 4. Then, the
free motion is observed during 50 s. The beam properties are EA = GA = 1e4
N, GJ = EI = 1e3 Nm2, L = 10 m, m/L = 1 kg/m and J = diag(20, 10, 10)
kgm. The beam is discretized with 10 elements of equal length and the Lie
group time integrator proposed in [6, 8] is used with 1e−1 s time step and
a 0.9 spectral radius. The displacements of the free end, namely node B, are
plotted in Fig. 5. They are in good agreement with [18].

Fig. 4. Force driven flexible beam in helicoidal motion: initial configuration. A force and a torque
are exerted at node A during the first 2.5 seconds. Node B is free and Node A is constrained to

move along the vertical axes

The motion is clearly three dimensional and has large amplitude. But
since the deformations are small, the problem can be solved without updating
the iteration matrix related to the beam elements during the entire simulation
(that is using the iteration matrix related to the beam elements computed in
the reference (undeformed) configuration for the whole simulation). Doing
so increases slightly the number of iterations: 4.088 for the updated iteration
matrix scheme and 6.252 for the frozen iteration matrix scheme. However,
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Fig. 5. Force driven flexible beam in helicoidal motion. Displacement of node B. Dashed
line (- -): x, Doted line (?): y, Solid line (–): z

computation time is saved since the iteration matrix must be inverted only
once.

5. Conclusions

The paper discusses a geometric interpretation of a non-linear beam finite
element formulated on the special Euclidean group SE(3). The equilibrium
equations obtained in this framework are naturally expressed in terms of
deformations and velocities evaluated in the material frame. Accordingly,
the equilibrium equations are invariant under rigid body motions and free
from geometric non-linearities. As it is shown through simple examples,
these equations can be often solved without referring to the actual position
or orientation of the beam.

However, the equilibrium equations are in general not easy to solve so
that approximation methods must be used. Furthermore the knowledge of the
position and orientation of the beam is needed in some cases, for instance
to apply complex boundary conditions or orientation dependent forces. To
this purpose, a discretization method based on position and orientation nodal
variables is introduced and is shown to preserve the invariance property of
the equilibrium equations. Furthermore, a consistent interpolation formula
for the velocity is derived. Thanks to the reduced non-linearities of the equi-
librium equations, geometrically non-linear problems can be solved without
updating the iteration matrix which is computed once in the reference config-
uration. This fact leads to significant savings in computation time for flexible
multibody system applications.
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Interpretacja geometryczna nieliniowego belkowego elementu skończonego w formalizmie
grupy Liego SE(3)

S t r e s z c z e n i e

W ostatnim czasie autorzy zaproponowali geometrycznie dokładne sformułowanie dla belko-
wego elementu skończonego w oparciu o formalizm grupy Liego SE(3). Otrzymano szereg istot-
nych wyników numerycznych i teoretycznych prowadzących do efektywnej strategii obliczeniowej.
Dla przykładu, formalizm ten pozwala uzyskać niezmiennicze równania równowagi przy ruchach
ciała sztywnego i elemencie wolnym od blokowania siłami ścinającymi. W obecnym artykule
autorzy zajmują się kilkoma istotnymi aspektami tego formalizmu. Właściwość niezmienniczości
równań równowagi w warunkach ruchu ciała sztywnego przedyskutowano i zilustrowano prostymi
przykładami analitycznymi. Przypomniano metodę dyskretyzacji opartą na mapowaniu wykład-
niczym i pokazano jej interpretację geometryczną. Specjalną uwagę poświęcono zgodnej interpo-
lacji prędkości.


