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THERMOELASTIC ANALYSIS OF FUNCTIONALLY GRADED
HOLLOW CIRCULAR DISC

A thermoelastic boundary value problem of a hollow circular disc made of
functionally graded materials with arbitrary gradient is analysed. The steady-state
temperature distribution is assumed to be the function of the radial coordinate with
prescribed temperature at the inner and outer cylindrical boundary surfaces. The
material properties are assumed to be arbitrary smooth functions of the radial co-
ordinate. A coupled system of ordinary differential equations containing the radial
displacement and stress function is derived and used to get the distribution of thermal
stresses and radial displacements caused by axisymmetric mechanical and thermal
loads. General analytical solutions of functionally graded disc with thermal loads are
not available. The results obtained by the presented numerical method are verified
by an analytical solution. The considered analytical solution is valid if the material
properties, except the Poisson ratio, are expressed as power functions of the radial
coordinate.

1. Introduction

Functionally graded materials (FGMs) are a class of relatively new and
promising materials and they have emerged from the need to optimize ma-
terial performance (Abondi et al. [1], Hirai [2], Suresh and Martensen [3]).
In homogeneous materials the properties are constants, whereas in a FGM
the material parameters vary continuously with position usually along one
coordinate direction. Functionally graded linearly elastic structures can be
considered as non-homogeneous elastic bodies whose material parameters
are smooth functions of the position coordinates. Books by Lekhnitskii [4],
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Lomakin [5] and Sarkisyan [6] give solutions to many linearly elastic problem
for non-homogeneous bodies.

The exact solutions for displacements and stresses of FGMs in the one-
dimensional case of solids spheres and cylinders are presented by Lutz and
Zimmerman [7], [8], who considered the non-homogeneous material prop-
erties as a linear functions of the radial coordinate. In both papers men-
tioned above, the thermal loads are caused by uniform heating, that is the
temperature difference does not depend on the radial coordinate. Lutz and
Zimmerman [7], [8] expressed the governing equations of thermoelasticity
in terms of the Lamé parameters instead of Young’s modulus and Poisson
ratio, so that they were able to find analytical solutions without restricting
the Poisson ratio to be constant. Their analytical solutions were represented
by infinite power series of the radial coordinate. This type of the solutions
was based on the Navier equation and it was derived by the applications
of Frobenius theory. An optimal design for functionally graded cylinders
according to the distribution of steady-state thermal stresses has been for-
mulated by Tanaka et al. [9]. An analytical solutions for thermal stresses
in hollow functionally graded vessels have been derived by Jabbary et al.
[10]. A direct analytical method is used to solve the heat conduction and
Navier equations under the conditions of plane-strain state by Jabbary et al.
[10] assuming material model with simple power law and constant Poisson’s
ratio. In this case, the Navier equation is reduced to Euler type differential
equation, whose solution is readily available. Study by Peng and Li [11] deals
with the thermoelastic problem of functionally graded disc with arbitrarily
varying material properties. The distribution of thermal stresses and radial
displacement can be obtained by solving a Fredholm type integral equation.

In this paper, we consider the thermoelastic problem of a functionally
graded disc whose material properties vary arbitrarily along the radial direc-
tion. A new numerical approach is presented, which is based on a coupled
system of first order ordinary differential equations with variable coefficients.
The unknown functions of the system of linear differential equations are the
radial displacement and the stress function. General analytical solutions for
this type of system of differential equations are not available. By numerically
solving the system of differential equations, one can obtain the distribution of
the thermal stresses and the radial displacement for arbitrary radial nonhomo-
geneity. This numerical solution is not restricted to constant Poisson’s ratio.
An important step to the realization of numerical solution is to transform
the solution of derived two-point boundary value problem to an initial value
problem. The applied numerical scheme chosen is the Runge-Kutta-Fehlberg
method (r	45). Consequently, we can give a verification of the presented
numerical method, assuming power laws of material properties with excep-
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tion of the Poisson’s ratio, which is constant. An analytical solution to the
system of differential equations is also presented.

2. Formulation of the governing equations

We consider a functionally graded hollow circular disc as shown in Fig. 1.
R1 and R2 denote the inner and outer radii of the disc. The temperature
difference is T (r) = t(r) − t0, where t = t(r) is the absolute temperature
and t0 is the reference temperature at which the stresses are zero if the
disc is undeformed. T = T (r) is obtained from the solution of steady-state
heat conduction equation. The strain-displacement relations for axisymmetric
plane-stress state are

Fig. 1. The hollow functionally graded disc with the mechanical and thermal loads

εr =
du
dr
, εϕ =

u
r
, (1)

where u = u(r) is the radial displacement field and εr , εϕ are the normal
strains in radial and circumferential directions, respectively. The stress-strain
relationships, assuming that the conditions of plane-stress state are satisfied,
have the following forms:

σr =
E

1 − ν2

[
εr + νεϕ − α(1 + ν)T

]
, (2)

σϕ =
E

1 − ν2

[
νεr + εϕ − α(1 + ν)T

]
, (3)

where σr and σϕ are the normal stresses, E is the Young’s modulus, ν is
the Poisson ratio and α is the coefficient of thermal expansion all of which
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depend only on the radial coordinate r. The equilibrium equation in radial
direction, neglecting the body force and the inertia terms, is

dσr

dr
+
σr − σϕ

r
= 0, R1 ≤ r ≤ R2. (4)

The general solution of Eq. (4) in terms of stress function V = V (r) can be
represented as

σr =
V
r
, σϕ =

dV
dr
, R1 ≤ r ≤ R2. (5)

After some manipulations, from Eqs. (1-3) and (5) we can derive the next
system of ordinary differential equations for the displacement field and the
stress function

du
dr

= −ν
r
u +

1 − ν2

rE
V + α(1 + ν)T, (6)

dV
dr

=
E
r

u +
ν

r
V − αET. (7)

In Eqs. (6-7) all material properties depend only on the radial coordinate,
that is E = E(r), ν = ν(r), α = α(r), furthermore T = T (r) is obtained from
the solution of heat conduction equation [12].

3. The steady-state heat conduction problem

It is assumed that the temperature differences are given at the inner and
outer cylindrical boundary surfaces (T1 and T2 respectively), so we have the
following first kind thermal boundary conditions:

T (R1) = T1, T (R2) = T2. (8)

The steady-state temperature difference field (without internal heat sources)
satisfies the next equation [12]

1
r

d
dr

[
rk(r)

dT
dr

]
= 0,R1 ≤ r ≤ R2, (9)

where k = k(r) is the thermal conductivity of the functionally graded ma-
terial. The solution of Eq. (9) under the boundary conditions (8) gives the
temperature difference distribution along the radial coordinate

T (r) = T1 +
T2 − T1
R2∫

R1

1
ρk(ρ)dρ

r∫

R1

1
ρk(ρ)

dρ, R1 ≤ r ≤ R2. (10)
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4. Determination of the initial values

The next step is the determination of the initial values for the system
of equations (6-7). The stress boundary conditions of the considered ther-
moelastic problem (Fig. 1) are

σr(R1) = −p1, σr(R2) = −p2, (11)

which can be expressed in terms of the stress function V = V (r) such as

V (R1) = −p1R1, V (R2) = −p2R2. (12)

In Eqs. (11), (12) p1 and p2 are the applied pressures at the inner and the
outer cylindrical boundary surfaces.

At first step we transform the two-point boundary value problem for-
mulated by Eqs. (6), (7) and Eqs. (11), (12) into an initial value problem.
This step is required for the realization of the numerical methods. To get the
stresses and radial displacement for the considered thermoelastic problem,
three numerical solutions will be used with three different initial values. The
aim is to look for the suitable value of u(R1) which provides the validity
of the prescribed boundary condition (12)2. At first, we consider two solu-
tions for system of equations (6-7) which are denoted by [u1(r),V1(r)] and
[u2(r),V2(r)]. These solutions have the next initial values:

u1(R1) = u1 : arbitrary value, (13)

V1(R1) = −p1R1, (14)

u2(R1) = u2 : arbitrary value, but u1 , u2, (15)

V2(R1) = −p1R1. (16)

By these solutions we compute u3 as

u3 = u1 +
u2 − u1

V2(R2) − V1(R2)
(−p2R2 − V1(R2)). (17)

The solution of the thermoelastic boundary value problem formulated by
Eqs. (1-4) and Eq. (12) is obtained from the numerical solution of system of
equations (6-7) with the initial condition

u(R1) = u3, V (R1) = −p1R1. (18)

The validity of this statement follows from the linearity of the considered
thermoelastic boundary value problem.
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5. An analytical solution

An analytical solution is developed for the case when the distributions of
the material properties are assumed to be described with a power law along
the radial coordinate as E(r) = E0rm1 , α(r) = α0rm2 , k(r) = k0rm3 and ν =

= constant. For this type of inhomogeneity, there exists exact solution of the
two-point boundary value problem defined by Eqs. (6), (7) and Eqs. (11),
(12). This analytical solution will be used to check the numerical solution.
The general solution of the following homogeneous system of ordinary dif-
ferential equations

duh

dr
+
ν

r
uh − 1 − ν2

E0rm1+1Vh = 0, (19)

dVh

dr
− E0rm1−1uh − νr Vh = 0, (20)

are as follows

uh =
λ1 + m1 − ν

E0
C1rλ1 +

λ2 + m1 − ν
E0

C2rλ2 , (21)

Vh = C1rλ1+m1 + C2rλ2+m1 , (22)

where

λ1 =
−m1 +

√
m2

1 − 4m1ν + 4

2
, (23)

λ2 =
−m1 −

√
m2

1 − 4m1ν + 4

2
, (24)

and C1 and C2 are arbitrary constants which can be obtained from the bound-
ary condition (12). Here we note

m2
1 − 4m1ν + 4 = (m1 − 2ν)2 + 4(1 − ν2) > 0, (25)

this means that λ1 and λ2 are real numbers because 0 ≤ ν ≤ 0.5. For
simplicity it is assumed that T2 = 0. In this case, the temperature change is

T (r) = T1
r−m3 − R−m3

2

R−m3
1 − R−m3

2

, R1 ≤ r ≤ R2. (26)

Next, we seek a particular solution for the system of non-homogeneous dif-
ferential equations

dup

dr
+
ν

r
up − 1 − ν2

E0rm1+1Vp − α0T1(1 + ν)
rm2−m3 − R−m3

2 rm2

R−m3
1 − R−m3

2

= 0, (27)
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dVp

dr
− E0rm1−1up − νr Vp + α0E0T1

rm1+m2−m3 − R−m3
2 rm1+m2

R−m3
1 − R−m3

2

= 0. (28)

A simple computation shows that the particular solution for the system of
Eqs. (27-28) is as follows

up = A1rm2−m3+1 + B1rm2+1, (29)

Vp = A2rm1+m2−m3+1 + B2rm1+m2+1, (30)

where

A1 =
α0T1

[
1 − ν2 − (1 + ν)(m1 + m2 − m3 − ν + 1)

]

(R−m3
2 − R−m3

1 )
[
(m2 − m3 + ν + 1)(m1 + m2 − m3 − ν + 1) − 1 + ν2] ,

(31)

A2 = − α0E0T1(m2 − m3)
(R−m3

2 − R−m3
1 )

[
(m2 − m3 + ν + 1)(m1 + m2 − m3 − ν + 1) − 1 + ν2] ,

(32)

B1 = −
α0T1R

−m3
2

[
(m1 + m2 − ν + 1) (1 + ν) + 1 − ν2

]

(R−m3
2 − R−m3

1 )
[
(m2 + ν + 1)(m1 + m2 − ν + 1) − 1 + ν2] , (33)

B2 =
α0E0T1R

−m3
2 m2

(R−m3
1 − R−m3

2 )
[
(m2 + ν + 1)(m1 + m2 − ν + 1) − 1 + ν2] . (34)

The complete solution for the system of equations (6-7) in the present case
is

u(r) = uh(r) + up(r),V (r) = Vh(r) + Vp(r). (35)

The constants C1 and C2 can be obtained from the stress boundary condition
(12) as the solution of the following system of linear equations

C1R
λ1+m1
1 + C2R

λ2+m1
1 + A2R

m1+m2−m3+1
1 + B2R

m1+m2+1
1 = −p1R1, (36)

C1R
λ1+m1
2 + C2R

λ2+m1
2 + A2R

m1+m2−m3+1
2 + B2R

m1+m2+1
2 = −p2R2. (37)

Solution of system of equations (36-37) gives

C1 = − (p1R1 + A2R
m1+m2−m3+1
1 + B2R

m1+m2+1
1 )Rλ2+m2

2

Rλ1+m1
1 Rλ2+m2

2 − Rλ2+m1
1 Rλ1+m1

2

+
(p2R2 + A2R

m1+m2−m3+1
2 + B2R

m1+m2+1
2 )Rλ2+m1

1

Rλ1+m1
1 Rλ2+m2

2 − Rλ2+m1
1 Rλ1+m1

2

,

(38)

C2 =
(p1R1 + A2R

m1+m2−m3+1
1 + B2R

m1+m2+1
1 )Rλ1+m1

2

Rλ1+m1
1 Rλ2+m2

2 − Rλ2+m1
1 Rλ1+m1

2

− (p2R2 + A2R
m1+m2−m3+1
2 + B2R

m1+m2+1
2 )Rλ1+m1

1

Rλ1+m1
1 Rλ2+m2

2 − Rλ2+m1
1 Rλ1+m1

2

.

(39)
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Knowing the values of C1 and C2 we can get immediately the displace-
ment and stresses as

u(r) =
λ1 + m1 − ν

E0
C1rλ1 +

λ2 + m1 − ν
E0

C2rλ2 + A1rm2−m3+1 + B1rm2+1, (40)

σr(r) =
V (r)

r
= C1rλ1+m1−1 + C2rλ2+m1−1 + A2rm1+m2−m3 + B2rm1+m2 , (41)

σϕ(r) =
dV (r)

dr
= C1(λ1 + m1)rλ1+m1−1 + C2(λ2 + m1)rλ2+m1−1+

+A2(m1 + m2 − m3 + 1)rm1+m2−m3 + B2(m1 + m2 + 1)rm1+m2 .
(42)

We note that for plane-strain deformation, when the material properties, ex-
pect the Poisson’s ratio, are power function of the radial coordinate an exact
solution is presented in [10]. The solution given by Jabbari et al [10] is
based on the analytical solution of non-homogeneous Navier equation. For
plane-strain deformation in terms of radial displacement the Navier equation
is as follows

d2u
dr2 + (m1 +1)

1
r

du
dr

+

(
νm1

1 − ν − 1
) u
r2 =

(1 + ν)
1 − ν α0

(
(m1 + m2)rm2−1T + rm2

dT
dr

)
.

(43)

6. Comparison of the numerical solution with the analytical solution

The following numerical data are used in the presented example:

R1 = 0.5 m, R2 = 1m, m1 = m2 = m3 = m = −3, ν = 0.3, E0 = 2 · 1011 N
m5 ,

α0 = 1.2 · 10−6
1

◦Cm3 ,

T (R1) = 100◦C, T (R2) = 0◦C, p1 = 30 MPa, p2 = 0 MPa.

The results of the computations are summarized in Table 1, where the defi-
nition for the relative error is given by equation (44)

eM(%) =

∣∣∣∣∣∣
Manalytical − Mnumerical

Manalytical

∣∣∣∣∣∣ · 100, M(r) = u(r), σr(r), σϕ(r). (44)

The numerical solution is based on the Runge-Kutta-Fehlberg method
and it is carried out by the application of Maple 15 dsolve/numeric/rkf45.
Figures 2 and 3 show the solutions for the displacement fields and the normal
stresses in three cases. The solid lines illustrates the previously calculated val-
ues (Table 1), the dash lines indicate the solutions for the case when there is
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Table 1.
Comparison of the radial stresses and displacement field obtained by numerical and analytical

methods

r [m] solutions
displacement normal stresses relative errors

u (mm) σr (MPa) σϕ (MPa) eu (%) eσr (%) eσϕ (%)

0.5
analytic. 0.2544600 –30 –730.7277

1.559·10−5 0 1.737·10−5

numeric. 0.2544601 –30 –730.7276

0.6
analytic. 0.3248146 –66.16169 20.50325

1.171·10−5 0.351·10−5 29.02·10−5

numeric. 0.3248146 –66.16169 20.50331

0.7
analytic. 0.3501088 –43.52514 125.4060

1.061·10−5 3.490·10−5 2.837·10−5

numeric. 0.3501089 –43.52513 125.4060

0.8
analytic. 0.3546277 –22.64223 115.30513

1.131·10−5 5.284·10−5 2.012·10−5

numeric. 0.3546277 –22.64222 115.30515

0.9
analytic. 0.3494365 –8.721734 89.91601

1.189·10−5 17.92·10−5 1.934·10−5

numeric. 0.3494365 –8.721718 89.91602

1
analytic. 0.3401298 0 68.02597

1.410·10−5 – 2.082·10−5

numeric. 0.3401299 1.522·10−6 68.02598

only thermal loading on the inner curved boundary surface (p1 = p2 = 0 MPa,
T1 = 100◦C and T2 = 0◦C). Furthermore, the dash-dot lines denote the curves
of the displacement field and normal stresses for the mechanical loading in
Figs. 2 and 3 (p1 = 30 MPa, p2 = 0 MPa and T1 = T2 = 0◦C).

Fig. 2. The radialdisplacement of the thermal (dash line), the mechanical (dash dot line) and the
combined thermo-mechanical (solid line) loading

In the next example we consider the case when the power indexes have
different values, such as m1 = –1.5, m2 = 1.5 and m3 = –3. Table 2 shows
the results of the calculation.
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Fig. 3. The normal stresses caused by the thermal (dash line), the mechanical (dash dot line) and
the combined thermo-mechanical (solid line) loads

Table 2.
The solutions for the radial stresses and displacement fields when m1 = –1.5, m2 = 1.5

and m3 = –3

r [m] solutions
displacement normal stresses relative errors

u (mm) σr (MPa) σϕ (MPa) eu (%) eσr (%) eσϕ (%)

0.5
analytic. 0.9930158 –30 79.34692

4.391·10−5 0 6.216·10−5

numeric. 0.9930154 –30 79.34687

0.6
analytic. 0.9606242 –15.22278 42.82697

4.245·10−5 2.903·10−5 7.137·10−5

numeric. 0.9606238 –15.22279 42.82694

0.7
analytic. 0.9570188 –8.272115 26.18580

4.301·10−5 8.153·10−5 8.435·10−5

numeric. 0.9570184 –8.272122 26.18578

0.8
analytic. 0.9667615 -4.482209 19.04745

4.309·10−5 18.88·10−5 8.981·10−5

numeric. 0.9667611 –4.482217 19.04743

0.9
analytic. 0.9744266 –2.002965 17.32734

4.474·10−5 47.97·10−5 8.213·10−5

numeric. 0.9744262 –2.002974 17.32733

1
analytic. 0.9622763 0 19.24552

4.816·10−5 – 6.397·10−5

numeric. 0.9622759 9.136·10−6 19.24551

Table 1 and 2 show a good agreement between the results computed by
the presented numerical and the analytical methods. The stress field in the
case of the numerical solution can be obtained from the next equations

σr =
V
r
, σϕ =

dV
dr

= E0rm−1u +
ν

r
V − α0E0r2mT, (45)
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according to Eqs. (5), (7) and the dependences of E and α from the radial
coordinate. Some different values of power index m = m1 = m2 = m3 (m =

= –2, –1, 0, 1, 2), the graphs of the normalized temperature difference func-
tion (T /T1), normalized radial displacement (u/R2) and normalized stresses
(σr/p1, σϕ/p1) are shown in Figures (4-7).

Fig. 4. The radial distribution of the normalized temperature change

Fig. 5. The radial distribution of the normalized radial displacement
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Fig. 6. The radial distribution of the normalized radial stress

Fig. 7. The radial distribution of the normalized circumferential stress

7. Conclusions

A new numerical method has been presented to treat the thermoelastic
problem of a functionally graded hollow cylindrical disc with arbitrarily
varying material properties along the radial direction. A coupled system of
ordinary differential equations for the radial displacement and stress function
are derived, which constitutes a two-point boundary value problem with the
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prescribed stress boundary conditions. This two-point boundary value prob-
lem is transformed into an initial value problem, whose numerical solution
gives the radial displacements and radial and hoop stresses. The results of the
numerical computations are verified by an analytical solution of the derived
two-point boundary value problem.
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Analiza termosprężysta wydrążonej kolistej tarczy gradientowej

S t r e s z c z e n i e

W artykule analizowano problem termosprężystej wartości brzegowej dla wydrążonej, kolistej
tarczy gradientowej o dowolnym gradiencie materiału. Przyjęto, że rozkład temperatury w stanie
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ustalonym jest funkcją współrzędnej promieniowej, z założoną z góry temperaturą na wewnętrznej
i zewnętrznej powierzchni. Założono, że właściwości materiału są dowolnymi funkcjami gład-
kimi współrzędnej promieniowej. Właściwości sprężyste opisano systemem zwyczajnych równań
różniczkowych zawierających przemieszczenia promieniowe i funkcje naprężenia. Równania zostały
wykorzystane do wyznaczenia rozkładów naprężeń termicznych i przemieszczeń promieniowych
powodowanych przez osiowosymetryczne obciążenia mechaniczne i termiczne. Ogólne rozwiąza-
nia analityczne dla tarcz gradientowych poddanych obciążeniom termicznym nie są znane. Wyniki
uzyskane w zaprezentowanej metodzie numerycznej zweryfikowano przez porównanie z rozwiąza-
niem analitycznym. Rozwiązania analityczne, rozważane przez autorów, są słuszne gdy właści-
wości materiałowe, z wyjątkiem współczynnika Poissona, można opisać funkcjami potęgowymi
współrzędnej promieniowej.


