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ANTIRESONANCE ZONE

Attempts to perform synthesis of a passive vibroinsulation two-mass system
intended for the simultaneous reduction of machine frame vibrations and forces
transmitted to foundations by supporting elements were undertaken in the study.
In view of the variable frequency of the machine operation, it was necessary for
the frequency interval, encompassed by the vibroinsulation system operation, to be
within given limits. On the grounds of properties of the linear massive-elastic system
formulated in the works of Genkin and Ryaboy (1998), the problem of vibroinsulation
system synthesis was formulated in the parametric type optimisation approach with
equality and inequality limitations. For piston compressor vibroinsulation, the mass
and elasticity matrices of the vibroinsulating system, as well as its physical structure,
were determined. Its operation was verified on the basis of simulation investigations,
taking into account the system loss and transient states.

1. Introduction

The tasks of limiting forces transmitted to foundations by vibrating ma-
chines and devices, while taking into consideration human and environmental
protection as well as legal regulations, are still very important. Piston ma-
chines can serve as an example since, due to their reciprocating motion, they
constitute a source of vibrations perceived as annoyance by the surround-
ings, especially in large-scale units. In compressors applied in compressor
stations, the connected pipeline transfers vibrations at long distances and is
itself endangered by fatigue type defects.

A classic vibroinsulation application does not always provide the required
results and is not always possible. Machine placement on elastic systems ad-
mittedly decreases force values transmitted by supporting elements to the
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foundation, however, it leads to an increase in the machine frame vibration
amplitude. In several cases this increase is inadmissible. For instance, vibra-
tions of precise machines in the tobacco industry are not permitted to exceed
allowable values determined by the producer.

The conflict between decreasing forces transmitted into the foundations
and increasing vibration amplitudes occurring in classic vibroinsulation can
be solved, in certain cases, by the application of passive systems e.g. a dy-
namic eliminator of vibrations (Czubak 2007, Dahlbe 1989, Flaga 2008 and
Hartog 1947) or the DAVI dynamic anti-resonance vibroinsulation system
(Flanelly 1967, Michalczyk 2001). In the first case, as a result of adding
an elastic element loaded with an additional mass to the vibrating machine
frame, the generation of the counterforce towards the exciting force is pos-
sible. This leads to a significant decrease in frame vibrations and forces
transmitted to the foundation. Theoretically, for an undamped eliminator, it
is possible to stop the frame motion (Harris’ Shock and Vibration Handbook
6th.Ed. (2009) pages 198-231). However, this solution has a fundamental
fault. The frequency interval, at which the amplitude and forces transmitted
to the foundation are reduced, is – in relation to the operating frequency of
the machine – quite small and surrounded by resonance frequencies – Fig. 1.
This type of solution can be applied only in the case of drives of a constant
operating frequency.

Solutions using dynamic anti-resonance vibroinsulation introduce addi-
tional forces in between the vibroinsulated object and the foundation. These
forces are opposite phase forces but equal to the ones transmitted by a classic
vibroinsulating system. In the case of a lever (Flanelly 1967) or oil-rubber
vibroinsulator (Michalczyk 2001), the coefficient of the force transmission
function is of an anti-resonance frequency, which does not have any reso-
nance from the side of higher frequencies – Fig. 2. This type of solution
is safer when the dynamic eliminator is applied, since fluctuations of the
machine operating speed are not threatened by entering the resonance zone.
In comparison with classic vibroinsulation, they ensure a higher dynamic
stiffness in addition to which the coefficient of force transmission above the
anti-resonance frequency leads asymptotically not to zero but to a constant
value.

The task of synthesizing a vibroinsulation system (Dahlbe 1989, Genkin
and Ryaboy 1988, Rade 2000), which would be able to meet the opposing
properties of passive vibroinsulation, in other words: decreasing forces trans-
mitted to the foundation by the supporting system and warranting a high
dynamic stiffness of the vibroinsulated object mass in a sufficiently wide
operating frequency interval of the device, was undertaken in the study.
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Fig. 1. Frahm dynamic eliminator. a) Sketch of the system b) Characteristics of vibration

amplitude, (a) – without damping, (b) – with damping; µ = ω/ω0, ω0 =
√

k1/m1, Astatic = m1g/k1,

A1 – amplitude vibration of mass m1 [11]

Fig. 2. DAVI type oil-rubber vibroinsulator. a) Sketch of the system. b) Characteristics of

coefficient force transmissions p = AF /AR, where: AF , AR – amplitudes of forces F and R in

sinusoidal steady state, µ = ω/ω0, ω0 =
√

k/m [11]

2. Concept of building a multi-mass vibroinsulating system

The method of synthesis of multi-mass passive vibroinsulating systems is
presented in the work by Genkin and Ryaboy (1988). As a result of increasing
the number of degrees of freedom by widening its mechanical structure, the
possibility of shaping the selected frequency characteristics can be achieved.
This mainly concerns the coefficient of force transmission p(ω) (Fig. 3),
which expresses the ratio of the amplitude of excitation forces F1 causing
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the system movement to the force amplitude transmitted to the foundation
Rmax(ω) by the supporting elements:

p(ω) =
Rmax(ω)

F1
(1)

and the dynamic flexibility G(ω), understood as the ratio of the vibroinsu-
lating mass displacement amplitude Ax1(ω) to the excitation force amplitude
F1:

G(ω) =
Ax1 (ω)

F1
(2)

Fig. 3. The model of vibroinsulating mass excited by external force

These two parameters are especially essential when vibroinsulating sys-
tems are considered. A high value of the force transmission coefficient could
cause damage to the foundation, building and could disturb other machine
work. A high value of dynamic flexibility is responsible for high vibration
amplitude of the body machine. This is the reason for damage to the machine,
especially precision machines.

We consider the system shown in Fig. 4.

Fig. 4. Pictorial diagram of a multi-mass passive vibroinsulating system

The set of n material points is connected by some system of linear elastic
elements. Some of these masses are connected directly to the ground, some
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to the mass m1, others are linked to each other. The mass m1 is treated with
special attention, because it represents the vibroinsulating object subjected to
the vibration by the external force F1. The equation of motion of the material
points shown in Fig.4 takes the form:

[M]
d2

dt2
X̄(t) + [K]X̄(t) = F̄1(t) (3)

where:
[M] = diag(m1,m2, . . . ,mn) – mass matrix,
[K] – stiffness matrix,
X̄(t) – mass displacement vector,
F̄1(t) = [F1, 0, ..., 0] – force excitation vector,
R̄ – ground reaction.

If we assume the excitation force impact on the mass m1 is harmonic:

F1(t) = F1 sin(ωt) (4)

and the response system in the steady state is:

X̄(t) = X̄ sin(ωt) (5)

then equation (3) assumes the form:

[K]X̄ − ω2[M]X̄ = F̄1 (6)

This allows the calculation of the mass displacement vector mi:

X̄ =
{
[K] − ω2[M]

}−1
F̄1 (7)

Based on d’Alembert’s principle, we can write the equation resulting from
the balance of active, reaction and inertia forces:

−R +

n∑

i=1

ω2miXi + F1 = 0 (8)

After adding rows of the matrix to equation (6), and taking equation (8) into
account, we obtain:

R =

n∑

i=1

n∑

j=1

ki jx j (9)

In matrix notation, (9) takes the form:

R = ēT [K]X̄, ēT = [1, 1, ..., 1] (10)
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Assuming excitation force as F1 = 1, we obtain the displacement vector from
(7):

X̄ =
{
[K] − ω2[M]

}−1
ē1, ē1 = [1, 0, ..., 0] (11)

and the force transmission coefficient:

p(ω) =
R
1

= ēT [K]
{
[K] − ω2[M]

}−1
ē1 (12)

The equation for the static displacement under the force F̄1(t) = F̄10 is:

[K]X̄0 = F̄10 (13)

From equation (13) above we can obtain X̄0:

X̄0 = [K]−1F̄10 = [D]F̄10 (14)

in the expanded form:


x10

x20

...

xn0


=



d11 d12 ...

d21 ... ...

... ... ...

dn1 ... dnn





F10

0
...

0


(15)

Considering the first line of the equality (15) we get:

x10 = d11F10 (16)

Finally, we obtain the static stiffness of the system k. This coefficient shows
the ratio of the amplitude of the force F10 to the displacement of the mass
m1:

k =
1

d11
=

F10

x10
(17)

The considered system is in a uniform gravitational field with the value of
acceleration g. The force mig acts on each material point of the system,
which can be represented in matrix notation:

F̄g = g[M]ē (18)

If we replace in equation (14) the vector F̄10 by the vector F̄g and displace-
ment of the mass m1 is denoted by ∆, then we get the displacement of m1
in a uniform gravitational field:

∆

g
= ēT

1 [D][M]ē (19)
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The dynamic flexibility can be obtained from equation (11). Based on
the earlier assumption F1 =1 we obtain:

G(ω) =
x1

1
= ēT

1

{
[K] − ω2[M]

}−1
ē1 (20)

Matrices [M] and [K] can be converted to a diagonal form based on the
linear transformations (21) and (22).

[Φ]T [M][Φ] = [E] (21)

[Φ]T [K][Φ] = [Λ] (22)

where:
[E] – identity matrix,
[Λ] = diag[ω2

1,ω
2
2,. . . ,ω

2
n] – eigenfrequency squares matrix.

The transformation matrix [Φ] is composed of eigenvectors obtained
from a non-trivial solution of equation (23):

(
[K] − ω2[M]

)
ϕ̄i = 0 (23)

We multiply equations (21) and (22) on the left by [ΦT ]−1 and on the right
by [Φ]−1, obtaining:

[M] = [Ψ][Ψ]T (24)

[K] = [Ψ][Λ][Ψ]T (25)

where:
{Ψ} = ({Φ}T )−1

Based on the relationship (24) and (25), we can write:
(
[K] − ω2[M]

)−1
= [Φ]

(
[Λ] − ω2[E]

)−1
[Φ]T (26)

If we substitute formula (26) to equation (20) we get the dynamic flexibility:

G(ω) = ēT
1 [Φ]

(
[Λ] − ω2[E]

)−1
[Φ]T ē1 =

n∑

j=1

ϕ2
1 j

ω2
j − ω2

(27)

If we act as above, based on equations (12) and (26), we get the force
transmission coefficient:

p(ω) = ēT [Ψ][Λ]
(
[Λ] − ω2[E]

)−1
[Φ]T ē1 =

n∑

i=1

ϕ1iω
2
i

n∑
j=1
ψ ji

ω2
i − ω2

(28)
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In the final forms of the dynamic flexibility and force transmission coefficient,
we can see that some sets of parameters are repeated: ϕ1i – component of
the first row of the matrix [Φ], as well as

∑n

j=1
ψ ji row component vector

consisting of the sum of rows of the matrix [Ψ]. To simplify formulas (27)
and (28) we introduce the new vectors:

Ū = ēT
1 [Φ] (29)

and:
V̄ = ēT [Ψ] (30)

Now, formulas (27) and (28) obtain the following forms:

G(ω) =

n∑

i=1

u2
i

ω2
i − ω2

(31)

p(ω) =

n∑

i=1

uivi

1 −
(
ω
ωi

)2 (32)

Using formula (31), we can obtain the static flexibility of the system as the
function value G(ω) for the frequency ω =0:

d11 =
1
k

=

n∑

i=1

u2
i

ω2
i

(33)

The use of vectors Ū and V̄ also allows the whole system mass to be
described:

V̄V̄T = ēT [Ψ][Ψ]T ē = ēT [M]ē =

n∑

i=1

mi = m (34)

The diagonal matrix of the inverse mass mi is equivalent to the inverse of
the mass matrix [M], therefore:

1
m1

= ēT
1 [M]−1ē1 = ēT

1 ([Ψ][Ψ])−1 ē1 = ēT
1 [Φ][Φ]T ē1 =

n∑

i=1

u2
i (35)

Based on formula (19), we get the displacement system in the uniform
gravity field:

∆

g
= ēT

1 ([Ψ][Λ][Ψ]) [Ψ][Ψ]T ē = ēT
1 [Φ][Λ]−1[Ψ]T ē = Ū[Λ]−1V̄T =

n∑

i=1

uivi

ω2
i

(36)
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The identity [Φ][ ΨT ] = [E] implies an additional dependence describing the
vectors Ū and V̄ . If we multiply the elements of the first row of the matrix
[Φ] by the sum of columns of the matrix [Ψ], we get:

Ū ◦ V̄ = ŪV̄T =

n∑

i=1

uivi = 1 (37)

3. Model of the piston compressor

Let us consider Fig. 5, which presents a simplified piston compressor.
The crank shaft operating speed, dependent on the gaseous factor demand,
is contained within the range 280 ÷330 rpm. The mass of the vibrating part,
equal to approx. 65000 kilograms, is placed on the foundation by means of a
viscoelastic system. For the aims of comparison, the suspension parameters
were selected in such a way as to correspond with classic vibroinsulation.
The natural frequency of the vibroinsulated mass of 1 [Hz] is five times
lower than the force frequency generated by the piston assembly movement.
For such elastic suspension, the static deflection of the compressor frame
resulting from the gravitational field of force equals approx. 248 [mm].

Fig. 5. Phenomenological model of the piston compressor. Parameters assumed for the analysis:

k = 2566100 N/m, b = 8170 Ns/m, mk = 63836 kg, mt = 776.1 kg, ml = 388.1 kg, e = 0.168 m,

l = 1.675 m, J0 = 3700 kgm2, Jsl = 90 kgm2. Power rating of the driving engine: Pn = 1.8 MW,

transmission ratio: engine – driving shaft: i = 75
33

Based on the Lagrangian function (38) of the considered system

L � Ek − Ep =

(
1
2
mk ẋ2 +

1
2
J0ϕ̇

2 +
1
2
mt(ẋ − e sin(ϕ)ϕ̇)2 +

1
2
ml((ẋ − e sin(ϕ)ϕ̇)2+

+(
1
2
e cos(ϕ)ϕ̇)2) +

1
2
Jls(

e
l
cos(ϕ)ϕ̇)2

)
−

(
1
2
kx2 + (mt + ml) ge cosϕ

)

(38)
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dynamic equations of motion can be obtained in the form:



1 0 0 0
0 1 0 0
0 0 mk + ml + mt −(ml + mt) sin(ϕ)e

0 0 −(ml + mt) sin(ϕ)e J0 + (ml + mt) sin2(ϕ)e2 +
1
3
ml cos2(ϕ)e2



d
dt



x
ϕ

vx

ω


=

=



vx

ω

(ml + mt) cos(ϕ)eω2 − bẋ − kx

M − (
1
3
ml +

1
2
mt) sin(2ϕ)e2ω2 − (ml + mt)eg sin(ϕ)


(39)

On the basis of this system, the simulations of the starting phase and steady
state of the device were performed. The examples of machine body vibration
and reaction force are shown in Fig. 6. The vibration amplitude of the com-
pressor frame in the steady state achieved 3.1 [mm], while the amplitude of a

Fig. 6. Time-history of the coordinate x(t) of the compressor frame mass centre and the force

exerted on the foundation
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variable component of force exerted by the supporting elements on the foun-
dation was approx. 8 [kN]. In the starting phase, these were higher: 12 [mm]
and 30.5 [kN] respectively. The values of the coefficient of force transmission
and dynamic flexibility for the operating frequency can be determined on the
basis of:

p =
8000 [N]
P0 [N]

= 34.4 · 10−3 (40)

G =
0.0031 [m]

P0 [N]
= 1.33 · 10−8 [m/N] (41)

where:

P0 = (ml + mt)eω2
r = (388.1 + 776.1) · 0.1675 · 34.552 = 232 776 [N] (42)

amplitude of the piston assembly force.

4. Synthesis of the vibroinsulation system

According to the method, the synthesis of a vibroinsulation system com-
posed of massive and elastic elements can be performed in three stages.

In the first one, based on the assumptions concerning the vibroinsulation
properties, the optimisation task is solved. In this optimisation, the objective
function or functions (for example, coefficient of force transmission and/or
dynamic flexibility) should obtain extreme values in the operating frequency
interval of the device. The optimisation task can be made more specific by
additional dependencies, which should be treated as equality or inequality
limitations imposed on the task. First of all, the possibility of declaring the
mass of the vibroinsulated object (35), the limitation of the object static
deflection (36) and limitation of the mass of the synthesised vibroinsulation
system (34) – dependencies, should be mentioned.

In the second stage, on the grounds of the obtained solutions (U, V , ωi)
and existing dependencies between the modal matrix rows, the complete form
of the modal matrix [Φ] is determined and then – on its basis – the mass
matrix [M] and the elasticity matrix [K] are determined.

Details of the algorithm for creating the matrices [Φ], [M] and [K] can
be found in [6] on page 123.

In the third stage, on the grounds of the elasticity matrix [K], the structure
of the physical system is revealed. Since this process can be carried out in
various ways, the system structure can take different forms. However, in
general, the technique based on shaping the potential energy (43) of the
system into a sum of potential energies Vi of components being reflected in
the simple mechanical sub-assemblies is applied.
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V =
∑

Vi =
1
2
x̄T [K] x̄ (43)

The sub-assembly shown in Fig. 7 can serve as an example. Its potential
energy can be written in the form:

Vi =
1
2
ki

(
xi +

l1i

l2i
xi+1

)2
(44)

Fig. 7. Lever sub-assembly

The presented approach adapted for determination of the vibroinsulation
system – for the compressor described in Chapter 3 – can assume the equation
system (45). The first dependence (45a) determines two objective functions
– the coefficient of force transmission and dynamic flexibility, which their
maximum values in the given operating frequency interval [ωa, ωb] are min-
imised. Formally, this problem assumed the form of the multi-optimisation
task, minimax type. In consideration of the significant differences in function
values within the discussed frequency zone, the introduction of the balance
coefficient α seems justified. Thus, the given function emphasized in the
computational process depends on the value of this coefficient. On account
of this, the results of three variants which, due to the balance parameter
α, emphasise: coefficient of force transmission, dynamic flexibility and both
functions with a similar significance – respectively, are presented in the paper.
Successive dependencies of the system marked as (45b), (45c), (45d), (45e)
determine, in the order of occurrence:
1. Declaration of vibroinsulated mass m1. In the considered case: 65000

kilograms.
2. Ratio of the total mass of the system to the vibroinsulated mass. This

was determined by the inequality relation and, according to the assumed
parameter, cm = 1.2, the mass of the added part cannot exceed 20% of
the system mass.

3. Static displacement of the compressor mass in the gravitational field of
force. Parameter cg = 1.02·10−2, occurring also in the inequality depen-
dence prevents displacements larger than 10 cm.

4. Obligatory dependence being met by the coefficient of force transmission
(32), (37) in the case of frequency equal to 0.
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

max
ω∈(29,32; 34,56)



∣∣∣∣∣∣∣∣

n∑

i=1

uivi

1 −
(
ω
ωi

)2

∣∣∣∣∣∣∣∣

α

∣∣∣∣∣∣∣
n∑

i=1

u2
i

ω2
i − ω2

r

∣∣∣∣∣∣∣


→ min

n∑

i=1

u2
i −

1
m1

= 0

n∑

i=1

u2
i

n∑

i=1

v2
i − cm ≤ 0

∣∣∣∣∣∣∣
n∑

i=1

uivi

ω2
i

∣∣∣∣∣∣∣ − cg ≤ 0

n∑

i=1

uivi = 1

(45(a))

(45(b))

(45(c))

(45(d))

(45(e))

The system (45) constitutes non-linear equations. Their solution is pos-
sible due to the application of numerical methods. The results presented in
Table 1 were obtained by means of the minimax function, part of the Matlab
engineering packet. The results of the optimised objective functions in the
considered operating frequency interval of the device are presented in Figs.
8a and 8b.

It can be seen that, in the first variant, we obtained the largest reduction
in force transmitted to the foundation, at a slightly decreased amplitude of
the compressor frame vibrations. The force was reduced approximately 570
times. In the second variant, the force was reduced only by 49%, while the
vibration amplitude was decreased approx. 4 times. In the third variant, the
force transmitted to the foundation was decreased approximately 35.7 times
and vibrations by approx. 1/3. It should also be mentioned that static stiffness
attained much higher values compared to classic vibroinsulation. In the first
variant, the vibroinsulated mass displaced itself by 10.2 [mm], in the second
by 5.5 [mm] and in the third by 8.5 [mm]. Comparing these results with the
value given in Chapter 3, we can notice that this value was increased by 24,
45 and 29 times – respectively.

On the grounds of dependence (44) and the elasticity matrices [K] (Ta-
ble 1), the physical structures of the systems can be determined. Such a
structure for the third variant is presented in Fig. 9.
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Fig. 8.a. Diagrams of the coefficient of force transmission and dynamic flexibility in the

compressor operating frequency interval, for variants I and II
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Fig. 8b. Diagrams of the coefficient of force transmission and dynamic flexibility in the

compressor operating frequency interval, for variant III

Fig. 9. Model of the compressor with the two-mass vibration absorber. Parameter values in the
figure: k1 = 9.9·106 [N/m], k2 =2.1·109 [N/m], k3 = 27.82·103 [N/m], b1 = 16.08·103 [Ns/m],

b2 = 104.22·103 [Ns/m], b3 = 40.57 [Ns/m],
l1 + l2

l2
= 1.65,

l3
l4

= 6.05, m2 = 12852 [kg],

m3 = 147.9 [kg]
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5. Simulation investigations

When supplementing the compressor model by the vibroinsulating sys-
tem, the Lagrangian function takes the form (46).

L = Ek − Ep =

(
1
2
mk ẋ2

1 +
1
2
J0ϕ̇

2 +
1
2
mt(ẋ − e sin(ϕ)ϕ̇)2+

+
1
2
ml((ẋ − e sin(ϕ)ϕ̇)2 + (

1
2
e cos(ϕ)ϕ̇)2) +

1
2
Jls(

e
l
cos(ϕ)ϕ̇)2+

+
1
2
m2 ẋ2

2 +
1
2
m3 ẋ2

3

)
−

(
1
2
k1x2

1 + (mt + ml) ge cosϕ+

+
1
2
k2

(
x2 − l1 + l2

l2
x1

)2
+

1
2
k3

(
x3 − l3

l4
x2

)2

(46)

Based on it, we can obtain dynamic equations (47). On its basis, simulation
investigations were carried out allowing the effectiveness of the solution and
the system behaviour in transient states to be determined. As can be seen
in Fig. 10, the application of a two-mass dynamic absorber allowed the
amplitude of the compressor frame vibrations to be decreased to the value
2.2 [mm], which provided the vibration reduction by approx. 29%.

Fig. 10. Time-history of the compressor frame coordinate x1(t)
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

1 0 0 0 0 0 0 0
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0 0 1 0 0 0 0 0
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0 0 0 0 mk + ml + mt 0 0 −(ml + mt) sin(ϕ)e
0 0 0 0 0 m2 0 0
0 0 0 0 0 0 m3 0

0 0 0 0 −(ml + mt) sin(ϕ)e 0 0
J0 + (ml + mt) sin2(ϕ)e2+

+
1
3
ml cos2(ϕ)e2



d
dt
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v1
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v3

ω

(ml + mt) cos(ϕ)eω2 − k1x1 − k2(x2 + α2x1)α2 − b1 ẋ1 − b2(ẋ2 + α2 ẋ1)α2

−k2(x2 + α2x1) − k3(x3 + α3x2)α3 − b2(ẋ2 + α2 ẋ1) − b3(ẋ3 + α3 ẋ2)α3

−k3(x3 + α3x2) − b3(ẋ3 + α3 ẋ2)

M − (
1
3
ml +

1
2
mt) sin(2ϕ)e2ω2 + (ml + mt)eg sin(ϕ)



(47)

Forces transmitted to the foundation are located in three places. In point
R1, which is the connection of the vibroinsulated mass suspension with the
foundation, and in points R2 and R3, marking the lever support points. Time-
-histories of these forces determined by the dependencies (48), (49) and (50)
are presented in Fig. 11, and their sum in Fig. 12.

R1 = b1 ẋ1 + k1x1 (48)

R2 = (α2 + 1) (b2 (ẋ2 + α2 ẋ1) + k2 (x2 + α2x1)) (49)

R3 = (α3 + 1) (b3 (ẋ3 + α3 ẋ2) + k3 (x3 + α3x2)) (50)

As can be seen, the total force in the steady state has been reduced more
than 34 times and is equal to approx. 6.8 [kN]. This reduction is approx.
5% lower than the value resulting from the coefficient of force transmission,
however, it is justified since it results from taking into account damping in
equations of motion. The forces R1, R2, R3 obtain the values 22 [kN], 33.5
[kN], and 5.15 [kN] respectively, which correspond to: 9.5%, 14.4% and
2.2% in relation to the force value generated by the motion of the compressor
crank mechanism.
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Fig. 11. Forces transmitted to the foundation by: a) point R1, b) point R2, c) point R3,

d) time-histories of forces in the steady state

Fig. 12. Total force acting on the foundation

6. Conclusions

The results of the synthesis of a two-mass passive vibroinsulation sys-
tem intended to reduce the negative effects of machine frame vibrations are
presented in the paper. The vibroinsulating system’s task was to decrease
forces transmitted to the foundation and to lower machine frame vibration
amplitudes in a relatively wide operating frequency interval. On account
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of the low frequency of the excitation force of vibrating motion (from 4.6
[Hz] to 5.5 [Hz]), the classic vibroinsulation application, for which the static
deflection would be approx. 250 [mm], was rejected. In order to achieve the
best solution, an optimisation approach was applied in the synthesis.

Based on the analysis and simulation investigations presented in Sections
4 and 5, it can be observed that the set goals were achieved. While directing
the objective function towards decreasing forces acting on the foundations, a
force reduction by approximately 570 times was obtained, and in for directing
this function towards decreasing the vibration amplitude a 4-time reduction
was obtained. Such results in classic vibroinsulation would not be possible
at all.

Less spectacular results were obtained in the case of variant 3, in which
simultaneous minimisation of the force influence and amplitude lowering was
required. Here, the force was reduced 34 times and vibrations by approx.
29%, for the piston operating frequency of 5.5 [Hz].

It should be mentioned that, in all three variants, the forces transmitted
to the foundations are located in three places, which allows for a smoother
distribution of loads on the foundation surface. In all variants, compared with
classic vibroinsulation, several times lower static deflection was achieved. In
the third variant it was only approx. 20 [mm].

The solutions obtained on the basis of the method are not flawless. Ar-
ticulated joints and levers occur in such systems, and the number of degrees
of freedom increases. However, it can be stated that, when limiting itself to
passive systems, the method provides the best solutions in relation to the
determination of the structure and optimal parameters of vibration reduction.

Manuscript received by Editorial Board, November 30, 2014;
final version, April 19, 2015.
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Dwumasowy tłumik dynamiczny o poszerzonej kotlinie antyrezonansowej

S t r e s z c z e n i e

Praca podejmuje zadanie syntezy dwumasowego układu wibroizolacji pasywnej przezna-
czonego do jednoczesnej redukcji drgań korpusu maszyny i sił przenoszonych przez elementy
podparcia na konstrukcję wsporczą. Ze względu na zmienną częstotliwość pracy maszyny zażą-
dano by przedział częstotliwości objęty działaniem układu wibroizolacji mieścił się w zadanych
granicach. Opierając się na własnościach liniowych układów sprężysto masywnych sformułowanych
w pracach Genkina i Ryaboya (1988) problem syntezy układu wibroizolacji sformułowano w ujęciu
optymalizacyjnym typu parametrycznego z ograniczeniami równościowymi i nierównościowymi.
Dla konkretnego przypadku, dotyczącego wibroizolacji sprężarki tłokowej, wyznaczono macierze
mas i sprężystości ustroju wibroizolacyjnego, jego fizyczną strukturę oraz zweryfikowano działanie
na podstawie badań symulacyjnych uwzględniających stratność układu i stany przejściowe.


