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NONLINEAR SOLUTION TO A NON-FOURIER HEAT
CONDUCTION PROBLEM IN A SLAB HEATED BY LASER SOURCE

The effect of laser, as a heat source, on a one-dimensional finite body was stud-
ied in this paper. The Cattaneo-Vernotte non-Fourier heat conduction model was used
for thermal analysis. The thermal conductivity was assumed temperature-dependent
which resulted in a non-linear equation. The obtained equations were solved using the
approximate-analytical Adomian Decomposition Method (ADM). It was concluded
that the non-linear analysis is important in non-Fourier heat conduction problems.
Significant differences were observed between the Fourier and non-Fourier solutions
which stresses the importance of non-Fourier solutions in the similar problems.

1. Introduction

Laser has had increasing and important applications in the recent years.
In the industry, laser is employed as a precise manufacturing tool and a
concentrated heat source in applications such as cladding, cutting, surface
hardening, welding, and machining. In medicine, laser has been utilized as a
surgical tool and also for hyperthermia in cancer treatment. Its high temporal
and spatial resolution, not involving or heating the unnecessary areas, and
the minimal noise has made laser a very popular tool.

Since laser applies a high heat flux in a short period of time, the analysis
of laser beam-induced heating is not possible using the classical Fourier’s
heat conduction law [1-3]. The combination of Fourier’s heat conduction
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law and the energy equation results in a parabolic equation. The parabolic
equation leads to the non-physical conclusion which implies an infinite speed
of heat propagation. This paradox is not an issue in many common applica-
tions. However, the Fourier’s law may slightly deviate from exact prediction
in applications involving very high heat fluxes [4], heat transfer at very low
temperatures [5], and heat transfer at very small scales [6]. For example,
Guyer and Krumhansl [7] proved that non-Fourier heat conduction equation
is governing in thermal analysis of dielectric crystals at low temperatures.
Shirmohammadi [6] analytically investigated the thermal behavior of micro-
spherical particles exposed to laser pulse heating and showed that there is
significant deviation between Fourier and non-Fourier results. Tung et al. [4]
applied wave heat conduction equation to the laser heating problem of biolog-
ical tissues and concluded that there are some important differences between
Fourier and wave heat conduction models. Therefore, improved models have
to be employed in laser heating analysis.

The heat wave model, or the Cattaneo-Vernotte model, is an improved
widely-used version of the Fourier’s classical model [8], [9]. They defined a
thermal relaxation time whose macroscopic description is a time lag between
the temperature gradient and the heat flux vector. Another modified model for
non-Fourier heat conduction is the Dual Phase Lagging (DPL) model which
is first proposed by Tzou [10]. These models have been recently utilized by
many researchers. This model was used by Bargmann and Favata [11] to
analyze the laser heating in polycrystals. The non-Fourier heat transfer in
combined analysis of heat conduction and thermal radiation in a differen-
tially heated 2-D square cavity was studied by Sasmal and Mishra [12]. The
non-Fourier heat conduction in a finite slab with insulated boundaries was
numerically investigated by Rahbari et al. [13]. An analytical non-Fourier
study was conducted by Zhao et al. [14] on a solid sphere under arbitrary
surface thermal disturbances. The non-Fourier heat conduction and thermal
radiation problem in a concentric spherical shell was studied by Mishra and
Sahai [15]. The thermal wave phenomenon in a thin film was analytically
examined by Fong and Lam [16].

In most studies on the non-Fourier heat conduction, the equations are
linear due to the assumption of constant thermal properties, and nonlinear
study of such problems is rare in the literature. The behavior of materials
in nature is inherently nonlinear, so the nonlinear study of the mentioned
problems is very important in some cases. In the past, in addition to the
very limited and difficult analytical methods, numerical methods were used
to solve nonlinear problems. These methods were also faced with conver-
gence problem and had a high computational cost. New methods, known as
semi-analytical (or approximate-analytical), have recently been proposed for
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solving nonlinear problems. Some of the most well-known semi-analytical
methods include Adomian Decomposition Method (ADM) [17], Homotopy
Perturbation Method (HPM) [18], [19], Homotopy Analysis Method (HAM)
[20], Differential Transform Method (DTM) [21], and Variational Iteration
Method (VIM) [22].

ADM, which is also used in this study, is one of the most flexible and
powerful of these tools that have been employed numerously to solve linear
and nonlinear equations. The method was first developed by Adomian [17]
and has been used by many researchers. Several applications of this method
have been reported recently. Singla and Das [23] used ADM for solving a
nonlinear problem involving conductive, convective and radiative stepped fin
with temperature-dependent parameters. Duan et al. [24] studied the concen-
trations of carbon dioxide absorbed into phenyl glycidyl ether using ADM.
An analytical solution for the Schrödinger equation for Brownian motion
in a double-well potential using ADM was presented by Ai-Jie et al. [25].
Praveen and Rajendran [26] employed ADM and provided a solution to the
problem of a reaction-diffusion process involved in packed bed photobiore-
actor. Fatoorehchi et al. [27] solved the problem of the general RC circuit
comprised of a nonlinear resistor in series with a nonlinear capacitor using
ADM. ADM was used in another study to solve the problem of Newtonian
bio-magneto-tribological squeeze film flow with magnetic induction effects
[28].

The application of semi-analytical methods to solve the nonlinear prob-
lems of non-Fourier heat conduction problems has been reported just in few
studies. Torabi et al. [29] applied the homotopy perturbation method (HPM)
to solve a non-linear convective-radiative non-Fourier conduction heat trans-
fer equation with variable specific heat coefficient. Saedodin et al. [30] used
the variational iteration method (VIM) to solve the same problem. Differ-
ential transformation method (DTM) was applied to analysis of non-linear
convective–radiative hyperbolic lumped systems with simultaneous variation
of temperature-dependent specific heat and surface emissivity by Torabi et al.
[31]. In all of three mentioned references, the governing equations have been
only dependent of time and, in fact, ordinary differential equations (ODE)
have been solved by semi-analytical methods and, to the best knowledge
of the authors, nonlinear partial differential equation (PDE) of non-Fourier
heat conduction equation has not been solved yet by semi-analytical meth-
ods. However, Srivastava [32] used fractional calculus to explain the wave
nature of heat propagation as well as heat conduction at molecular level
with dual phase lag model and Modified Adomian Decomposition Method
were applied to obtain the approximate analytical solutions of the proposed
model. However, it should be noted that an applicable PDE problem must
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have boundary conditions, while, in the work of Srivastava [32], there is no
boundary conditions.

This study was aimed at investigating the heat transfer in a one-dimen-
sional living tissue subjected to a laser heat source. The non-Fourier heat
conduction model was employed for thermal analysis. A nonlinear equa-
tion was obtained since the thermal conductivity was assumed temperature-
dependent. The obtained equations were solved by ADM. The application of
a semi-analytical method such as ADM to solve a system of nonlinear PDEs
of non-Fourier heat conduction problem is the novelty and originality of this
study.

2. Physical modeling

Figure 1 shows a schematic of the problem geometry. A slab with the
thickness 2L and the initial temperature T (x, 0) = sin(πx/2L) is insulated on
its left side while its right side is at zero temperature. A laser heat flux was
considered as a heat source imposed on the left side of the slab. The heat
source can be modeled as follows [33-36]:

g(x, t) = I0µ (1 − R) e−µx
(
e−βt − e−δt

)
(1)

Fig. 1. Schematic of the problem

where I(t) is laser intensity, R is surface reflectance, µ is absorption coef-
ficient, β is laser pulse rise-time parameter, and δ is laser pulse fall-time
parameter. The energy conservation equation is as follows:

ρcp
∂T (x, t)
∂t

+
∂q(x, t)
∂x

− g(x, t) = 0, (2)

where ρ is the density of the slab, cp is specific heat of the slab, T (x,t) is
temperature function and q(x,t) is the function of heat flux, x and t are spatial
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and temporal variables, respectively. The constitutive equation governing on
the problem is based on the thermal wave model [8], [9]:

τ
∂q(x, t)
∂t

+ q(x, t) + k
∂T (x, t)
∂x

= 0, (3)

where τ is the thermal relaxation time and k is thermal conductivity. Thermal
conductivity was assumed a linear function of temperature [37]:

k = k0 [1 + λ(T (x, t) − T0)] . (4)

The following parameters were introduced to make the equations (2) and (3)
dimensionless:

x̃ =
x
2L
, T̃ (x̃, Fo) =

T (x, t)
T0

, α0 =
k0

ρCp
, c2

0 =
α0

τ
,

g̃(x̃, Fo) =
2L2g(x, t)

T0k0
, Ve2 =

α0τ

L2 , β̃ =
2α0β

c2
0

, δ̃ =
2α0δ

c2
0

,

µ̃ = 2c0τµ, Fo =
α0t
2L2 , q̃(x̃, Fo) =

α0q(x, t)
T0k0c0

, γ = λT0,

g0 =
2L2I0µ (1 − R)

k0T0
, g̃(x̃, Fo) = g0e−µx̃

(
e−β̃Fo − e−δ̃Fo

)
.

(5)

The dimensionless form of the equations (2) and (3) are as follows:

∂T̃ (x̃, Fo)
∂Fo

+
1

Ve
∂q̃(x̃, Fo)

∂x̃
− g0e−µ̃x̃

(
e−β̃Fo − e−δ̃Fo

)
= 0 (6)

Ve2∂q̃(x̃, Fo)
∂Fo

+ 2q̃(x̃, Fo) + Ve
[
1 + γT̃ (x̃, Fo)

] ∂T̃ (x̃, Fo)
∂x̃

= 0. (7)

The dimensionless boundary and initial conditions are as follows:

q̃(0, Fo) = 0, T̃ (1, Fo) = 0, T̃ (x̃, 0) = sin (π x̃) , q̃(x̃, 0) = 0. (8)

It should be noted that the reason the conditions were chosen in this paper
is to demonstrate the flexibility of the ADM, which can easily be adapted to
any initial or boundary condition.

3. The basic idea of ADM

Consider a general nonlinear differential equation in the following form:

Lu + Ru + Nu = g, (9)
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where L is the highest-order invertible derivative, R is a linear differential
operator with an order less than L, Nu includes the nonlinear terms, and g
is the nonhomogeneous term. By applying the inverse operator L−1 to both
sides of equation (9) and using the given conditions, we have:

u = −L−1(Ru) − L−1(Nu) + L−1(g). (10)

For nonlinear differential equations, the nonlinear operator Nu = F(u) is
expressed by an infinite series called the Adomian polynomials:

F(u) =

∞∑

m=0

Am. (11)

For Am polynomials, A0 depends only on u0, A1 depends only on u0 and u1,
A2 depends only on u0, u1, and u2 and so on. ADM provides the solution as
follows:

u =

∞∑

m=0

um. (12)

For F(u), the infinite series is a Taylor series about u0 as:

F(u) = F(u0)+F′(u0)(u−u0)+F′′(u0)
(u − u0)2

2!
+F′′′(u0)

(u − u0)3

3!
+ ... (13)

By rewriting the equation (12) in the form of u − u0 = u1 + u2 + u3 + ..., and
substitution in equation (13) and equating the two terms for F(u) in equation
(11) and (13), the relations for the Adomian polynomials are obtained in the
following form:

F(u) = A0 + A1 + A2 + ... =

= F(u0) + F′(u0)(u1 + u2 + ...) + F′′(u0)
(u1 + u2 + ...)2

2!
+ ...

(14)

By equating the terms of the above equation, the initial polynomials of the
Adomian polynomials are obtained as follows:

A0 = F(u0), (15)

A1 = u1F′(u0), (16)

A2 = u2F′(u0) +
1
2!

u2
1F
′′(u0), (17)

A3 = u3F′(u0) + u1u2F′′(u0) +
1
3!

u3
1F
′′′(u0), (18)
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A4 = u4F′(u0)+

(
1
2!

u2
2 + u1u3

)
F′′(u0)+

1
2!

u2
1u2F′′′(u0)+

1
4!

u4
1F

(iv)(u0). (19)

Now that the (Am) are obtained, the terms of equation (12) (i.e., the solution
to the problem) are determined by inserting the equation (11) into equation
(10).

4. Application and modification of ADM

One of the shortcomings of semi-analytical methods, including ADM, in
solving PDE is that they are unable of considering the boundary conditions
in the solution process [38]. Therefore, ADM has to be improved so that it
can include the boundary conditions, and consequently, obtain the correct
solution. The method proposed by Olivares [39] for ADM improvement was
used here.

According to equation (9), equation (6) and (7) can be rewritten as fol-
lows:

L1 = −R1 + g, (20)

L2 = −R2 − N. (21)

Then, the operators introduced in equations (20) and (21) are as follows:

L1 =
∂T̃ (x̃, Fo)
∂Fo

, R1 =
1

Ve
∂q̃(x̃, Fo)

∂x̃
, g = g0e−µ̃x̃

(
e−β̃Fo − e−δ̃Fo

)
,

L2 =
∂q̃(x̃, Fo)
∂Fo

, R2 =
2

Ve2 q̃(x̃, Fo)+
1

Ve
∂T̃ (x̃, Fo)

∂x̃
,

N =
γ

Ve
T̃ (x̃, Fo)

∂T̃ (x̃, Fo)
∂x̃

.

(22)

Once the given operators are determined, the values of T̃ (x̃, Fo) and q̃(x̃, Fo)
can be obtained according to equation (10). However, since the integration is
performed in the Fo direction, the boundary conditions are taken into account
at any stage of the solution process, which causes the solution to have errors
compared to the accurate solution [38]. Therefore, the method proposed by
Olivares [39] was then used to provide the solution.

Two perturbation functions were added to the initial conditions:

q̃∗(x̃, 0) = p1(x̃), (23)

T̃ ∗(x̃, 0) = sin(π x̃) + p2(x̃). (24)

Let the solution be in the form of T̃ = T̃0 + T̃1 + T̃2 + ... and q̃ = q̃0 + q̃1 +

+q̃2 + ... . Then, the functions T̃0 and q̃0 will be in the form of q̃0 = p1(x̃) and
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T̃0 = sin(π x̃) + p2(x̃). The values of other terms are obtained successively
using these two functions. Finally, the solution to the problem is obtained by
summing all the terms.

After obtaining the solution, the values of the function at the boundary
are determined, e.g., q̃∗(0, Fo) and T̃ ∗(1, Fo). These values are certainly
different from the boundary conditions of equation (8). The distance between
the initial values and the new values has to be minimized at this stage. For
this purpose, the distance between the new values and the values in equation
(8) are defined as follows:

d
[
q̃∗(0, Fo), q̃(0, Fo)

]
=

1∫

0

(q̃∗(0, Fo) − q̃(0, Fo))2dFo,

d
[
T̃ ∗(1, Fo), T̃ (1, Fo)

]
=

1∫

0

(
T̃ ∗(1, Fo) − T̃ (1, Fo)

)2
dFo,

d
[
q̃∗(x̃, 0), q̃(x̃, 0)

]
=

1∫

0

p1(x̃)2dx̃,

d
[
T̃ ∗(x̃, 0), T̃ (x̃, 0)

]
=

1∫

0

p2(x̃)2dx̃.

(25)

For the minimization problem, the bulk distance is now expressed as follows:

d = d
[
q̃∗(0, Fo), q̃(0, Fo)

]
+ d

[
T̃ ∗(1, Fo), T̃ (1, Fo)

]
+

+d
[
q̃∗(x̃, 0), q̃(x̃, 0)

]
+ d

[
T̃ ∗(x̃, 0), T̃ (x̃, 0)

]
.

(26)

To minimize the above expression, the forms of the perturbation functions
p1(x̃) and p2(x̃) have to be known. The most common option is to select a
polynomial form:

p1(x̃) = a0 + a1 x̃ + a2 x̃2 + ..., p2(x̃) = b0 + b1 x̃ + b2 x̃2 + ... (27)

Once the forms of the perturbation functions p1(x̃) and p2(x̃) are known, the
coefficients a0, a1, a2, ..., b0, b1, b2, ... can be obtained through minimization
of equation (26). Consequently, the values of perturbation functions p1(x̃)
and p2(x̃) are obtained thereby yielding the problem solution, i.e. T̃ (x̃, Fo)
and q̃(x̃, Fo).

5. Results and discussion

To evaluate the accuracy of the obtained solution, the results were com-
pared to the results of Lam and Fong [40], which is a linear analytical study
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(Fig. 2). Figure 2a and Fig. 2b show the temperature profile for Fo = 0.1
and Fo = 0.5, respectively. Other parameters were initialized based on the
values in Lam and Fong [40] (g0 = 100, µ̃ = 5, β̃ = 1, δ̃ = 5). Under these
conditions, the bulk distance and the perturbation functions coefficients are
as follows:

d = 0.00035, a0 = −0.01191411095729, a1 = 0.08909826408173,
a2 = −0.1591457465979, a3 = 0.1171 560861847, a4 = −0.0526205618035,
a5 = 0.01061939647927, b0 = 0.00670551494579, b1 = 0.04805013071037,
b2 = −0.3308149857957, b3 = 0.1703336781842, b4 = 0.4320798790908,
b5 = −0.2923371327660.

Fig. 2. Validation of ADM with an analytical study [40] (Ve = 1, γ = 0)

As can be seen in the figures, there is a good agreement between the
results of the analytical solution and the results obtained from ADM. Quan-
titatively, ADM has a 0.67% error in Fig. 2a and 0.83% error in Fig. 2b
compared to the analytical solution. In both graphs, the behavior of ADM is
consistent with the analytic solution. The only inconsistency is that in Fig. 2a,
ADM predicts the relative minimum of the graph with a slight distance from
the exact location.

5.1. Variations in Vernotte number

The effects of variations in Vernotte number on temperature profile is
shown in Fig. 3. In the early parts of the body, an increased Vernotte number
increases temperature. This behavior is almost opposite in the endpoints. An
increased Vernotte number extends the range of temperature variations and
the thermal behavior of the material changes from an exponential behav-
ior (which represents the Fourier heat conduction) to the wavelike behavior
(which represents the non-Fourier heat conduction). This behavior is due to

the nature of the Vernotte number
(
Ve2 =

α0τ

L2

)
. Greater relaxation times,
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Fig. 3. The effect of Vernotte number on temperature profiles (Fo = 0.5, γ = 0.1)

and consequently greater Vernotte numbers, show the greater tendency of
the body to deviate from the Fourier heat conduction.

5.2. Variations in thermal conductivity coefficient (γ)

The effects of variations in thermal conductivity coefficient on tempera-
ture profile are shown in Fig. 4. If the body is divided into three parts, in its
first one-third, an increased γ decreases temperature. In the middle one-third,
increase in γ increases the temperature. In the final one-third, the diagrams
converge to each other. Lower values of γ lead to greater temperature gradient
as well as greater surface temperature, and vice versa, i.e., larger γ leads to
smaller temperature gradient and surface temperatures. Thus, by increasing
γ, the diagrams show different behaviors. Since the heat source is spatially-
decaying, the thermal energy is dissipated at the end of the body, and the
diagrams converge to each other.

Fig. 4. The effect of γ on temperature profiles (Ve = 1, Fo = 0.5)



NONLINEAR SOLUTION TO A NON-FOURIER HEAT CONDUCTION PROBLEM IN A SLAB HEATED. . .139

5.3. Variations in Fourier number

Figure 5 shows the effects of variations in Fourier number. In the early
parts of the body, increasing the Fourier number at a given point increases
the temperature which is due to the increased heat source energy. Since
the Fourier number represents the dimensionless time, at very low Fourier
numbers, the temperature initial condition

[
T̃ (x̃, 0) = sin (π x̃)

]
is dominant in

the form of a sine wave in the background of temperature distribution. Over
time, the effects of heat source appear, and the wave-like behavior caused
by non-Fourier heat conduction is gradually observed in areas close to the
surface. At the endpoints, the diagrams converge to each other due to the
nature of the heat source discussed in the previous figure.

Fig. 5. The effect of Fourier number on temperature profiles (Ve = 1, γ = 0.1)

5.4. The effects of Fourier and non-Fourier heat conduction

A comparison was performed between the solution of the Fourier model
and the solution of the non-Fourier model. Figure 6 shows the comparison
between the two values of γ. In the diagrams of the nonlinear case, we have
γ = 0.5. The results are interesting. There are significant differences between
Fourier and non-Fourier solutions, and the variation gradient is greater in the
non-Fourier solution compared to the Fourier one. In the initial points of the
body, the non-Fourier solution takes greater values, and then, since it has a
steeper decreasing slope compared to the Fourier solution, the two solutions
coincide. After that, the Fourier solution has a greater value than the non-
Fourier one. In addition, Fig. 6 shows that the effect of non-linear equations
is more visible in the non-Fourier case. The diagrams in fact show that in
cases where the non-Fourier model should be used, the use of Fourier model
would have unacceptably large errors. Also assuming a constant thermal
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Fig. 6. The comparison between Fourier and non-Fourier solutions for linear and nonlinear cases

(Ve = 1, Fo = 0.5, Linear: γ = 0, NonLinear: γ = 0.5)

conductivity (especially in the non-Fourier case) causes the results to have
large error.

5.5. Sensitivity analysis

In this section, the sensitivity of the dimensionless temperature to the
variations in various parameters of the problem is analyzed. Figure 7 shows
the percentage change in temperature versus the percentage changes in vari-
ous parameters. The variations in the Fourier number (or the dimensionless
time) have the greatest effect on the temperature while the variations in γ and
Vernotte number have the least effect on the temperature. The heat source
parameters are also included among them. This result was expected, because
the non-Fourier heat conduction problems are extremely time-dependent, and

Fig. 7. Sensitivity analysis of the dimensionless temperature at x̃ = 0 with respect to different

parameters (Reference values: Ve = 1, γ = 0.1, Fo = 0.1, g0 = 100, µ = 5, β = 1, δ = 5)
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the time-dependent parameters, such as Fo, δ̃ and β̃, significantly affect the
temperature variations.

6. Conclusion

The laser heating problem of a finite one-dimensional body was investi-
gated in this paper. The Cattaneo-Vernotte thermal wave model was employed
for this purpose. Thermal conductivity was assumed temperature-dependent
which yielded a non-linear equation. The semi-analytical ADM method was
used for solving the equations. The results can be summarizes as follows:

1. It was concluded that the modified ADM used in this paper accurately
solves the PDE problems.

2. Increase in Vernotte number increases the temperature in first one-third
of the body. Also, increase in Fourier number increases the temperature in
first half of the body.

3. Assuming a temperature-dependent thermal conductivity creates sig-
nificant differences in temperature profiles which stresses the importance of
the nonlinear analysis of the problem.

4. In the present laser heating problem, there are significant differences
between Fourier and non-Fourier solutions that must be taken into account
in the analysis of similar problems.

5. In the present non-Fourier heat conduction problem, time-dependent
parameters significantly affect the temperature variations.

Nomenclature
c0 reference speed of thermal wave (ms−1) x space direction (m)
cp specific heat (Jkg−1K−1) x̃ dimensionless space direction
Fo Fourier number
g heat source (Wm−3) Greek symbols
g0 dimensionless intensity α0 reference thermal diffusivity (m2s−1)
g̃ dimensionless heat source β laser pulse rise-time parameter (s−1)
I0 laser intnsity (Wm−2) β̃ dimensionless laser pulse rise-time
k thermal conductivity (Wm−1K−1) parameter
k0 reference thermal conductivity (Wm−1K−1) γ dimensionless coefficient for taking
L characteristic length (m) into account of temperature-
q heat flux (Wm−2) dependent conductivity
q̃ dimensionless heat flux δ laser pulse fall-time parameter (s−1)
R surface reflectance δ̃ dimensionless laser pulse fall-time
T temperature (K) parameter
T0 reference temperature (K) µ absorption coefficient (m−1)
T̃ dimensionless temperature µ̃ dimensionless absorption coefficient
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t time (s) ρ density (kgm−3)
Ve Vernotte number τ relaxation time (s)

Manuscript received by Editorial Board, September 29, 2015;
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Nieliniowe rozwiązanie problemu niefourierowskiego przewodzenia ciepła w płycie
nagrzewanej źródłem laserowym

S t r e s z c z e n i e

W artykule badano działanie laserowego źródła ciepła na ciało jednowymiarowe o skoń-
czonych wymiarach. Do analizy rozkładu temperatury zastosowano niefourierowski model prze-
wodnictwa ciepła Cattaneo-Vernotte. Założono, że przewodność cieplna jest zależna od temperatu-
ry, w wyniku czego otrzymano równania nieliniowe. Do rozwiązania równań zastosowano przy-
bliżoną analityczną metodę dekompozycji Adomiana (ADM). Stwierdzono, że analiza nieliniowa
ma istotne znaczenie w problemach przewodnictwa ciepła typu niefourierowskiego. Zaobserwowano
istotne różnice między rozwiązaniami fourierowskimi i niefourierowskimi, co podkreśla celowość
stosowania tych ostatnich w podobnych problemach.


