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The goal of this research is to achieve close to real-time dynamics performance
for allowing auto-pilot in-the-loop testing of unmanned ground vehicles (UGV) for
urban as well as off-road scenarios. The overall vehicle dynamics performance is gov-
erned by the multibody dynamics model for the vehicle, the wheel/terrain interaction
dynamics and the onboard control system. The topic of this paper is the development
of computationally efficient and accurate dynamics model for ground vehicles with
complex suspension dynamics. A challenge is that typical vehicle suspensions involve
closed-chain loops which require expensive DAE integration techniques. In this paper,
we illustrate the use the alternative constraint embedding technique to reduce the cost
and improve the accuracy of the dynamics model for the vehicle.

1. Introduction

In this paper, we describe the constraint embedding approach for modeling
the dynamics of a 4-wheeled HMMWV vehicle, that has a double wishbone
suspension and an associated spring-damper unit at each wheel. Each of these
wheel suspensions contains a number of articulated bodies with multiple kine-
matic closed loops. Despite the large number of internal degrees of freedom,
due to the constraints, each suspension unit has only a single effective degree
of freedom.

The standard approach for modeling closed-chain system dynamics [1]
entails decomposing the system into a tree-topology system (or even a col-
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lection of independent bodies) and appending the closed-chain bilateral con-
straints to the equations of motion. A drawback of this approach is the in-
creased computation for solving the equations of motion. Another serious
drawback is the error drift that arises during the integration of the multibody
dynamics equations of motion. This error drift is usually handled by the use of
a differential-algebraic equation (DAE) solver and error correction algorithms
to manage the constraint error over time, adding even more computational
cost and accuracy error to the dynamics solution. Our desire for real-time per-
formance requires us to address these major computational drawbacks of the
conventional approaches for closed-chain dynamics as a step towards attaining
the real-time goal.

The recently developed constrained embedding (CE) method [2, 3] over-
comes these drawbacks for closed-chain dynamics models. In this paper we
describe the application of the constraint embedding approach for the vehi-
cle and suspension dynamics. The constraint embedded technique converts all
constraint loops into compound bodies with variable configuration that have
the same number of degrees of freedom as the number of independent degrees
of freedom for the loops they replace. These compound bodies internally han-
dle their internal degrees of freedom and constraints, effectively hiding them
from the dynamics solver. The resulting system topology is once again a tree
with only inter-body hinges and no bilateral constraints. The benefit of this
approach is that structure-based O(N) tree algorithms can be directly used to
solve the dynamics, and this formulation results in an ODE instead of a DAE.
Thus extra error control techniques are not needed. This method however is
more complex to implement, since the aggregated bodies now have configu-
ration dependent geometry. While CE method shares the minimal coordinates
attribute with projection dynamics techniques [1, 4], its advantage lies in the
preservation of the system’s tree topology that is necessary for the use of the
low-cost structure-based tree algorithms.

In this paper we describe the CE modeling approach for the individual
wheel suspensions, the overall vehicle dynamics model, and the adaptation of
the recursive O(N) dynamics algorithm for efficiently solving the equations
of motion. While generic iterative methods can be used to solve the kinematics
for the loops, we also describe analytical techniques that significantly improve
performance speed up and accuracy. In this paper we focus only on vehicle
dynamics. See references ([5] and [6] papers) for terramechanics and closed-
loop shared control scenario modeling using this approach.

We begin in Section 2 with an overview of the O(N) ODE techniques for
solving the dynamics of a tree-topology dynamics system. Section 3 takes up
the dynamics of non-tree topology systems, i.e. systems with closed-loop con-
straints that is typical of vehicle suspension systems. We provide an overview
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of the constraint embedding technique that solves closed-chain dynamics us-
ing O(N) ODE techniques, and describe the key differences in handling ag-
gregated bodies. Section 4 describes the HMMWV vehicle and the dynamics
model including the CE model for its double-wishbone wheel suspensions.
Finally, in Section 5 we describe analytical techniques that can be used for
the double-wishbone suspension kinematics to further speed up the dynamics
computations and improve their accuracy. The research described in this paper
was presented at a recent conference on mutibody dynamics [7].

2. Recursive tree system dynamics

The equations of motion for a multibody system with tree topology (i.e.
no closed loop constraints) and a N degrees of freedom are of the form

T = M(θ)θ̈̈̈ + C(θ, θ̇̇̇) (1)

Here M ∈ RN×N denotes the mass matrix for the serial-chain system, and
C ∈ RN is the vector of velocity dependent nonlinear Coriolis and velocity
dependent terms, and gravitational and external forces. The N dimensional
stacked vectors θ, θ̇̇̇ and T denote the system generalized coordinates, gener-
alized velocities and generalized forces. In this form, the tree-topology equa-
tions of motion can be propagated using an ODE integrator.

Using spatial operator techniques [3, 8], the following Newton-Euler Fac-
torization expression for the mass matrix in Eq. 1 and C can be obtained:

M(θ) = HφMφ∗H∗ ∈ RN×N and C(θ, θ̇̇̇)
4
= Hφ(Mφ∗a + b) ∈ RN

(2)

With n denoting the number of bodies in the system, the H ∈ RN×6n and
M ∈ R6n×6n spatial operators are block diagonal with the hinge axes and
body spatial inertia matrices for each of the bodies being the diagonal elements
respectively. The block lower-triangular φ ∈ R6n×6n operator’s elements are
the 6× 6 rigid body transformation matrices for body pairs in the system. The
a stacked vector contains the the body Coriolis accelerations, while b contains
the body gyroscopic, external and gravitational forces for the system.

Further use of spatial operator techniques [3,8] can be used to obtain the
following analytical innovations factorization and inversion expressions for
the mass matrix:
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M = HφMφ∗H∗

M = [I + HφK] D [I + HφK]∗

[I + HφK]−1 = [I − HψK]

M−1 = [I − HψK]∗D−1 [I − HψK]

(3)

The component elements of the ψ, D, and K spatial operators are obtained
from the following tip-to-base articulated body (AB) Riccati equation recur-
sion described here for the kth body:

P+(c) = τ(c)P(c)

P(k) =
∑

∀c∈{(k)

φ(k, c)P+(c)φ∗(k, c) + M(k)

D(k) = H(k)P(k)H∗(k)

G(k) = P(k)H∗(k)D−1(k)

τ(k) = G(k)H(k)

(4)

In the above, {(k) denotes the set of bodies that are the immediate children of
the kth body.

The analytical expression for M−1 in Eq. 3 allows to explicitly solve Eq. 1
and develop the following expression for the generalized accelerations:

θ̈̈̈ = [I − HψK]∗D−1[T − Hψ(KT + Pa + b)
]
− K∗ψ∗a (5)

Eq. 5 can be converted into the O(N) AB recursive forward dynamics algo-
rithm. The tip-to-base gather recursion steps for the kth body has the follow-
ing form:

z+(c) = z(c) + G(c)ε(c)

z(k) =
∑

∀c∈{(k)

φ(k, c)z+(c) + b(k) + P(k)a(k)

ε(k) = T(k) − H(k)z(k)

ν(k) = D−1(k)ε(k) (6)

The base-to-tip steps from body p to it’s child body k are as follows:

α+(k) = φ∗(p, k)α(p)

θ̈̈̈(k) = ν(k) − G∗(k)α+(k)

α(k) = α+(k) + H∗(k)θ̈̈̈(k) + a(k)

(7)
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The AB algorithm is the lowest order algorithm available for solving the for-
ward dynamics of tree-topology systems.

3. Closed chain dynamics

Multibody systems with closed-loop constraints can be decomposed into
an tree-topology system subject to explicit bilateral constraints. The decom-
position is not unique. A common option is to define the tree-topology system
as consisting of all the component bodies as independent bodies with the set
of constraints containing all the loop constraints as well as constraints for all
the inter-body hinges as shown in Fig. 1a. In this fully-augmented (FA) ap-
proach the dynamics model and constraints dimension is large but with sparse
structure. In the alternative tree-augmented (TA) approach, the tree-topology
system is chosen such that the number of explicit constraints is the minimum

Fig. 1. In the fully augmented model (a), all bodies are treated as independent bodies with inter-

-body constraints. In the tree augmented model (b), the system is decomposed into a tree system

together with a minimal set of inter-body constraints. In the constraint embedding model (c),

internal loops are aggregated into bodies to convert the system into a tree topology system

number as illustrated in Fig. 1b. The size of the dynamics model is much
smaller, but the mass matrix has much less sparsity. In either case, the equa-
tions of motion for multibody systems with closed-loop constraints have the
following form:

(
M G∗c
Gc 0

)[
θ̈̈̈

−λ

]
=

[
T − C

Ú

]
where Ú

4
= U̇̇̇(t) − Ġ̇̇cθ̇̇̇ ∈ Rnc

(8)
Here Gc denotes the constraint matrix, and λ the Lagrange multipliers cor-
responding to the constraints. DAE integration techniques are required for
solving the Eq. 8 dynamics model. One approach to solving the closed-chain
dynamics equations of motion is to assemble the matrix on the left and the
vector on the right in Eq. 8 and solve the linear matrix equation for the θ̈̈̈
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generalized accelerations. This is especially attractive for the FA model, since
the M matrix for this case is block diagonal and constant. Indeed, the whole
matrix is highly sparse for this case. This approach is analyzed in detail in
reference [4]. In the TA approach, the O(N) AB algorithm can be used for the
tree-topology component and is described in reference [9].

3.1. Constraint Embedding Approach

At the heart of the constraint embedding strategy for closed-chain sys-
tems is the transformation of a non-tree topology system into a tree topology
system. The approach is to isolate non-tree sub-graphs and remove them us-
ing aggregation to transform the system digraph into a tree. The constraint
embedding transformation is illustrated illustrated in Fig. 1c. The constraint
embedding strategy involves the following steps:
1. Decompose the non-tree digraph for the system into a spanning tree, T,

and a collection of cut-edges for the constraints. The set of cut-edges is
usually not unique.

2. For each cut-edge, identify the aggregation sub-graph, S, for the sub-graph
consisting of the node pair for the cut-edge.
A procedure for creating this S aggregation sub-graph is is as follows:
(a) Identify the smallest sub-tree that contains the nodes in the cut-edge.
(b) Remove the root node from this sub-tree to obtain the aggregation sub-

graph S for the aggregated body.
At the conclusion of the constrained embedding process, all of the constraints
are absorbed into the aggregated links. As a result, we once again have a tree-
topology system and the mass matrix factorization and inversion results, as
well as the O(N) AB algorithm for solving the dynamics as described in Sec-
tion 2 can be extended and applied to the closed-chain system as discussed in
detail in [2, 3].

3.2. Recursive CE Forward Dynamics

In this section we focus on the differences in the AB recursive dynamics
procedure that are specific to the aggregated body S. Towards this, let S(S)
denote the set of articulated rigid bodies contained within the S body, n(S)
the number of these bodies, Nf(S) the number of generalized velocities as-
sociated with all the bodies in S(S), and N(S) the number of independent
generalized velocities for the S body. The θ̇̇̇(S) generalized velocities for the
S body are the N(S) independent generalized velocities among the sum to-
tal of Nf(S) generalized velocities θ̇̇̇S for the individual rigid bodies within
S(S). Let XS ∈ RNf(S)×N(S) denote the configuration dependent matrix
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that maps the θ̇̇̇(S) independent generalized velocities into the θ̇̇̇S set of in-
ternal generalized velocities such that

θ̇̇̇S
4
=




θ̇̇̇(j1)
...

θ̇̇̇(jn(S))


 = XSθ̇̇̇(S) and T(S) = X∗S




T(j1)
...

T(jn(S))




where ji ∈ S(S)

(9)

Also, for the aggregated body

M(S)
4
= diag

{
M(i)

}
i∈S(S)

∈ R6n(S)×6n(S)

H(S)
4
= X∗SHS ∈ RN(S)×6n(S)

where HS
4
= diag

{
H(i)

}
i∈S(S)

∈ RNf(S)×6n(S)

φ(S, c)
4
=




0
...

φ(℘(c))
...
0



∈ R6n(S)×6 where ℘(c) ∈ S(S)

φ(p, S)
4
= [φ(p, j1), · · · , φ(p, jn(S)] ∈ R6×6n(S) where ji ∈ S(S)

(10)

℘(c) denotes parent body for the c body, and p is the parent body for the
aggregated body. One noticeable difference is that the quantities associated
with the S aggregated body have row/column dimension 6n(S) instead of
just 6 encountered for regular rigid bodies. For the vectorial quantities we
have

b(S)
4
=




b(j1)
...

b(jn(S))


 ∈ R6n(S) and a(S)

4
=




a(j1)
...

a(jn(S))


+

+H∗SẊSθ̇̇̇ ∈ R6n(S) where ji ∈ S(S)

(11)

Though the dimensions are larger, we can also see that many of these quanti-
ties have highly sparse structure that can be used to reduce the cost of the steps
in the AB forward dynamics recursions. The most computationally expensive
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part of the AB steps is the computation and inversion of the D(S) symmetric,
positive definite matrix in Eq. 4. Its size is the number of independent degrees
of freedom for the aggregated link. Thus, the computational cost of the AB al-
gorithm is no longer linear in the number of independent degrees of freedom
for the aggregated links, but, instead, is (in the worst case) quadratic in the total
degrees of freedom in the S aggregation sub-graph, and cubic in the number
of independent degrees of freedom in the S sub-graph. These additional costs,
however, are modest when the loops are of moderate size.

3.3. CE Kinematics

The CE dynamics solution process also requires the following kinematics
computations:

1. forward kinematics computation that maps the independent θ(S) coordi-
nates into the θS full generalized coordinates values for the S CE graph.

2. velocity kinematics computation of the XS matrix in Eq. 9 that maps the
θ̇̇̇(S) independent generalized velocities into the θ̇̇̇S internal generalized
velocities for the S.

3. the ẊSθ̇̇̇(S) vector needed in Eq. 11.

In this section we describe the general numerical procedures for carrying out
the kinematics computations in the above steps, before exploring analytical
techniques for the HMMWV suspension in Section 3.3 that are both faster and
more accurate. The general method for carrying out the forward kinematics
computation in step (1) is to use a Newton-like iterative procedure to converge
on the solution that satisfies the constraints within the S subgraph.

We now derive the general expression for the configuration dependent XS

matrix for step (2). For loop constraints, we have an algebraic constraint on
the relative velocities of a pair of physical closure nodes in the sub-graph.
Denoting a representative pair of closure nodes as o and p, such a constraint
can be expressed as

δS = A(Vo − Vp) = A(Jo − Jp)θ̇̇̇S = Y θ̇̇̇S = [Y1, Y2]

[
θ̇̇̇uS

θ̇̇̇(S)

]
(12)

Here, A denotes the constraint on the relative spatial velocities between this
pair of closure nodes, and Jo, Jp denote sub-graph Jacobians relating the gen-
eralized velocities of the sub-graph to the spatial velocities at the o and p

closure nodes. Also, Y
4
= A(Jo − Jp), θ̇̇̇uS is the complement of the θ̇̇̇(S)

sub-vector in θ̇̇̇S and represents the dependent generalized velocity coordi-
nates. Jo1, etc., and Y1 and Y2 represent sub-blocks within Y. When the θ̇̇̇S
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generalized velocities satisfy the constraints within S, the constraint velocity
error δS = 0. With partitioning chosen such that Y1 is square and full rank it
follows from Eq. 12 that:

θ̇̇̇uS = −Y−1
1 Y2 θ̇̇̇(S) =⇒ XS =

[
−Y−1

1 Y2

I

]
(13)

The following derives an expression for Ẋ̇̇Sθ̇̇̇(S) needed in step (3). With

Z
4
= Y−1

1 Y2, we have

dZ

dt
=

dY−1
1

dt
Y2+ Y−1

1
dY2

dt
=−Y−1

1
dY1

dt
Y−1

1 Y2 + Y−1
1

dY2

dt
=Y−1

1

[
dY2

dt
−

dY1

dt
Z

]

Thus,

ẊS =

[
−Ż̇̇

0

]
=

[
Y−1

1

[
Ẏ̇̇1Z − Ẏ̇̇2

]

0

]
=

[
−Y−1

1 Ẏ̇̇XS

0

]
=⇒ ẊSθ̇̇̇(S)=

[
−Y−1

1 Ẏ̇̇ θ̇̇̇S

0

]

Now from Eq. 12 it follows that

δ̇S = Ẏ θ̇̇̇S+Y θ̈̈̈S =⇒ Ẏ θ̇̇̇S =
[
δ̇S

]
θ̈̈̈S=0

=⇒ ẊSθ̇̇̇(S)=

[
−Y−1

1

[
δ̇S

]
θ̈̈̈S=0

0

]

(14)

Note that while δS represents the velocity level constraint violation error with-
in S, δ̇S represents the acceleration level constraint violation error. These
quantities are easily computed using the normal kinematics procedures for
given θ̇̇̇S and θ̈̈̈S values.

[
δ̇S

]
θ̈̈̈S=0

represents the acceleration level error

with θ̈̈̈S = 0, i.e. just the velocity dependent contribution to the acceleration
level error. Eq. 13 and Eq. 14 together provide general solutions for computing
XS and ẊSθ̇̇̇(S) needed for solving the CE dynamics.

4. The HMMWV Vehicle

The HMMWV vehicle has four independently suspended wheels and a
steering linkage controlling the front wheel pair as shown in Fig. 2. The
HMMWV employs a double wishbone suspension for all of its wheels that
offer more robustness than the similar McPherson strut and less complexity
than the multi-link suspension. Each of the wheel suspensions are connected
to the vehicle chassis via bushings. Including the compliance of the bush-
ings in the dynamics model leads to a tree topology model for the vehicle
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and its suspensions, and thus the efficient O(N) AB dynamics algorithm and
the ODE formulation from Section 2 can be directly applied for solving the
vehicle’s equations of motion. An alternative modeling option described in
[10] for allowing larger integrator time steps is to treat the bushings as being
infinitely stiff – and hence as forming bilateral constraints between the sus-
pensions and the chassis. In this case, the vehicle dynamics topology with the
double wishbone suspension and the steering linkage contains closed loops.
Due to these loops, the vehicle model topology no longer has a tree topology,
and the O(N) AB algorithm and ODE formulation for tree systems can no
longer be used. In the rest of this paper we describe the use of the constraint
embedding technique for recovering the use of the O(N) AB algorithms and
ODE formulation for this more challenging vehicle dynamics model.

Fig. 2. The HMMWV vehicle with the double wishbone wheel suspensions from reference [11]

The double wishbone suspension (Fig. 3) is comprised of two control arms
that form a fourbar linkage with the spindle and the HMMWV chassis. In
addition, the lower control arm forms a slider-crank linkage with the shock
absorber and the HMMWV chassis. Finally, there is a tie-rod that connects to
the spindle forming the final closed chain in the suspension. The spindle loop
is unique in that it falls outside the plane of the other two loops and its main
purpose is to control the steering angle of the wheels, which are connected to
the spindle. In the front suspensions, the tie rod is attached to the steering bar
while in the rear suspensions, the tie rod is attached to the HMMWV chassis,
which fixes the steering angle of the rear wheels.
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Fig. 3. The front and left views of the front wheel suspension from reference [11]

The joints that connect the two control arms with the spindle in the phys-
ical suspension are ball and socket joints and have full rotational degrees of
freedom. This is useful for the physical suspension in which design imper-
fections and sudden shocks can bring the control arm loop out of plane. In
the absence of such non-idealities, it is more efficient to represent these joints
with a universal joint with one rotational degree of freedom along the spindle
axis and the other in plane with the control arm loop. The joints that connects
the tie rod to the spindle is also manufactured as a ball and socket joint in the
physical HMMWV, however this introduces an uncontrolled rotational degree
of freedom in the model in which the tie rod can freely spin about its own
axis. Again, the joint connecting the tie rod and spindle can be modeled more
simply as a universal joint.

Fig. 4. The HMMWV vehicle with the front suspensions and the steering elements from reference

[11]
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The steering mechanism consists of a simple fourbar linkage (Fig. 4) com-
prised of the steering link, the pitman arm, the idler arm, and the HMMWV
chassis. In our model, the steering is controlled by assigning a prescribed mo-
tion to the pitman arm. The ends of the steering arm are connected to the two
front suspension tie rods and the resulting motion in the steering arm turns the
front wheels about their spindle axes.

4.1. CE Model for the HMMWV Vehicle

A schematic for the double wishbone linkage for kinematic analysis is
shown in Fig. 5. In the figure, AD is the lower control arm, DF the upright
arm, FG the upper control arm. BI is the lower shock absorber arm, HJ the
upper shock arm and HI the compression. EK denotes the spindle arm, and
KL the tierod. The point L denotes the end of the tierod. For the rear wheels,
L is attached to the vehicle chassis via a ball joint and its position is therefore
fixed. For the pair of front wheels, the L points are attached to points on the
steering arm that is a part of the Pitman steering mechanism as shown in Fig. 6.
Steering is accomplished by changing the steering angle, which causes the
steering arm to move the tierods and change the wheel orientations.

Fig. 5. Schematic for the double wishbone suspension assembly

Each wheel suspension has seven bodies (without including the wheel)
and three constraints resulting in a single degree of freedom for each suspen-
sion. Each suspension is decomposed into a tree-topology system with the
hinges at J, G and L being treated as constraints. Constraint embedding is
used to model each suspension system as a individual single degree of free-
dom aggregated body. Each such aggregated body is attached to the chassis
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parent body and in turn has a single wheel as a child body. The tierod end
point locations for the front wheel suspensions are attached to the Pitman
steering mechanism’s steering link and are movable. While in principle the
steering mechanism introduces additional constraints between the front wheel
suspensions, for the purposes of this model we treat the steering mechanism
kinematically so that its effect on the dynamics is only to set the position
of the tierod end points as a function of the steering wheel angle. Thus the
CE dynamics model consists of the chassis body, four suspension aggregated
bodies and four wheel bodies with overall fourteen degrees of freedom. The
CE O(N) method described in Section 3 can be used to solve the equations of
motion of this ODE model to simulate the vehicle dynamics.

5. Analytical double wishbone kinematics

Section 3.3 describes a numerical approach for computing the XS need-
ed for the constraint embedding dynamics. While the method is general, re-
placing it with analytical methods when possible provides a way to improve
computational speed and accuracy.

In this section we derive analytical expressions for the forward kinemat-
ics, as well as the velocity level XS for planar four-bar linkages, which will
provide a stepping stone for developing expressions for the full HMMWV
wheel suspensions. Each suspension has only a single degree of freedom, and
we choose the generalized coordinate with the lower control arm, ∠QAD, as
the independent generalized coordinate and denote it by the symbol θ.

The three loops in the suspension system are:
1. the ADFG lower/upper control arm loop consisting of the planar four-bar

linkage containing the upper and lower control arms;
2. the ABJ shock absorber loop involving the planar shock absorber mecha-

nism;
3. the EKL spindle loop involves the non-planar spindle and tie-rod mecha-

nism.
We now derive analytical expressions for the forward kinematics as well as
the velocity kinematics for each of the loops.

5.1. Lower/Upper control arm kinematics

For the forward kinematics we need to determine the values of all the de-
pendent angles for a value of the independent angle. We do the initial deriva-
tion using absolute angles and use this to obtain expressions for the relative
angle generalized coordinates. We use the following symbols for the four-bar
parameters for the derivations within this section:
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a = |GA|, b = |AD|, c = |DF|, d = |FG|

θ3 = ∠PFO, θ4 = ∠QGF

The forward kinematics problem for the lower/upper control arm loop is to
determine the dependent generalized coordinates ∠NDO, ∠OFG and ∠RGA

as functions of the θ = ∠QAD independent coordinate.
For 2D kinematic analysis, we use a derivation based on complex numbers

and the 2D exponential exp(x) = cos(x) + i sin(x). We have

a + b exp(iθ) = c exp(iθ3) + d exp(iθ4) (15)

Equating the real and imaginary parts leads to

a + b cos(θ) = c cos(θ3) + d cos(θ4)

b sin(θ) = c sin(θ3) + d sin(θ4)
(16)

Thus
c cos(θ3) = a + b cos(θ) − d cos(θ4) = x − d cos(θ4)

where x
4
= a + b cos(θ)

c sin(θ3) = b sin(θ) − d sin(θ4) = y − d sin(θ4)

where y
4
= b sin(θ)

(17)

Summing up the squares of both sides leads to

c2 = x2 + y2 + d2 − 2d(x cos(θ4) + y sin(θ4))

⇒ x cos(θ4) + y sin(θ4) =
x2 + y2 + d2 − c2

2d

(18)

Dividing both sides by
√

x2 + y2 leads to

cos(θ4 − γ) =
x2 + y2 + d2 − c2

2d
√

x2 + y2
where γ

4
= tan−1

(y

x

)
(19)

Thus

θ4 = γ± cos−1

(
x2 + y2 + d2 − c2

2d
√

x2 + y2

)
(20)

Note that we have two possible solutions for θ4. Then from Eq. 17

θ3 = tan−1
(

y − d sin(θ4

x − d cos(θ4)

)
(21)
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With the solution for the absolute angles, the values of the dependent general-
ized coordinates are

∠NDO = π − (θ − θ3), ∠OFG = θ4 − θ3 and ∠RGA = π − θ4 (22)

The above provide the analytical forward kinematics expressions for the low-
er/upper control arm four-bar linkage. For the velocity level expressions, it
follows from Eq. 22 that

˙∠NDO = −(θ̇ − θ̇3), ˙∠OFG = θ̇4 − θ̇3 and ˙∠RGA = −θ̇4 (23)

We thus need to determine analytical expressions for θ̇3 and θ̇4 relationships
that map the independent. We begin by taking the time derivative of Eq. 15 to
obtain

θ̇b exp(iθ) = θ̇3c exp(iθ3) + θ̇4d exp(iθ4)

⇒ θ̇b exp(i(θ − θ4)) = θ̇3c exp(i(θ3 − θ4)) + θ̇4d
(24)

Equating the imaginary sides of both sides leads to

θ̇b sin(θ − θ4) = θ̇3c sin(θ3 − θ4)

⇒ θ̇3 = pθ̇ where p
4
=

b sin(θ − θ4)

c sin(θ3 − θ4)

(25)

Similarly

θ̇4 = qθ̇ where q
4
=

b sin(θ − θ3)

d sin(θ4 − θ3)
(26)

This leads to the following closed-form expression for the four-bar portion of
the XS:

XS =




p − 1
q − p

−q


 (27)

These equations represent a complete set of analytical kinematic expressions
needed for constraint embedding solution process for a four-bar linkage.

5.2. Shock absorber loop kinematics

We use the following symbols for the shock absorber loop parameters
within this section:

x = |AJ|, y = |AB|, z = |BJ|

β = ∠CQJ, η = ∠CQB, γ = ∠MBJ
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The forward kinematics problem here is to determine the dependent general-
ized coordinates ∠DBJ and the signed magnitude r of HI as functions of the
θ independent coordinate. The assumption is that H and I coincide when the
shock absorber compression is zero. We have

x exp(iβ) = y exp(iη) + z exp(iγ)

⇒ z exp(iγ) = x exp(iβ) − y exp(iη)
(28)

Note that x, β, |BI| and |HJ| are constant and do not change over time, and
η = θ − π/2. It follows from the real and imaginary parts of Eq. 28 that

γ = tan−1
(

x sin(β) − y sin(η)

x cos(β) − y cos(η)

)
and z =

x cos(β) − y cos(η)

cos(γ)

Thus analytical expressions for the shock absorber loop’s generalized coordi-
nates are thus

∠DBJ = γ − η and r = z − (|BI| + |HJ|)

For velocity kinematics, time differentiating Eq. 28 leads to

0 = iη̇y exp(iη) + iγ̇z exp(iγ) + γż exp(iγ) (29)

Multiplying both sides by exp(−iγ) leads to

0 = iη̇y exp(i(η − γ)) + iγ̇z + ż

Equating the real and imaginary parts results in

0 = −η̇y sin(η − γ) + ż ⇒ ż = y sin(η − γ)η̇

and 0 = η̇y cos(η − γ) + γ̇z ⇒ γ̇ = −
y cos(η − γ)

z
η̇

Since η̇ = θ̇ and ṙr = ż, the expressions for the generalized velocities for the
shock absorber loop are

˙∠DBJ = −

(
1 +

y cos(η − γ)

z

)
θ̇

ṙr = y sin(η − γ)θ̇

The contributions to XS are:

XS =


−

(
1 +

y cos(η − γ)

z

)

y sin(η − γ)/r


 (30)
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5.3. Spindle/tierod loop kinematics

We use α to denote the 1 degree of freedom generalized coordinate for
the spindle’s rotation about the DF upright arm. The R(α) rotation matrix
associated with this generalized coordinate has the form

R(α) =




cos(α) − sin(α) 0
sin(α) cos(α) 0

0 0 1


 (31)

The tierod has 2 degree of freedom generalized coordinates for rotations about
the X and Z successive axes at K. We denote these coordinate angles as χ and ζ

respectively. The forward kinematics for the spindle/tierod look requires solv-
ing for α, χ and ζ as a function of the θ independent generalized coordinate.
We have −→

EL −
−→
EK =

−→
KL

Given a value for the independent coordinate θ, the location of O is known,
and thus so is the vector

−→
EL. Thus

|
−→
EL|2 + |

−→
EK|2 − 2(

−→
EL∗)(

−→
EK) = |

−→
KL|2

Also
−→
EK = R(α)

−→
EK0, where

−→
EK0 is the vector for the unrotated spindle arm.

Thus −→
EL∗R(α)

−→
EK0 =

1
2

(
|
−→
EL|2 + |

−→
EK|2 − |

−→
KL|2

)

Let the elements of the vectors
−→
EL and

−→
EK0 in the vertical arm frame be given

by

−→
EL =




−→
EL(x)−→
EL(y)−→
EL(z)


 and

−→
EK0 =




−→
EK0(x)−→
EK0(y)−→
EK0(z)




With
A

4
=
−→
EL(x)

−→
EK0(x) +

−→
EL(y)

−→
EK0(y)

and B
4
= −

−→
EL(x)

−→
EK0(y) +

−→
EL(y)

−→
EK0(x)

Eq. 31 leads to

A cos(α) + B sin(α) = X

where X
4
=

1
2

(
|
−→
EL|2 + |

−→
EK|2 − |

−→
KL|2

)
−
−→
EK(z)

−→
EK0(z)
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Defining

β
4
= tan−1

(
B

A

)

we have

cos(α − β) =
X√

A2 + B2
⇒ α = β± cos−1

(
X√

A2 + B2

)

Once α value is determined, the location of the tierod axes at K is known and
so is the vector

−→
KL. The χ and ζ tierod generalized coordinates are then simply

the elevation and azimuth angles for the
−→
KL vector as seen from the spindle’s

frame. Using the elements of
−→
KL in the spindle fixed frame we then have

χ = sin−1

(−→
KL(z)

|
−→
KL|

)
and ζ = tan−1

(−→
KL(y)
−→
KL(x)

)

For velocity kinematics, we need to solve for the α̇, χ̇ and ζ̇ generalized ve-
locities for the spindle loop as a function of the θ̇ independent generalized
velocity. For a given, θ̇, we can use the analytical velocity expressions de-
rived so far in this expression to compute the vE linear velocity of point E on
the spindle with respect to A on the chassis. Since the end of the tierod L is
constrained by a ball joint to the chassis, the relative motion from the spindle
loop generalized velocities when combined with vE has to result in zero linear
velocity at L. Thus

vE + JEL



α̇

χ̇

ζ̇


 = 0 ⇒



α̇

χ̇

ζ̇


 = −J−1

ELvE

where JEL denotes the 3×3 Jacobian that maps the spindle generalized veloc-
ities into the linear velocity of L with respect to E on the spindle. The columns
of this Jacobian are simply the cross product of the vector from the spindle
hinge axis location to L and the hinge axis for each of the three hinge axes.
Additionally, with JAE and JDE denoting the 3× 1 Jacobian matrices for the
vE linear velocity from the A and D hinge degrees of freedom, we have

vE = [JAE, JDE]

[
θ̇

˙∠NDO

]
27
= [JAE + (p − 1)JDE]θ̇

⇒



α̇

χ̇

ζ̇


 = −J−1

EL[JAE + (p − 1)JDE]θ̇

(32)
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Eq. 32 defines the contribution of the spindle loop to the XS matrix for the
velocity kinematics.

5.4. Front steering kinematics

Figure 6 shows a schematic for the Pitman steering mechanism for the
front wheels. With T and W being points on the chassis, the TU and WV links
are the left and right idler arms respectively that connect to the LUVL steering
link. The L end points of the steering link are connected to the tierods for the
front wheels. TUVW represents a planar four-bar loop within the mechanism.
Steering changes the ∠XTU angle causing the steering link, and consequently
the left and right wheel tierods to move and change the orientation of the front
wheels. For the purposes of dynamics modeling, the only contribution of the

Fig. 6. Schematic for the Pitman steering mechanism for the front wheels

steering mechanism is to the positioning of the tierod end points for the front
wheels. The analytical approach for four-bar mechanism forward kinematics
used in Section 5.1 can be used for the Pitman steering to determine its shape
as a function of the steering angle and consequently the location of the tierod
end points. The instantaneous location of the tierod endpoints are used in the
spindle kinematics described in Section 5.3 for the front suspensions.

6. Conclusions

In this paper we describe in detail the application of constrained embed-
ding technique for the modeling of the dynamics of a HMMWV vehicle with
double wishbone suspension systems. Constraint embedding allows us to for-
mulate the dynamics as an ODE system, and in a way that preserves the un-
derlying structure of the system so that low-cost recursive methods for min-
imal coordinate systems can be applied for solving the equations of motion.
We further illustrate analytical kinematic techniques for the HMMWV double
wishbone suspension that can be used to speed up and improve the accuracy
of the overall vehicle dynamics.
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Metoda więzów wbudowanych w modelowaniu dynamiki zawieszenia pojazdu

S t r e s z c z e n i e

Celem badań było uzyskanie osiągów bliskich dynamice czasu rzeczywistego, by umożliwić
testowanie bezzałogowych pojazdów naziemnych (UGV) z autopilotem w zamkniętej pętli w wa-
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runkach ruchu miejskiego i jazdy terenowej. O ogólnych osiągach dynamicznych pojazdu decydu-
je model dynamiczny układu wielu ciał dla tego pojazdu, dynamika oddziaływań wzajemnych kół
i podłoża i pokładowy system sterowania. Tematem artykułu jest opracowanie wydajnego obliczenio-
wo i dokładnego modelu dynamiki pojazdu naziemnego ze złożoną dynamiką zawieszenia. Wyzwanie
polega na tym, że typowe zawieszenia pojazdów zawierają pętle łańcuchów zamkniętych, które
wymagają kosztownych technik całkowania równań różniczkowo-algebraicznych (DAE). W artykule
autorzy zilustrowali zastosowanie podejścia alternatywnego, metody więzów wbudowanych (Con-
straint Embedding, CE), co pozwala zredukować koszty obliczeniowe i poprawić dokładność modelu
dynamiki pojazdu.


