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Deep bed filtration is an effective method of submicron and micron particle removal from the fluid 
stream. There is an extensive body of literature regarding particle deposition in filters, often using 
the classical continuum approach. However, the approach is not convenient for studying the 
influence of particle deposition on filter performance (filtration efficiency, pressure drop) when non-
steady state boundary conditions have to be introduced. For the purposes of this work the lattice-
Boltzmann model describes fluid dynamics, while the solid particle motion is modeled by the 
Brownian dynamics. For aggregates the effect of their structure on displacement is taken into 
account. The possibility of particles rebound from the surface of collector or reentrainment of 
deposits to fluid stream is calculated by energy balanced oscillatory model derived from adhesion 
theory. The results show the evolution of filtration efficiency and pressure drop of filters with 
different internal structure described by the size of pores. The size of resuspended aggregates and 
volume distribution of deposits in filter were also analyzed. The model enables prediction of 
dynamic filter behavior. It can be a very useful tool for designing filter structures which optimize 
maximum lifetime with the acceptable values of filtration efficiency and pressure drop. 
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1. INTRODUCTION 

Deep bed filtration is an effective method of submicron and micron particle removal from the fluid 
stream. The quality of a filter can be described using three parameters, namely, pressure drop on the 
filter, its separation efficiency and retention capacity. These factors provide information about the 
economics of filtration and water purity. They depend mainly on particle and filter pore size and 
material properties of particles and filter media. There is an extensive body of literature on the initial 
state of filtration, when previously deposited particles have not significantly, up to this point, changed 
the fluid flow field and surface open for deposition. Therefore literature data cannot be applied for 
prediction of the lifetime of a filter. The presence of previously deposited particles produces the 
increase of both – filtration efficiency and pressure drop. It is worth noting that not only the total 
amount of deposited particles, but also their spatial distribution and structure affect filter performance 
(Przekop and Gradoń, 2008). Thus the development of a comprehensive model that takes into account 
all possible phenomena occurring during the filtration process is necessary. 

Most recently published papers (Karadimos and Ocone, 2003; Przekop and Podgórski, 2004; Przekop 
et al., 2004; Sztuk et al., 2012; Wang et al., 2006) consider particle deposition on the collector using the 
classical continuum approach. This approach can be efficiently used only for the initial stage of 
filtration, when previously deposited particles have not as yet significantly changed the fluid flow field 
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and surface open for deposition. Some papers (Dunnett and Clement, 2006; Dunnett and Clement, 
2012) take into account deposit growth, but the approach requires making assumptions of deposit 
structure. The important advantage in deep bed filtration modeling was introduction of lattice gas 
automata (Biggs et al., 2003) and lattice-Boltzmann method (Long and Hilpert, 2009), that allows to 
take into account the geometry of flow change due to deposition of suspended particles. Biggs et al. 
(2003) have studied the deposition of particles in 2D constriction unit cell and random 2D porous 
medium. Long and Hilpert (2009) have studied the filtration in sphere packings, using advection-
diffusion equation for transport of particles. By performing the set of numerical experiments the 
authors have developed the correlation for diffusional efficiency, but interception and sedimentation 
efficiency could be only obtained by employing terms from unit cell correlations. The authors have also 
reported the numerical instabilities for the fluid velocities higher than those of m/s order. 

The growth of deposits causes the decrease of local porosity and thus the increase of local fluid velocity 
and shear stress that may lead to the re-entrainment of single particles or aggregates. The phenomenon 
is not necessarily negative as resuspended particles may redeposit at the deeper layers of a filter 
structure, which results in a more uniform distribution of deposits through the filter and prevents the 
filter from clogging which boosts the filter lifetime. In this work we combine lattice-Boltzmann 
hydrodynamics, Brownian dynamics method for particles displacement and energy balanced model of 
adhesion to find a comprehensive model that describes the mentioned above phenomena and may 
predict their effect on filter performance e.g. deposition efficiency, volume distribution of deposits or 
pressure drop. 

2. THEORETICAL BACKGROUND 

2.1. Filter structure model 

The real structure of pores formatting a filter is too complicated for direct modeling. In this work we 
have decided to examine the constricted tube model. The model was proposed by Payatakes et al. 
(1973). The geometry of a unit cell, presented in Fig. 1, is described by the inlet and outlet radii of the 
tube, the tube radius in the narrowest cross section, the tube length and its orientation angle. The model 
accounts for the fluid velocity variations and phenomena related to converging/diverging character of 
flow within pores. 

 

Fig. 1. The geometry of unit cell 
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The overall structure of a porous medium is modeled as a cubic lattice of unit cells (Skouras et al., 
2004). The cell inclination was chosen to be equal  =sin-1(1/√3) so as not to favor flow along any of 
the main directions. (Fig. 2). 

 

Fig. 2. Flow directions within the unit cells of network 

2.2. Lattice-Boltzmann model of hydrodynamics 

Complete information on the statistical description of a fluid at, or near, its thermal equilibrium is 
assumed to be contained in the one-particle phase-space distribution function f (x, t, �) for atomic 
constituents of the system. The variables x and t are the space and time coordinates of the atoms and � 
stands for all other phase-space coordinates e.g. momentum, momentum flux. Since collisions preserve 
conservation laws, by integration of Boltzmann equation over the continuity equation and momentum 
tensor, an equation describing the macrodynamics of a system can be derived. To build a cellular-space 
picture with collective motion dynamics predicted by Navier-Stokes equation, a lattice on which 
particles move, collision rules and other restrictions characteristic for a chosen model should be 
defined. In this work a 3-D lattice with 19 allowed movement directions usually referred to as D3Q19, 
was used. The allowed directions, aside a particle at rest, are the middle of faces and edge. 

The evolution of the system is described by the expression: 

      fΩ=t,xf+t,+exf i 1


 (1) 

The outcome of a collision can be approximated by assuming that the momentum of interacting 
particles will be redistributed at some constant rate toward an equilibrium distribution fi

eq(x,t) (Qian  
et al., 1992). This simplification is called the single-time-relaxation approximation or lattice-BGK 
(Bhatnagar-Gross-Krook) and can be given by: 

      fΩ=t,xf+t,+exf i 1


 (2) 

In the single-time-relaxation approximation, the momentum distribution at each lattice site is forced 
toward the equilibrium distribution at each time step. In the absence of external forces, the equilibrium 
distribution of a state with zero net momentum is just equal to momentum in each direction. The rate of 
change toward equilibrium is 1/ , the inverse of relaxation time, and is chosen to produce the desired 
value of fluid viscosity. 

  12
2

2

τ
c

=ν s  (3) 

The equilibrium distribution fi
eq(x,t) is given as follows: 
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where ai are the model dependent constants. The values of parameters in Eq. (4) for different lattice 
geometries can be found in Masselot (2000). The values of ai’s for a particle at rest, the middles of 

faces and edges are 1/3, 1/18 and 1/36, respectively. The speed of sound, sc , is equal to 31/ . 

The equation of state for a discrete space has the following form: 

 ρc=P s
2  (5) 

2.3. Brownian dynamics particle motion model 

Determination of the structures of deposited particles in a filter requires the knowledge of an individual 
particle history, its position and velocity vectors. The Lagrangian method of analysis is commonly used 
to describe the process. Particle trajectory is calculated from the generalized Besset-Boussinesqu-Ossen 
equation, which in its simplified form is reduced to the following expression: 

 (R)(ext)(D) +F+F=F
dt

dv
m  (6) 

2.3.1. Single particle motion model 

Foundations of the Brownian Dynamics were established by Chandrasekhar (1943) for a Stokesian 
particle in a stationary fluid and for a force-free field. In this work an extension of BD for the case of 
moving fluid at the presence of external forces derived by Podgórski (2002) was used. The model takes 
into account Brownian motion, inertial effects, convection in a fluid and external forces. Integration of 
Equation (6) for the time interval Δt, small enough so that the host fluid velocity ui and the external 
force Fi

(ext) may be assumed constant over (t,t + Δt), gives the following bivariate normal density 
probability distribution functions φi(Δvi, ΔLi) that during the time interval Δt the particle will change its 
ith component of velocity by Δvi and it will be displaced by the distance ΔLi in ith direction. 
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 (7) 

The generalized algorithm for the Brownian dynamics can be formulated as follows. For a given initial 
particle position and its initial velocity components, vi, at the moment t, we calculate the local fluid 
velocity, ui, the external forces, Fi

(ext), then, we find the expected values <Δvi> and <ΔLi> and the 
correlation coefficient, ρc. Next, we generate two independent random values GLi, Gvi, having the 
Gaussian distribution with zero mean and unit variance. Finally, we calculate the change of particle 
velocity, Δvi, and the particle linear displacement, ΔLi, during the time stem Δt from the expressions 
accounting for deterministic and stochastic motion. 

All the steps are repeated for each co-ordinate i = 1, 2, 3. Having determined the increments Δvi  and 
ΔLi the new particle velocity at the moment t + Δt is obtained as vi(t+Δt) = vi+Δvi, and in the same 
manner the new particle position is calculated. After completing one time-step of simulations, the next 
step is performed in the same way. 
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2.3.2. Aggregate motion model 

The aggregate motion model was developed by Moskal and Payatakes (2006). Transitional and 
rotational trajectory equations were estimated using Beer and Johnson (1997) approach. We assume 
that the same forces that act on single particles act on aggregates (Eq. 6) and that the only external force 
is the gravitational one. 

The effective Brownian force in the Langevin equation is usually assumed to be a Gaussian “white 
noise” random process (Chandrasekhar, 1943; Gupta and Peters, 1985; Uhlenbeck and Ornstein, 1930). 
Of course, in order for the effective Brownian force to have the same overall effect as the actual 
Brownian force (which is exerted by the molecules), it should have the appropriate spectral intensity 
and acceleration characteristics. Iwan and Mason (1980) developed an equivalent linearization method 
for systems which are subjected to a non-stationary random excitation, and their findings were used by 
Abuzeid et al. (1991) and Chen, et al. (2002) to study processes involving Brownian dynamics. Based 
on the above, the Brownian force F(B), which is exerted on the ith particle of the aggregate, is given by: 

 iBei
i(B)

Zαm=F  (8) 

where Be is defined as the characteristic magnitude of the acceleration of the Brownian excitation and 
Zi is a dimensionless vector with random direction 
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
   (9) 

where t is the time step which is used in the simulation of the Brownian excitation and which is set 
equal to the time step used in the numerical integration of the trajectory equations. 

The net Brownian force acting on an aggregate is the vector sum of the Brownian forces acting on all 
the primary particles, which form the aggregate. Here, by primary particle we understand the single, 
spherical particles forming the aggregate. However, it is clear that the Brownian force acting on a 
primary particle in an aggregate is smaller than that acting on a solitary primary particle. One reason is 
that a particle in an aggregate is shielded by its neighbors. The second reason is that fluid molecules 
have a relatively small probability of hitting points in particle-to-particle contact regions. Here, we will 
assume that the structure of aggregates is sufficiently open to make shielding by neighbors negligible. 
In order to take into account the particle-to-particle contact effect, we introduce an “accessibility” 
factor into Eq. (8) 

 ii,shBeii
)B( ZfmF   (10) 

which is estimated by calculating the “accessible” area fraction i,shf  A simple approximate analytical 

expression was developed which estimates the drag force for each primary particle in an aggregate as a 
function of the number of its immediate neighbors. The translational and rotational motion of any 
aggregate of a given size, overall shape and internal structure is calculated through the numerical 
integration of a system of differential equations which describe the conservation laws of linear and 
angular momentum, in a form which pertains to a rigid aggregate of identical primary particles. A 
detailed solution may be found elsewhere (Moskal and Payatakes, 2006). 

2.4. Resuspension model 

The resuspension model is based on data reported by Reeks et al. (1988) and Ziskind et al. (2000). The 
Authors assumed that the adhesion and elastic reaction forces can be described by an equation of 
harmonic movement with dumping effect. Extending the approach, one can assume that particle 



R. Przekop, L. Gradoń, Chem. Process Eng., 2016, 37 (3), 405-417 

410  cpe.czasopisma.pan.pl;  degruyter.com/view/j/cpe 
 

interactions also have an oscillatory character. The displacement of a particle at a cluster attached to the 
neighboring particles can be expressed as follows 

 
2

2

dt

xd
=m

dt

dx
bkx   (11) 

Equation (11) describes the energy-balanced oscillatory model. The stiffness coefficient and dumping 
coefficient can be calculated from material properties of particles, surface and fluid (Przekop et. al, 
2004). The re-entrainment occurs when the distance between the surfaces of bodies exceeds value 
(Ziskind et al., 2000). 
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3. COMPUTATIONAL PROCEDURE 

The models described above were used to simulate the deposition of spherical particles and aggregates 
in the system of constricted tube unit cells. Calculations were carried out for three different filters with 
the same thickness, l=15mm, and porosity, , but with different pore sizes (Table 1). The properties of 
the fluid and the particles are summarized in Table 2. The superficial fluid velocity was assumed to be 
2.5 mm/s, which is a typical value used in water filters testing. The calculations were performed for 
Arizona ultrafine test dust. The particle size distribution is shown in Fig. 3. The properties of particles 
were assumed to be the same as those of SiO2, which is the main component of Arizona test dust. The 
concentration of solid particles at the inlet was assumed to be c0=100 mg/l. 

Table 1. Porous medium parameters 

 Filter 1 Filter 2 Filter 3 

[-] 0.67 0.67 0.67 

R1=R2=h0 [m] 30 15 6 

rc [m] 21.5 10.6 4.3 

Table 2. Fluid and solid particles properties 

Suspension parameters 

particles density,p = 2200 kg/m3 

water density,  = 997 kg/m3  

water viscosity, =0.89 mPas 

work of adhesion, =0.1 J/m2 

Young’s modulus, E=75 GPa 

Poisson’s ratio,  =0.17 

The plug flow was assumed at the inlet, which means that for all nodes at the inlet surface the 
equilibrium distribution with the assumed mean velocity was applied. At the outlet the no-stress 
conditions were applied, which was achieved by reproducing the same velocity distribution for the last 
10 nodes in the main direction of the fluid flow. When a fluid particle enters a solidified site, it changes 
its moving direction for the opposite one. This method naturally leads to zero-velocity at the solid level. 
Solid particles, moving with the superficial fluid velocity, were uniformly distributed at the inlet. The 



Dynamics of particle loading in deep-bed filter. Transport, deposition and reentrainment 

cpe.czasopisma.pan.pl;  degruyter.com/view/j/cpe  411 
 

interactions between lattice-Boltzmann and Brownian dynamics were modeled as follows. Initially, the 
fluid velocity profile for a clean filter was calculated. Then the trajectories of aerosol particles with the 
time step of 10-8 s were tracked. The fluid velocity in a given point of space, necessary to calculate the 
drag forces acting on a particle, was determined as a superposition from the neighboring nodes. 
Obviously, the relation between the dimensionless velocity in the lattice-Boltzmann scheme and the 
physical one, used in Brownian Dynamics calculations, was linear. The displacement of single particles 
was calculated using the model described in Section 2.3.1, while displacement of aggregates by the 
model featured in Section 2.3.2 . The only external force assumed in calculations was the gravitational 
one. For the case of displacement of deposited particles additionally the adhesion force calculated from 
Eq. 13 was taken into account. If the moving particle touched the surface of collector or previously 
deposited particle, the deposition occurred. If the distance between the surfaces of deposited particles or 
particle and collector exceed the value calculated from Eq. 14 the resuspension took place. In case of 
deposition or resuspension of the particles, the geometry of the computational domain was changed and 
a new velocity profile was calculated. Additionally, if resuspension occurred to the cluster of particles, 
parameters of its shape and structure, necessary to solve aggregate motion model, were calculated. 

 

Fig. 3. Particles size distribution of ultrafine Arizona test dust 

4. RESULTS AND DISCUSSION 

The initial fractional efficiency of the filters is depicted in Fig. 4. Figs. 5 and 6 show the time evolution 
of filtration efficiency and pressure drop of the filters, respectively. The calculations were carried until 
the pressure drop reached the value 5 times higher than the initial pressure drop. For the biggest solid 
particles we can observe a drop of the filtration efficiency at some stages of the process, which is 
caused by particle resuspension. This phenomenon is especially visible at the later stages of filtration, 
when the presence of deposited matter leads to local increase of fluid velocity and thus produces higher 
stresses across the deposits. At the same time, large particles deposited on the smaller ones are the most 
tractable to resuspend into the fluid stream. 

Figure 7 shows the time evolution of  ratio, were  is the specific deposit (the apparent volume of 
deposited material per unit volume of the filter) vs. the depth of the filter. As can be seen during the 
early stages of filtration  decreases monotonically with depth, while for the later stages the 
maximum is observed at some distance from the filter surface, which is caused by the re-entrainment 
and redeposition of particle clusters. Recently Jackiewicz et al. (2015) reported similar behavior for 
experimental analysis of particles deposition in fibrous filters. This phenomenon was not observed by 
Skouras et al. (2004) in model work which neglected the possibility of particles reentrainment. 
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Fig. 4. Initial fractional efficiency 

Fig. 8 shows the distribution of a number of primary particles in clusters resuspended to the fluid 
stream and counted at the outflow from the filter. As can be seen large clusters tend to redeposit at the 
deeper layers of the filter. 

 

 

Fig. 5. The evolution of filter efficiencies, (a) Filter 1, (b) Filter 2, (c) Filter 3 

 

a) b) 

c) 
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Fig. 6. Time evolution of pressure drop 

 

Fig. 7. Distribution of normalized specific deposit at various times, a) Filter 1, b) Filter 2, c) Filter 3 

 

a) b)

c) 
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Fig. 8. Size distribution of aggregates 

5. CONCLUSIONS 

The simulations performed in this work cover all the key phenomena of deep bed filtration – initial 
filtration, the growth of deposits, re-entrainment and redeposition of clusters, possible clogging of 
pores. The dynamic behavior can be described not only by the evolution of deposition efficiency and 
pressure drop but also by the spatial distribution of deposits. The model enables prediction of dynamic 
filter behavior. It can be a very useful tool for designing filter structures which optimize maximum 
filter lifetime with the acceptable values of filtration efficiency and pressure drop. By using the 
Lagrangian approach of Brownian dynamics, the model avoids the problem of numerical instability, 
which was reported by Long and Hilpert (2009) for higher values of Peclet number. 

This work was financed by Swiss Contribution, Polish-Swiss Research Programme number PSPB-
209/2010. 

SYMBOLS 

b dumping coefficient, kg/s 
bf fluid dumping coefficient, kg/s 

a) b)

c) 
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bm mechanical dumping coefficient, kg/s 
c0 particles concentration, mg/l 

sc  dimensionless sound speed 

Cs Cunningham factor 
dp diameter, m 
e unit vector 
E Young modulus, Pa 
f distribution function 
fsh accessible area fraction 
F(D) drag force, N 
F(ext) external force, N 
F(R) random Brownian force, N 
g acceleration of gravity 
Gvi random number 
GLi random number 
h length of the tube, m 
k stiffness coefficient, kg/s2 
kB Boltzmann constant, J/K 
l filter thickness, mm 
Li displacement, m 
m mass, kg 
P pressure, Pa 
rc radius in the narrowest cross-section of the tube , m 
R1 radius of the inlet of the tube, m 
R2 radius of the outlet of the tube, m 
t time, s 
t  dimensionless time 
T temperature, K 
u fluid velocity, m/s 
u  dimensionless fluid velocity 
v particle velocity, m/s 
x position, m 
x  dimensionless position 
yb distance between surfaces, m 
Z vector 

Greek symbols 
ai model constant 
Be characteristic magnitude of acceleration, m2/s 
 work of adhesion, J/m2 
 porosity 
 elastic constant, Pa-1 
 mean free path, m 
 viscosity, Pa*s 
 Poisson’s ratio 
  dimensionless viscosity 
f kinematic viscosity, m2/s 
 coordination number 
 fluid density, kg/m3 
p particle density, kg/m3 
  dimensionless density 
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c correlation coefficient 
 specific deposit 
Li standard deviation of displacement, m 
vi standard deviation of velocity, m/s 
 relaxation time, s 
  dimensionless relaxation time 
 orientation angle, rad 
i distribution function 
 collision term 
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