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FUZZY LOGIC APPLICATION TO STRAIN-STRESS ANALYSIS IN SELECTED ELASTIC-PLASTIC MATERIAL MODELS

ZASTOSOWANIE LOGIKI ROZMYTEJ DO ANALIZY ODKSZTAŁCEŃ I NAPRĘŻEŃ DLA WYBRANYCH MODELI
MATERIAŁÓW SPRĘŻYSTO-PLASTYCZNYCH

“As far as the laws of mathematics refer to reality, they are not certain,
and as far as they are certain, they do not refer to reality.”

Albert Einstein

The common engineering practice is the selection of certain physical factors such as geometry, loading, boundary condi-
tions, and material properties. In reality these data are more or less uncertain. In many engineering problems this uncertainty
should be taken into consideration. Fuzzy set theory allows to determine randomness model response to the external load-
ing. Two methods - extension principle and α-level optimization are presented and compared in this paper. Advantages and
disadvantages of these approaches are discussed on example of mapping function. Next the extension principle and α-level
optimization are applied to the analysis of stresses in the bar made of elastic-plastic material subjected to uniaxial tension. The
yield stress and hardening modulus are fuzzy variables. The influence of fuzziness of numerical procedure (large integration
step) to the result space is also discussed.

The main part of this paper is the investigation of influence of selected fuzzy parameters of Bodner-Partom material
model to stress analysis in the stretched bar. BP material model allows to take into consideration elastic and plastic material
properties, isotropic and kinematic hardening, visco-plastic effects, as well as creep and relaxation. The proper response of the
material to external loading requires the correct selection of fourteen material constants. The experimental determination of
these data is problematic, and gives imprecise results. The increase of accuracy of BP material parameters may be achieved by
application of optimization procedures or genetic algorithms. In this research for the first time the fuzzy sets theory is applied
to accomplish this goal.

Keywords:fuzzy logic, unified plasticity, Bodner-Partom material

Powszechną praktyką w obliczeniach inżynierskich jest przyjmowanie za dokładne pewnych wielkości typu geometria,
obciążenia, warunki brzegowe czy właściwości materiału. W rzeczywistości wielkości te charakteryzują się pewnym rozrzutem,
co w przypadku wielu problemów powinno być uwzględniane. Teoria zbiorów rozmytych pozwala na określanie rozmytej
odpowiedzi układu na działanie obciążeń przy założeniu niepewności danych wejściowych i modelu matematycznego bądź jego
numerycznej implementacji. W artykule przedstawiono i porównano ze sobą dwa podejścia logiki rozmytej: zasadę rozszerzeń
i optymalizację α -przekrojami. Zalety i wady obydwu podejść omówiono na przykładzie funkcji mapującej. Obie metody
zastosowano następnie w analizie naprężeń w rozciąganym pręcie wykonanym z materiału sprężysto-plastycznego. Granica
plastyczności i moduł umocnienia stanowiły zmienne rozmyte. Przedyskutowano wpływ rozmycia procedury numerycznej
(zbyt duży krok całkowania) na rozmycie rozwiązania.

Zasadniczą część artykułu stanowi badanie wpływu wybranych rozmytych parametrów modelu materiału Bodnera-Partoma
na poziom naprężeń w pręcie rozciąganym w zakresie sprężysto-plastycznym. Model materiału BP pozwala na równoczesne
uwzględnienie w analizie właściwości sprężystych i plastycznych, umocnienia izotropowego i kinematycznego, efektów lepko
plastycznych, pełzania oraz relaksacji. Właściwa odpowiedź materiału na działanie obciążeń zewnętrznych zależy od prawidło-
wego przyjęcia wartości czternastu stałych materiałowych. Określenie wartości tych stałych na podstawie badań eksperymental-
nych jest problematyczne i mało precyzyjne. Zwiększenie dokładności wyznaczania stałych materiału BP może być osiągnięte
poprzez zastosowanie procedur optymalizacji oraz algorytmów genetycznych. W niniejszej pracy po raz pierwszy w tym celu
zastosowano zasady logiki rozmytej.
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1. Introduction

There are many situations where imprecise or in-
complete information about a problem is available until
an approximate solution is obtained. In numerical sim-
ulations of metal forming processes many parameters
e.g. estimated and experimental loads, friction coefficient
and material properties are imprecise and often uncer-
tain. Soft computing-based methods accept the presence
of imprecision and uncertainty, while attempting to find
reasonable solution. The most popular soft computing
approaches are fuzzy sets, neural networks and genetic
algorithms. Fuzzy set theory allows to determine ran-
domness model response to the external loading. Two
fuzzy logic approaches - extension principle and α-level
optimization are used as the numerical tool in this paper.
Both methods are introduced in benchmark test of the
analytically defined mapping function. Advantages and
disadvantages of these approaches are discussed.

Next the extension principle and α-level optimiza-
tion are applied to the elastic-plastic analysis of stress
in the bar subjected to uniaxial tension. The purpose of
this fuzzy analysis is the prediction of the bar response
to the external load while the uncertainty of material
parameters is considered. Obtained results provide the
information not only about stress changeability but also
about the level of acceptance (reliability) of bar response.
Conclusions gained in this one-dimensional test may be
extended to sophisticated three-dimensional problems.

Three different elastic-plastic material mod-
els namely: Prager-Ziegler, Armstrong-Federick and
Bodner-Partom are considered. For the first two material
models (which represent the classical theory of plastici-
ty) the yield stress and hardening modulus are assumed
to be fuzzy variables. The Bodner-Partom material mod-
el which is an example of materials considered in unified
theory of plasticity allows to predict elastic-plastic ma-
terial response while simultaneously isotropic and kine-
matic hardening, visco-plastic effects, as well as creep
and relaxation are respected. Bodner-Partom material
model may be applied as universal tool in the analy-
sis of metal forming processes, therefore. The proper
response of the BP material to external load unfortu-
nately requires the correct selection of fourteen material
constants (some of them are assumed in this paper to
be fuzzy variables). The experimental determination of

these data is problematic, and gives imprecise results.
The increase of accuracy of BP material parameters may
be achieved by application of sophisticated optimization
procedures or genetic algorithms. In this research for the
first time the fuzzy sets theory is applied to accomplish
this goal.

2. Uncertain structural analysis

The realistic analysis of structures requires reliable
input data as well as consistent computational models.
As a rule both the data and mathematical model contain
uncertainties. Unlike in deterministic structural analysis
fuzzy structural analysis takes both data and model ran-
domness into consideration. A typical example of fuzzi-
ness is presented in Fig. 1.

The fuzzy input variables x1, x2 are described by
membership functions µ(x1), µ (x2). No general algo-
rithm exist in order to indicate the membership func-
tions. Membership functions for structural parameters
may be specified on the basis of samples [1]. The mea-
sured values, possible measurement errors, experience
gained from comparable problems and additional infor-
mation are helpful in the derivation of the membership
functions. The membership function may be interpreted
as gradual assessment of the truth content of a set of
measured values. They provide the information about
the scattering of input parameters and about the level of
acceptance of this disperse. The triangular, trapezoidal,
Gauss (infinite support) or modified Gauss (finite sup-
port) functions are usually applied to describe the mem-
bership functions.

The aim of fuzzy structural analysis is the mapping
of fuzzy input parameters into the result space with the
aid of an analysis algorithm resulting from the mathe-
matical model. The obtained results are also fuzzy quan-
tities described by result membership functions. In the
fuzzy sets theory the extension principle is usually ap-
plied as a general approach to derive the membership
function associated with the fuzzy result variable. Un-
fortunately, in the case of sophisticated mapping models
the extension principle is unusable. The application of
α-level optimization approach provides much better re-
sults with the same computational effort.
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Fig. 1. Mapping of fuzzy input variables into result space
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Fig. 2. Benchmark test membership functions

3. The extension principle versus α-level
optimization.

The extension principle and α-level optimization ap-
proaches are presented in this chapter. These two meth-
ods are compared in a benchmark test in which the map-
ping model (Fig. 1) receives the form of an analytical
function (1):

z = f (x, y) = sin x cos y (1)

Arguments x and y are assumed to be fuzzy variables.
Two triangle membership functions associated with x
and y parameters are shown in Fig. 2.

It is assumed that the range of x argument is [0.1π,
0.6π]. The most reliable x value is 0.2π for which the
membership function is unit. Fig. 2 shows that x <0.1π
and x >0.6π are not accepted (membership function
equals zero).

Optimal membership function can be estimated by
means of machine learning (neural networks) or opti-
mization methods (genetic algorithms). Although normal

(Gaussian) distribution is adequate to the most of real
problems, usually linear distribution is assumed. For lin-
ear membership functions which easily satisfy partition
of unity condition [1, 2] the fuzzy results are reliable,
and the numerical procedure is effective.

In this benchmark test the magnitude of z is searched
for x ≈ y ≈ 0.2π(x and y are about 0.2π). The uncertain-
ty of input variables causes the fuzziness of resulting z
variable.

On the basis of the extension principle the mapping
function f (x, y) leads to the fuzzy set with the member-
ship function

µ (z) = supmin
[
µ (x) , µ (y)

]
, ∃ z = f (x, y) (2)

For ranges of fuzzy variables x and y divided into n=50
evenly subdomains the following solution is obtained –
Fig. 3.
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Fig. 3. Fuzzy result and smoothed solution according to the extension
principle n=50

The application of the sup operator in (2) is repre-
sented in Fig. 3 by thick line envelope. For floating-point
numbers the maximum of min

[
µ (x) , µ (y)

]
may be only

derived for the range z±ε, where ε is the assumed preci-
sion. For the small number of subdomains such smooth-
ing causes a jagged solution.

Better smoothing may be achieved by assuming
n >100. For n=400 the smoothed solution is comparable
with the theoretical one.

The extension principle is hardly applicable in com-
plex mapping models. The principle is very sensitive to:
• the number of combinations of elements from the

fuzzy input variables
• the assumed precision ε when two close elements z1

and z2 are considered equal or not
• the max-min operator applied to discrete combina-

tions of elements from the fuzzy input sets. This
reduces the accuracy of the membership values and
favors lower bounds for the graph of the actual mem-
bership function.
In order to develop a suitable method for processing

fuzzy input variables the concept of α-discretization is
adopted [2]. An alternative representation of fuzzy sets
based on sufficiently high number of α-levels is devel-
oped. The subspace assigned to αK level αK ∈ [0, 1]
is determined by extreme xαk l, xαkr values as shown in
Fig. 4.

For the α-level representation of fuzzy input vari-
ables with the aid of the mapping operator, the mini-
mum zαk l and maximum zαkr elements can be found. The
search for smallest and largest elements is formulated as
an optimization problem (3)

m

a

a a

Fig. 4. α-discretization of the fuzzy set

z = f (x, y)⇒ Max (x, y) ∈ Xαk (3)

z = f (x, y)⇒ Min (x, y) ∈ Xαk

The requirements (x, y) ∈ Xαk represent constraints of
the optimization problem. The optimization problem (3)
performed for all α-levels and all fuzzy result values
is referred as α-level optimization. The optimization is
possible unless the mapping operator is continuous and
unique, and fuzzy result space is convex [3]. The α-level
representation is thus an alternative way (when compared
to the extension principle) to find fuzzy result member-
ship function. Obtained result membership functions are
much smoother when compared to ones provided by ap-
plication of extension principle.

The fuzzy result space obtained for function (1) by
application of α-level optimization procedure is shown
in Fig. 5.

Fig. 5. Fuzzy result according to the α-level optimization
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The analysis shows that acceptable range of fuzzy
result z is [0.18602, 1.0]. The most reliable (unit mem-
bership function) magnitude of z is 0.4709. These results
conform to ones derived by an analytical solution.

The fuzzy results obtained by α-level optimization
procedure is attainable by the extension principle only
for very dense discretizations of input fuzzy variables.
In structural analysis α-level optimization is preferred,
therefore. In this simple benchmark test the mapping
model is defined explicitly as a function. In structural
analysis it is possible only for very simple problems.
Usually the mapping model gets the form of a numerical.

4. Stress-strain analysis in elastic-plastic kinematic
hardening material model

Following simple benchmark test from the previous
chapter the extension principle and α-level optimization
are applied to the numerical analysis of stress in the
bar subjected to uniaxial tension. The bar is made of
elastic-plastic material. The strain increases linearly up
to 1% at the end of the test. The goal of this fuzzy
analysis is the prediction of maximum axial stress (fuzzy
result variable) in the stretched bar while the uncertain-
ty of material parameters is considered. Two types of
kinematic hardening material models [4] are considered:
Prager-Ziegler material model – linear hardening, and
Armstrong-Frederick material model – non-linear hard-
ening. Both models are defined by the following equa-
tions:

Stress-strain relation for elastic deformation:

σi j = Ci jklε
el
kl (4)

Plastic flow law:

ε̇
pl
i j =

3
2
ε̇pl

σY

(
si j − xi j

)
(5)

Yield function:
√

3
2

(
si j − xi j

) (
si j − xi j

)
− σY = 0 (6)

In equations (4)-(6)

ε̇pl =

√
2
3
ε̇

pl
i j ε̇

pl
i j (7)

is equivalent plastic strain,

si j = σi j − 1
3
δi jσkk (8)

is deviatoric stress,

dxi j =
2
3
cdεpl

i j − γ xi jdεpl (9)

is the increment of the back stress and γ is the material
constant (in Prager-Ziegler material model γ = 0).

For simple uniaxial loading the stress increment is
related to strain increment as shown in (10)

dσ = E
(
1 − E

E + c − γx

)
dε (10)

Numerically found hysteresis loops for both models are
presented in Fig. 6. Here: E=2e5 MPa, σY=300MPa,
c=1e4 MPa, γ=100, ε ∈ [−0.1 , 0.1].

Fig. 6. Hysteresis loops for Prager-Ziegler (left) and Armstrong-Frederick (right) material models
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Fig. 7. Membership functions of fuzzy input variables

The yield stress and strain hardening modulus are
fuzzy variables in this analysis. In this numerical simu-
lation for testing purposes the range [250, 400] MPa of
yield stress variation is assumed. Fig. 7 shows triangular
membership functions associated with both fuzzy vari-
ables. This simulation answers the question what stress
arises in the stretched bar up to 1% if yield stress σY is
about 300 MPa, and strain hardening modulus c is about
5% of Young’s modulus.

The fuzzy result stresses in the stretched bar ob-
tained by application of the extension principle and
α-level optimization for Prager-Ziegler material model
are shown in Fig. 8.

Fig. 8. The fuzzy result stress – Prager-Ziegler material model

The fuzzy result stress for Armstrong-Frederick ma-
terial model (not presented here) is comparable to the
above solution. Fig. 8 shows that the variation of axi-
al stress is [301.0, 503.9] MPa. Both approaches give
similar results, but the solution obtained by α-level op-
timization is smoother. The result membership function
is almost linear. It is caused by the problem itself (map-

ping model) as well as by assumed shape of membership
functions (linear).

One of the most important features in fuzzy set the-
ory is the defuzzification. Defuzzification is the conver-
sion of fuzzy result into a precise output. Defuzzification
of the fuzzy variable represents the mapping of fuzzy
variable into the crisp value for which the uncertainty is
evaluated. Several defuzzification algorithms are avail-
able: height method, centroid method, level rank method,
Jain and Chen defuzzification and others. In the height
method known also as the maximum membership prin-
ciple the number of maximum degree of membership
is chosen. This method can be applied only if output
contains the maximum peak. For numerical simulation
presented here the maximum of membership function is
reached for stress 380.95 MPa. This is the most reliable
solution for stress in the stretched bar.

Very interesting results are obtained for the case
when both input variables and the mapping model are
uncertain. In the numerical algorithm of solving equa-
tions (4) to (9) the explicit integrations scheme is chosen.
This type of integration is conditionally stable i.e. when
the step increment is too large the convergence does not
exist [5]. In such a case the fuzziness of mapping model
is caused by the improper integration procedure. The
fuzzy result stress obtained for the large step increment
(Fig. 9) clearly shows the problems arising in the inte-
gration procedure.

The result membership function shown in Fig. 9 is
nonlinear. The solutions obtained by the application of
extension principle and α-level optimization differ sig-
nificantly. Only 400 time increments are executed here
in explicit integration of (4) to (9), while in the previ-
ous test (Fig. 8) 10000 integrations are made. Numeri-
cally found stress-strain curves (not presented here) for
simple tension test obtained for 400 and 1000 integra-
tion increments are almost identical. It seems that 400
time increments explicit integration gives reliable results,
therefore. However, fuzzy logic analysis clearly shows
(Fig. 9) existence of convergence problems. The fuzzy
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set theory is then a very sensitive tool for detection of
possible problems arising in mathematical models and
applied numerical procedures.

Fig. 9. The fuzzy result stress for the case of fuzzy mapping model
caused by large integration step

5. Bodner-Partom material model

Many constitutive theories were proposed over the
past years. Many plasticity models based on the second
invariant of deviatoric stress have been found useful for
practical applications. Better understanding of physics
of deformation causes progress in theories of materials
inelastic response. Unified theories of plasticity describe
the time dependent inelastic behavior in formulations
which do not rely on a yield criterion or loading and un-
loading conditions. Macroscopic equations represent the
principle response properties such a strain rate sensitivi-
ty and temperature dependence for inelastic deformation,
stress saturation under straining, isotropic and direction-
al hardening for monotonic and reversed loadings, creep,
thermal recovery and stress relaxation. To be useful, the
equations should be reasonably simple and consistent
with the principles of mechanics and thermodynamics.
All the characteristics of inelastic deformations are usu-
ally represented in a single strain term. The evolution
equation of this term includes internal variables whose
number depends on the hardening mechanisms and the
complexity of the loading history.

The Bodner-Partom material (BP) is an example
of unified theory of plasticity. BP material model al-
lows to take simultaneously into consideration elastic
and plastic effects, isotropic and kinematic hardening,

visco-plasticity, creep and relaxation for a wide range
of temperature. For the elastic deformations the rela-
tion between stresses and strains is linear (generalized
Hooke’s law). The plastic flow law constitutes the rela-
tion between these variables for inelastic deformations.
The description of plastic multiplier is sophisticated in
order to include in the analysis all types of nonlinearities
mentioned above [6].

The BP model does not use the yield condition. For
increased load the participation of inelastic strains ad-
vantages the participation of elastic ones.

The Bodner-Partom material model is defined by the
following equations:

Superposition of elastic and inelastic strains

εi j = ε(e)
i j + ε(ie)

i j (11)

Incompressibility condition for inelastic deformations

ε(ie)
kk = 0 (12)

Plastic flow law
ε̇(ie)

i j = λ si j (13)

where plastic multiplier is

λ =

√
D2

0

J2
exp

(
−

(
Z2

3J2

)n)
(14)

In (14) D0 and n are BP material constants, J2 is
the second invariant of deviatoric stress. State variable
Z = Z I + ZD represents the resistance of material to in-
elastic deformations - both isotropic Z I and directional
ZD.

The evolution of Z I is defined as

Ż I = m1

(
Z1 − Z I

)
Ẇp − A1Z1

(
Z I − Z2

Z1

)r1
(15)

Parameter ZD depends on tensorial quantity βi j

β̇i j = m2

Z3
σi j∥∥∥σi j

∥∥∥ − βi j

 Ẇp − A2Z1


∥∥∥βi j

∥∥∥
Z1


r2

βi j∥∥∥βi j

∥∥∥
(16)

ZD = βi j
σi j∥∥∥βi j

∥∥∥ (17)

Here: m1, m2, A1, A2, Z1, Z2, Z3, r1, r2are BP material
constants described in Table 1.
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TABLE 1
Bodner-Partom material parameters

Constant Unit Description

E MPa Elastic modulus

ν – Poisson’s ratio

D0 s−1 Limiting shear-strain rate

Z0 MPa Initial value of isotropic hardening variable

Z1 MPa Limiting value for isotropic hardening

Z2 MPa Fully recovered value for isotropic hardening

Z3 MPa Limiting value for kinematic hardening

m1 (MPa)−1
Hardening rate coefficient for isotropic
hardening

m2 (MPa)−1
Hardening rate coefficient for kinematic
hardening

n – Strain rate sensitivity parameter

A1 s−1 Recovery coefficient for isotropic hardening

A2 s−1 Recovery coefficient for kinematic hardening

r1 – Recovery exponent for isotropic hardening

r2 – Recovery exponent for isotropic hardening

Tensorial norms
∥∥∥σi j

∥∥∥ =
√
σi jσi j

∥∥∥βi j

∥∥∥ =
√
βi jβi j.

For inelastic strain rate ε̇(ie)
i j derived from (13) the

elastic stress rate σ̇(e)
i j is determined from the generalized

Hooke’s law

σ̇(e)
i j = Ci jkl

(
ε̇kl − ε̇(ie)

kl

)
. (18)

Fig. 10. Stress-strain plots for various strain rates

The response of BP material to external loading depends
on initial magnitudes of material constants and loading
history. Special analysis cases are: purely elastic solu-
tion, elastic-visco plastic solution, cyclic plasticity, creep

under constant stress, relaxation under constant strain.
The BP material response cannot be determined a’ priori
without integration of (15) and (16). In Fig. 10 presented
is special case of stress-strain plot of BP material model
which takes into consideration strain rate dependence.

6. Uncertain stress-strain analysis in
Bodner-Partom material model

In this chapter numerical simulations of the truss
subjected to uniaxial tension are preformed. Mechanical
behavior of this bar is described by BP material mod-
el. For the strain increasing monotonically up to 1% the
stress in the bar at the end of test is searched. The result-
ing stress depends on BP material constants magnitudes.
The most of BP material constants may be determined
[6] in uniaxial tension tests completed for various load
rates. Some of them are determined from the η −σ plot
(Fig. 11) where:

η =
1
σ

dσ
dε(ie) . (19)

Fig. 11. η − σ plot for identification of B-P parameters

From exemplary plot η − σ shown in Fig. 11 the
parameters m1, m2 are computed as the solution of two
linear regression problems (tangent of two sections in
Fig. 11), Z1, Z3 are found in an extrapolation of two
straight sections to η = 0. The quality of BP parame-
ters found in this way is rather poor. It is caused by
ill-conditioned differentiation (19). The precision of de-
termination of BP parameters may be improved by solv-
ing the optimization problem [7] or by the application
of genetic algorithms [8]. In this paper for the first time
the fuzzy set theory is applied to accomplish this task.
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In presented simulation selected BP material con-
stants (m1, m2, n, Z1, Z3) are treated as fuzzy vari-
ables. The initial magnitudes of BP parameters are taken
from [6] for B1900 + Hf nickel based alloy. These are:
D0 = 104 s−1, m1 = 0.27 MPa−1, m2 = 1.52 MPa−1,
Z1=3000 MPa, Z2=1150 MPa, n=1.0

The range of BP parameters variation is chosen in
comparison of Bodner and Chan results [6] with results
obtained by other researches [7]. A pseudo normal mem-
bership functions are assumed. These functions unlike
the Gauss distribution have finite support – range λ1÷ λ2
in (20). Infinite support is not accepted because in this
case any magnitude of fuzzy variables is available. The
modified Gauss distribution (20) chosen as the shape of
membership functions is defined as:

µ(x) = exp
4 (λ2 − x) (x − λ1) − (λ2 − λ1)2

4 (λ2 − x) (x − λ1)
x ∈ [λ1, λ2]

(20)
Normal and pseudo normal distributions of membership
function are more adequate to reality than the triangular
distribution. The function (20) is class C∞ and the deriv-
ative in the central point is continuous. The disadvantage
of use of the function (20) is that this function does not
satisfy the partition of unity requirement.

Fig. 12. Hysteresis loops for various n magnitudes

Fuzzy set theory is often called a method of com-
puting with language. It uses linguistic variables like:
tall and small, smooth and rough, thin and thick, wide
and narrow. A linguistic variable is a fuzzy variable and
is often associated with fuzzy set quantifiers like: very,
more or less, slightly etc. Linguistic variable “concen-
trated” by quantifier requires proper definition of mem-
bership function. In this research the fuzzy variable n is

assumed to be a linguistic variable. The property of this
variable is based on operator knowledge and experience.
Numerical simulations made for different n show that the
this variable influences on the width of hysteresis loop
in cyclic tension and compression test (Fig. 12).

The membership functions associated with fuzzy
variable n comprises the terms: very narrow, narrow,
medium, wide and very wide as shown in Fig. 13.

m

Fig. 13. Membership functions of the linguistic variable n

Assumed triangular distribution of membership
functions satisfies the requirement of partition of unity.

Fig. 14. Fuzzy result stress and the crisp value

Many numerical simulations of uniaxial tension
test are carried out for different number of fuzzy
Bodner-Partom material constants (from two to five
fuzzy variables) and for different shapes of member-
ship functions. In Fig. 14 presented is an exemplary so-
lution of the fuzzy stress in the bar obtained for five
m1, m2, n, Z1, Z3fuzzy variables. Non-fuzzy result
stress gained by defuzzification procedure is also pre-
sented in this figure (vertical line).
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The variation of maximum axial stress in the bar
is [715.71, 1306.40] MPa. The crisp stress z0 =1019.29
MPa represented in Fig. 14 by the vertical line is com-
puted by centroid method (21)

z0 =

∫

z

zµ (z) dz
/∫

z

µ (z) dz (21)

This crisp stress z0 is the most reliable magnitude of
maximum stress in the bar computed for uncertain BP
material parameters. This result should be compared
with the results of experimental investigations of spec-
imen made of B1900 +Hf nickel based alloy. Compat-
ibility criterion of numerical and experimental results
allows for proper selection of magnitudes of BP material
parameters. However, simulations of simple tension test
with easy-to-interpret results (maximum stress) are not
sufficient to accomplish this task. In numerical tests the
crisp stress z0 may be obtained for many different mag-
nitudes of fuzzy variables. To obtain an unique solution
the whole stress-strain curve should be analyzed and ap-
propriate integral-form error norm should be assumed.
In experimental investigations various strain rates should
be considered. More advanced experimental investiga-
tions are also recommended. Such typical tests used in
investigation of elastic-plastic problems are: bent beam
and thick-walled cylinder under internal pressure.

7. Conclusions

Fuzzy logic is a powerful tool for the analysis of da-
ta and mathematical models which contain uncertainties.
In an engineering practice nearly all problems are more
or less uncertain. The fuzziness of input data e.g. yield
stress, strain hardening modulus, may be determined on
the basis of statistics or developer experience gained in
the investigation of a particular problem or similar prob-
lems. The influence of the selected model parameters on
randomness of the model response can be investigated.
In the defuzzification procedure the most valuable result
may be selected from the set of fuzzy result variable.

The Bodner-Partom material model is a very good
example of fuzziness. Over ten material model constants
are determined in the experimental tests enriched by nu-
merical procedures. The quality of obtained BP para-
meters is questionable and strongly depends on the type
of experimental tests and instruments precision. A good
practice is the assumption of BP constants randomness
and execution of fuzzy logic analysis.

In this paper only the simple tension test is con-
sidered. The maximum stress reached at the end of

test is a simple and easy-to-interpret parameter. In
order to investigate more precisely the influence of
Bodner-Partom material constants on the model re-
sponse, the whole stress-strain curve should be consid-
ered. The elastic-plastic beam bending test as well the
thick-walled cylinder under internal pressure test are also
welcome. The comparison of the results obtained in the
experimental investigations and defuzzificated results of
fuzzy logic analysis can help to select the optimal mag-
nitudes of BP material model parameters.

Presented here numerical simulations show the po-
tential of application of fuzzy logic analysis to solve
inelastic problems. Parameters of elastic-plastic material
models are always more or less imprecise. Fuzzy set the-
ory allows to find the variation of material response to
the external load when uncertainness of input parameters
is taken into consideration. The advantage of fuzzy logic
over deterministic methods is the ability of use linguistic
variables. This way numerical procedures are related to
human language.

Fuzzy set theory brings the new quality to many sci-
entific and engineering problems. In particular fuzzy log-
ic is very useful in the analysis metal forming processes
and investigations of elastic-plastic material behaviors.
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